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Abstract 1 

Epithelial ovarian cancer (EOC) is a heterogenous disease consisting of five major 2 

pathologically distinct subtypes: High-grade serous ovarian carcinoma (HGSOC), low-grade serous 3 

(LGS), endometrioid, clear cell and mucinous carcinoma. Although HGSOC is the most prevalent 4 

subtype, representing approximately 75% of cases, a 2013 landmark study from Domcke et al., 5 

found that many frequently used ovarian cancer cell lines were not genetically representative of 6 

HGSOC tissue samples from The Cancer Genome Atlas. Although this work subsequently identified 7 

several rarely used cell lines to be highly suitable as HGSOC models, cell line selection for ovarian 8 

cancer research does not appear to have altered substantially in recent years. Here, we find that 9 

application of non-negative matrix factorisation (NMF) to the transcriptional profiles of 45 commonly 10 

used ovarian cancer cell lines exquisitely clusters them into five distinct classes, representative of 11 

the five main subtypes of EOC. This methodology was in strong agreement with Domcke et al., in 12 

identification of cell lines most representative of HGSOC. Furthermore, this robust classification of 13 

cell lines, including some previously not annotated or miss-annotated in the literature, now informs 14 

selection of the most appropriate models for all five pathological subtypes of ovarian cancer. 15 

Furthermore, using machine learning algorithms trained using the classification of the current cell 16 

lines, we are able provide a methodology for future classification of novel EOC cell lines. 17 
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Introduction  18 

Ovarian cancer is the most common cause of gynaecological-related cancer death in Europe 19 

and North America (Bray et al., 2018). Epithelial ovarian cancer (EOC), which accounts for 80% of 20 

all ovarian tumours, is now considered to be a heterogeneous disease consisting of five main 21 

histological subtypes characterised by different clinical and molecular features (Lheureux et al., 22 

2019). High-grade serous ovarian carcinoma (HGSOC) is the most prevalent group, accounting for 23 

approximately 75% of cases, while the remaining 25% are made up of low-grade serous (LGS), 24 

endometrioid, clear cell and mucinous carcinoma (Kurman et al., 2014). Endometrioid and mucinous 25 

carcinoma are further sub-classified into well, moderately and poorly differentiated tumours (grade 26 

1 to 3, respectively) (Kurman et al., 2014). Diagnosis of each subtype of EOC involves histological 27 

examination in combination with immunohistochemistry analysis, which is considered gold standard 28 

(Kurman et al., 2014).  29 

Expansion of next generation sequencing has enabled closer inspection of the unique 30 

genomes of each subtype of EOC. HGSOC are characterised by near-ubiquitous TP53 mutation 31 

and genome-wide copy-number variation (CNV), with germline or somatic BRCA1/2 variants present 32 

in ~ 20% of cases (Bell et al., 2011; Ciriello et al., 2013; Huang et al., 2018). LGS less frequently 33 

shows TP53 mutation, and instead variants in the MAPK signalling pathway are observed (e.g. 34 

KRAS, NRAS, BRAF) (Etemadmoghadam et al., 2017; Fernandez et al., 2019; Jones et al., 2012). 35 

Clear cell carcinomas and well-differentiated (i.e., grade 1) endometrioid carcinomas are commonly 36 

associated with endometriosis and ARID-1A variants (Jones et al., 2010; Wiegand et al., 2010). 37 

Finally, mucinous ovarian carcinoma is associated with KRAS variants and ERBB2 amplifications 38 

(Cheasley et al., 2019). 39 

Cancer cell lines are often used as model systems to study cancer; however, most were 40 

established many years ago and have either genetically drifted from the original patient cells and/or 41 

lack sufficient clinical data to allow robust tumour type classification. For example, much of ovarian 42 

cancer research has been based on the SKOV-3 cell line, however an in-depth analysis of copy-43 

number changes, mutations and microarray-based mRNA expression profiles revealed that this cell 44 

line and others are actually atypical, bearing few hallmarks of the most common type of ovarian 45 

cancer, HGSOC, as defined by comparison with patient samples from The Cancer Genome Atlas 46 

