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Abstract: 19 

With the exponential spread of the COVID-19 pandemic across the world within the 20 

twelve months, SARS-CoV-2 strains are continuously trying to adapt themselves in the host 21 

environment by random mutations. While doing so, some variants with evolutionary advantages 22 

such as better human to human transmissibility potential might get naturally selected. This short 23 

communication demonstrates how the mutation frequency patterns are evolving in 2,457 SAR-24 

CoV-2 strains isolated from COVID-19 patients across diverse Indian states. We have identified 25 

19 such variants showing contrasting mutational probabilities in the span of seven months. Out 26 

of these, 14 variants are showing increasing mutational probabilities suggesting their propagation 27 

with time due to their unexplored evolutionary advantages. Whereas mutational probabilities of 28 

five variants have significantly decreased in June onwards as compared to March/April, 29 

suggesting their termination with time. Further in-depth investigation of these identified variants 30 

will provide valuable knowledge about the evolution, infection strategies, transmission rates, and 31 

epidemiology of SARS-CoV-2. 32 
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Introduction:  34 

Since the emergence of SARS-CoV-2 in Wuhan, China in December 2019, the infection 35 

has spread at a menacing rate throughout the world. As of today, over 70 million active cases of 36 

COVID-19 and 1.5 million deaths are telling the horror story of this debilitating virus. Since the 37 

whole genome sequencing of the SARS-CoV-2 Wuhan Hu-1 strain earlier this year, more than 38 

250,000 genome sequences 1–3 have been deposited in open-source platforms such as GISAID, 39 

NCBI Virus, etc. Consortiums such as Nextstrain are providing valuable, unprecedented insights 40 

into the demography and epidemiology of SARS-CoV-2 strains along with information to 41 

supervise drug/vaccine design and discovery. 42 

Coronaviruses encode a 3′-5′ exoribonuclease (Nsp14) that proofreads RNA 4, which tries 43 

to maintain genome fidelity and control variations, although even with this, mutation rates 44 

amongst these viruses are very high. However, during the past twelve months of the ongoing 45 

COVID-19 pandemic, worldwide human-to-human transmission has enabled SARS-CoV-2 to 46 

accumulate numerous genetic variations 5. Several mutations among these are non-significant 47 

while other mutations could be beneficial for the survival of the virus, its infecting capability, 48 

and transmission 6–9. Given that beneficial mutations could be naturally selected in wider 49 

populations, studying SARS-CoV-2 genomic variants and their tracking with time might help us 50 

in understanding viral evolution, behavior, and infection trajectory. 51 

In this study, we have tracked and identified several mutational sites for month-wise 52 

(March to September; seven months) separated SARS-CoV-2 genome datasets isolated from 53 

Indian COVID-19 patients to distinguish which variants are getting naturally selected to 54 

propagate further and the ones which are being dismissed from the population. 55 

 56 
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Methods:  58 

2,457 complete genomes of SARS-CoV-2 isolated from Indian patients till September 30, 59 

2020, were extracted from GISAID on November 1, 2020 (Table S1). From September 30 to 60 

date, only eight Indian SARS-CoV-2 genome sequences have been submitted to GISAID, owing 61 

to this, we have not used genome data after September month in this study. Based on the sample 62 

collection date of each strain, we distributed them into seven categories: ‘March’ (this included 63 

the strains collected in January, February, and March), April, May, June, July, August, and 64 

September. The genome of the hCoV-19/Wuhan/WH01/2019 strain (EPI_ISL_406798) was used 65 

as a reference throughout this analysis 3. For each category, we generated multiple sequence 66 

alignment and identified the percentage of all four nucleotides (along with gap (-) and other non-67 

standard nucleotides) at each site. Sites having >2% gaps or non-standard nucleotides were not 68 

considered in the analysis. The frequency of each nucleotide in the alignment was calculated and 69 

a ratio was determined with the frequency of the nucleotide in the reference genome. Mutation 70 

frequency/probability was defined as the ratio of the frequency of the nucleotide at any site to the 71 

frequency of the nucleotide present in the reference sequence at the same aligned site. A 72 

hierarchical clustering based heatmap of each nucleotide loci was generated using mutational 73 

probabilities within each category using the hclust function in R. Simultaneously, trend plots 74 

were also generated for all identified clusters using ggplot. 75 

76 
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Results:  77 

All 2,457 SARS-CoV-2 strains isolated from the diverse landscape of India during 78 