(Bell et al., 2011; Domcke et al., 2013). Indeed, this analysis by Domcke et al. represented a 47 

landmark in the field, identifying a number of Cancer Cell Line Encyclopaedia (CCLE) cell lines that 48 

better reflect the genomic and mRNA expression landscapes of HGSOC. 49 

This raises a key question: without directly associated clinical and/or histopathological 50 

annotation, how does one determine which of the subtypes any given cell line or patient biopsy 51 

reflects? Here we set out to address this question by asking whether it is possible to distinguish EOC 52 

subtypes based on molecular fingerprints, in particular one derived from RNA-sequencing (RNAseq). 53 

While the utility of RNAseq as a tool for developing prognostic biomarkers is still in its infancy, the 54 
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technique is tried and tested, has the potential to provide a wealth of information by interrogating the 55 

expression levels of tens of thousands of genes and is gradually becoming more accessible and less 56 

costly. The challenge is in the distilling of robust signatures that correlate with specific phenotypes 57 

from these complex datasets.  58 

One approach to reducing the complexity of RNAseq data is non-negative matrix factorisation 59 

(NMF), which has been utilised to reduce the dimensionality of transcriptional profiles from 60 

thousands of genes to a subset of important metagenes, concurrently providing meaningful class 61 

discovery (Brunet et al., 2004). Here, we apply NMF to the gene expression profiles of 45 EOC cell 62 

lines sequenced as part of the CCLE. We demonstrate the decomposition of this panel of EOC cell 63 

lines into five robust clusters that recapitulate the characteristics of the different pathological 64 

histotypes. In turn, this allows reclassification of several cell lines that were previously not annotated 65 

or possibly miss-annotated. Our results align well with the analysis by Domcke et al., which was 66 

based on CCLE’s earlier microarray gene expression dataset. Our analysis further facilitates 67 

selection of cell lines appropriate for research of HGSOC, and in addition identifies cell lines 68 

representing the other four EOC subtypes. We also provide a methodology for future classification 69 

of novel cell lines using a K-nearest neighbour (KNN) classifier trained on the CCLE cell lines.  70 
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Results and Discussion 71 

Most frequently utilised CCLE lines are unlikely to be representative of HGSOC 72 

The analyses by Domcke et al. represents an important milestone in the field, ranking 47 73 

ovarian cancer cell lines according to their genetic and gene expression resemblance to HGSOC. In 74 

the intervening seven years, additional data has become available, in particular RNAseq data. We 75 

therefore set out to revisit this issue. Our aim was to determine whether the next generation of gene 76 

expression profiling clusters EOC cell lines into the different histotypes by NMF, and evaluate the 77 

ability of common machine learning algorithms, KNN, random forest and support vector machine 78 

(SVM), trained to identify the NMF-assigned class.  79 

Firstly, we performed an extensive literature search to collate all annotations related to the 80 

47 CCLE cell lines with site of origin indicated to be the ovary (with available RNAseq data). This 81 

identified 44 cell lines of EOC origin, eliminating 3 representing the non-epithelial Brenner and 82 

granulosa tumour types, and an engineered/immortalised cell line. Information gathered included 83 

reported histotype, specimen site, pre-biopsy treatment, the HGSOC likelihood score (as determined 84 

by Domcke et al.) and any other relevant information, for example, age and clinical course (Table 85 

S1). We also determined cell line usage in research by PubMed search (see Table S2 for search 86 

terms, including aliases for each cell line). Interestingly cell line selection has not substantially altered 87 

in recent years, despite publication of Domcke’s landmark study in 2013. Seven cell lines (ranked 88 

by most highly used: SKOV-3, A2780, OVCAR-3, IGROV-1, CAOV-3, 59M and OVCAR-8) 89 

collectively constitute almost 90% of the total PubMed citations (Fig. 1). Of these 7, only three 90 

received a ‘HGSOC-likely’ score in the analysis by Domcke et al. (OVCAR-3, CAOV-3 and 59M). 91 

Strikingly, seven cell lines scoring highly as ‘HGSOC-likely’, KURAMOCHI, OVSAHO, SNU-119, 92 