March-September 2020 were categorized into month categories (Table S1) and aligned with the 79 

reference WH01 genome. This study recognized 268 sites with mutation probability ranging 80 

from 2 to 97.99% in at least one month. We identified that in most of these sites, there were 81 

negligible variations (>2% and <4%) amongst different month categories. Therefore, to identify 82 

the critical variations in our downstream analysis, we used a 4% minimum mutational probability 83 

score in at least one-month category and found 118 sites encompassing this criterion. 84 

Accordingly, we identified 36, 33, 32, 36, 37, 37, and 50 highly mutating sites amongst the 85 

March, April, May, June, July, August, September categories, respectively. Of these, 11 sites 86 

were showing significant mutation probabilities in all seven months, 3 in six of the months, 8 in 87 

four of the months, 11 in three categories, 16 in two, and 69 were unique in just a single month 88 

category. Finally, the mutational probabilities of these 118 sites across all time points (month-89 

wise) were visualized using a clustered heatmap where six clusters were obtained with 4, 3, 2, 5, 90 

5, and 99 sites per cluster (Figure 1AB, Table S2). The largest cluster with 99 sites did not show 91 

an upward or downward longitudinal trend, therefore, it might be classified as a “neutral” cluster 92 

(Figure 1AB), whereas 19 sites distributed in other five clusters showed significant variations, 93 

which are discussed below. 94 

Cluster one included four loci where the mutational probabilities were lowest in March 95 

(2-35%) with a radical increase to >90% in June and onwards, indicative of positive selection in 96 

the population (Figure 1AB, Table S2). The first site, C3037T is in the nsp3 protein-coding 97 

region of the orf1a gene, C14408T is in RdRp (RNA-dependent RNA polymerase) protein-98 

coding region within the orf1ab gene, the third site (A23403G) is in the spike protein-coding 99 

gene, and the fourth site (C241T) is in the noncoding 5' UTR region. C3037T is a synonymous 100 

mutation (F106F in nsp3 protein) and does not lead to any major changes in protein structure and 101 

function. On the other hand, we noticed that C14408T mutation causes a nonsynonymous change 102 

(corresponding to P125L in RdRp) which has also been observed in genomes isolated from 103 

different continents suggested to change the rigidify of RdRp structure 10. The third site, 104 

A23403G, is well known to cause a D614G mutation in the spike protein, which interferes in 105 

domain S1-S2 interaction. This has been suggested to cause substantial conformational shifts in 106 
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spike protein that in turn enhance SARS-CoV-2 infectivity while retaining sensitivity to 107 

antibodies that target the receptor-binding domain 6,7. Sites identified in the second cluster 108 

started showing mutations in April and in each month their frequency is expanding, reaching up 109 

to 60-80% of the total population in August/September. This cluster consists of three sites, of 110 

which one is synonymous mutations (Table S2) while the other two are non-synonymous and 111 

worth exploring further. All three sites G28881A, G28882A, and G28883C are located 112 

consecutively in the nucleocapsid gene and lead to changes in amino acids R203K, R203R, and 113 

G204R, respectively.  114 

Cluster three shows a trend like cluster two however the increase in percentage 115 

representation is slow and goes up to 35-60% as compared to 60-80% in the latter. It consists of 116 

two sites only i.e., a synonymous mutation in C313T [nsp1 in ORF1a; L16L] and a non-117 

synonymous mutation in C5700A [nsp3 in ORF1a; A994D]. The fourth cluster consists of five 118 

sites that had high mutational probabilities during early infection months, i.e., March and April, 119 

and decreased mutational probabilities in May and June, and further decreasing to zero in August 120 

and September, indicating that these variants are not being selected for further propagation. Two 121 

out of these sites, C13730T [which results in an A4489V change in ORF1ab (A97V in RdRp 122 

protein)] and C23929T [which results in a Y789Y change in spike protein], either maintain the 123 

general chemical nature of the amino acid (Alanine to Valine change) or are fully synonymous. 124 