COV362, OVCAR-4, COV318 and JHOS-4, only constitute 1.07% of PubMed usages of the 44 EOC 93 

cell lines included in the CCLE. Furthermore, as late as 2019, SKOV-3 and A2780 remain the first 94 

and second most highly studied cell lines in ovarian cancer research, respectively, despite their 95 

purported unsuitability as HGSOC cell line models. 96 

 97 

Cancer cell lines cluster into classes representative of the five EOC histotypes  98 

Next we obtained from the European Nucleotide Archive the raw RNAseq files for the 44 99 

EOC cell lines analysed by the recent CCLE project (Ghandi et al., 2019) and mapped reads to the 100 

GRCh38 human genome assembly with gene annotations from Gencode v32. The most important 101 

parameter to estimate in any clustering method is the optimum number of clusters (k) for the data. 102 

The consensus matrix methodology by Monti et al. (2003) is frequently used in the evaluation of 103 

clustering, where the entries of the consensus map are coloured from 0 to 1, reflecting the probability 104 

of clustering of two samples together across multiple runs of NMF (see Fig. S1 for consensus maps 105 

of all NMF models from k of 2 to 7).  106 
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Many quality metrics have been proposed to assess the optimum value of k (Fig. 2A): briefly, 107 

Brunet et al. (2004) proposed the cophenetic correlation coefficient, Kim and Park (2007) proposed 108 

the dispersion coefficient, Rousseeuw et al. (1987) proposed the silhouette width. In each instance, 109 

the value of k that results in maximum of the coefficient is chosen as optimum. Additionally, Hutchins 110 

et al (2008) utilised the variation of the residual sums of squares (RSS) between the original data 111 

and estimated data (not shown). The value of k at which the plot of RSS for each value of k shows 112 

an inflection point can be chosen as the optimum. Plotting these metrics for 2 to 10 clusters revealed 113 

that both two and five clusters fitted the dataset well (Fig. 1A). However, at a factorisation rank of 114 

two, no biologically interpretable clustering was apparent, with cell lines reported as individual 115 

subtypes split across the two clusters (Fig. S1a). We backwards annotated each cell line with the 116 

cluster assignment from the NMF run using 5 clusters, and performed consensus clustering on the 117 

result of the NMF run using just two clusters (not shown). There was no readily observable 118 

stratification of the five clusters, or combination thereof, with each of the five clusters split across the 119 

two clusters. We inferred, therefore, that there were no nested structures present within the data as 120 

k was increased from 2 to 5, as was observed previously in the classification of leukaemia samples 121 

using NMF (Brunet et al., 2004). Brunet et al. found that at a factorisation rank of 2, ALL and AML 122 

samples clustered separately. As the factorisation rank was increased from 2 to 3, the ALL cluster 123 

divided into the T-cell and B-cell distinctions. Thus, NMF has been reported to reveal hierarchical 124 

structure when it exists, without forcing such structure on the data (as other clustering models may), 125 

highlighting the strengths of NMF over other methods (Brunet et al., 2004). 126 

In the CCLE EOC dataset, NMF together with consensus clustering gave strong evidence 127 

for a five-class split with clear block diagonal patterns and correspondingly high-quality metrics, with 128 

k=5 cophenetic and silhouette width scores second only to k=2 (Fig. 2A). However, the dispersion 129 

score was highest for k=5 (Fig. 2A), and the RSS curve shows an inflection point at k=5 (not shown), 130 

tying k=2 and k=5 as the optimum. We then examined the subtype assigned by the primary literature 131 

source for each cell line (where available; Table S1). Interestingly, this showed a clear 132 

overrepresentation of cell lines from a given subtype contained within each cluster, suggesting that 133 

the clusters identified by NMF are representative of the major EOC subtypes of ovarian cancer (Fig. 134 