However, the other three sites, C6312A, G11083T, and C28311T, result in non-synonymous 125 

changes in the nsp3 region (T1198K) of the ORF1a (T2016K), the nsp6 region (L37F) of ORF1a 126 

(L3606F), and the nucleocapsid (P13L) protein, respectively. Based on trends, we can 127 

hypothesize that the later three non-synonymous mutations were not selected by the virus 128 

population for further propagation on account of their putative lesser efficiency in infection or 129 

other types of fitness disadvantages.  130 

The fifth cluster consists of five sites where the mutational probabilities were making a 131 

bell-shaped curve across all month-wise datasets meaning that in March and April along with 132 

August and September, the mutational frequencies were in the range of 2-10%, however, we 133 

could see >30% mutational representation in June and July months. G25563T site is a part of the 134 

orf3a gene and leads to Q57H non-synonymous mutation. Similarly, another non-synonymous 135 

mutation was identified in C28854T that leads to S194L variation in Nucleocapsid protein.  136 
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Other loci include synonymous mutations at C18877T [nsp14], C22444T [S], and C26735T [M], 137 

which cause insignificant variations as indicated by L280L, D294D, and Y71Y, respectively. 138 

Most of the sixth cluster sites have small variations ranging from 0-10% mutational 139 

representations in one of the months. However, in a few sporadic sites, the representation was 140 

10-40% in only one of the months and in other categories, the representation was non-significant 141 

suggesting the absence of any pattern. Finally, considering the ongoing trends of these variants, 142 

we hypothesize that sites identified in clusters 1, 2, and 3 must be getting selected for 143 

propagation owing to some unknown fitness advantages. Similarly, as the representation of sites 144 

identified in clusters 4 and 5 was higher earlier and at its lowest in the end months, we argue that 145 

these sites are not getting preferred during viral population selection. 146 

To counter evolutionary pressure, viruses, akin to other living beings, continuously 147 

mutate their genetic material to improve their infection strategies, resistance potential to antiviral 148 

therapies, and transmission rate 11–13. Most of these random mutations are synonymous or 149 

functionally insignificant. However, a few non-synonymous mutations might give an extra 150 

advantage to the virus in its faster transmission, additional infection severity, or higher resistance 151 

against antiviral vaccines/treatments along with other fitness advantages. Overall, this study 152 

suggests that all identified mutations are not evenly distributed across the virus population during 153 

different timeframes; however, some loci are more prone to propagate and some get terminated 154 

with time. As several variants in clusters 1, 2, and 3 have higher mutational probability in 155 

August/September as compared to March/April, understanding the consequences of those 156 

propagating variants in terms of infection and epidemiology will be of great importance. 157 

Exploring and recognizing this information might prove helpful for drug and vaccine 158 

development. Some reports have already shown the rapid increase of a non-synonymous 159 

(D614G) variant across the globe that might have facilitated increased human-to-human 160 

transmission 6,7. In-depth investigations of variants identified in this study will provide newer 161 

insights into the evolution and fitness advantages acquired by SARS-CoV-2. 162 

163 
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Legends for Figures: 193 

Figure 1: Dynamic tracking of mutational frequencies within genomes extracted from Indian 194 

samples in March, April, May, June, July, August, and September. A) Heatmap of mutational 195 

probabilities. B) Trend plots of average mutational probabilities within each cluster. For 196 

each cluster, n represents the number of sites. Time period on X-axis denotes month categories. 197 

 198 

Legends for Supplementary Tables: 199 

Table S1: Location-based distribution of 2,457 Indian SARS-CoV-2 strains analyzed in this 200 

study. 201 

Table S2: Mutation probability scores and other relevant metadata for 268 identified mutation 202 

sites at Genome, Codon, and protein level. Heatmap-based cluster information using 4% 203 

minimum mutational probability data (118 sites) is also provided in the table. NA represents 204 

“Not Applicable” for cluster information as those sites were not considered for heat map-based 205 

clustering. 206 

 207 
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