1B). 135 

 136 

High grade serous ovarian carcinoma 137 

We begin our discussion of the five clusters with the top left of the consensus map (Fig. 2B; 138 

dark purple). Of the cell lines in this cluster, 8 of 16 were assigned ‘serous’ in their primary literature 139 

annotation. Of the remaining 8 cell lines, 1 was reported as endometrioid (COV362) and the subtype 140 

of the remaining 7 was not specified in the literature. Given the putative identification of this cluster 141 

as representing HGSOC-derived cell lines, we wanted to align our results with the likelihood scores 142 

of these cell lines determined in the analysis by Domcke et al. (Fig. 1B; blue/green graduated track). 143 
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In fact, all 16 cell lines that fall within this cluster were within the top 20 scoring cell lines in the 144 

previous analysis, providing remarkable confirmation of the methodology used here and by Domcke 145 

et al. for annotating cell lines as representative of HGSOC. Of the cell lines not placed into the 146 

HGSOC cluster, but ranked in the top 20 of Domcke et al., TYK-nu and 59M were designated ‘likely 147 

HGS’ and JHOM-2B and ES2 ‘possibly HGSOC’. We discuss these cell lines in the context of their 148 

assigned cluster in the relevant sections below. Therefore, clustering, confirmed several cell lines 149 

without specified subtype in their primary literature source, to represent good models of HGSOC, 150 

including KURAMOCHI, OVCAR-4, Caov-4, OAW28, Caov-3, ONCO-DG-1, and OVCAR-3. The cell 151 

lines OVSAHO, SNU-119, COV318, JHOS-4, JHOS-2, OVKATE, FU-OV-1 and SNU-8 retained their 152 

literature classification as ’HGSOC’ in our analysis. 153 

COV362 was initially annotated as endometrioid in the literature, however here we find it 154 

clusters with the cell lines representing HGSOC. This line has a TP53 mutation and a BRCA2 155 

mutation, lesions characteristic of HGSOC, supporting the placement of COV362 as HGSOC. 156 

However, it should be noted that SNU8 and, to a lesser extent, COV362, show disparate clustering 157 

across 200 runs of NMF with random initialisation points. COV362 also clustered 25% of the time 158 

into cluster 3 (low grade serous), suggesting that it may share some characteristics of these cell 159 

lines. Importantly, it does not cluster in any of the NMF runs with other cell lines reported as 160 

endometrioid, further suggesting that this designation may be incorrect. SNU8 also clustered in 161 

approx. 42% of NMF runs with cluster 3 (low grade serous) and in 14% with cluster 4 (mucinous) 162 

 163 

Clear cell 164 

In the next cluster (second from the left; green), there is an enrichment of cell lines which 165 

were defined as clear cell in their primary literature source. In fact, of the 10 cells lines, 6 were 166 

annotated as clear cell in the original publication, 2 were annotated as serous, 1 mixed and 1 was 167 

not specified. No cell lines annotated primarily as clear cell in the literature fell into any other cluster. 168 

The two samples previously annotated as serous were EFO21 and OAW42. Indeed, both of these 169 

cell lines received relatively low HGSOC likelihood scores in the analysis by Domcke et al., 170 

suggesting they are poor HGSOC models. Unlike almost all HGSOC, OAW42 has wild-type TP53. 171 

However, it does harbour two separate frameshift mutations within ARID1A, supporting its 172 

designation here as clear cell (Wiegand et al., 2010). Although EFO21 has mutated TP53, and no 173 

ARID1A mutation, these cells have amplification of PIK3CA, showing resultant mRNA expression 174 

levels within the 93rd percentile of CCLE cell lines. The most common mutations identified by 175 

sequencing of a 46 gene panel using pure clear cell samples included mutations in PIK3CA (50.0%; 176 

52 of 104 cases tested), TP53 (18.1%; 19/105), and KRAS (12.4%; 13/105) (Friedlander et al., 177 

2016). Our analysis therefore also supports EFO21 classification as a clear cell line.  178 

The most heavily used ovarian cancer cell line, SKOV-3, also falls within this cluster. Despite 179 

its extensive use, the primary literature source does not designate SKOV-3 to any particular subtype. 180 
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Interestingly, SKOV-3 may actually be one of the most typical examples of clear cell as they harbour 181 

aberrations of three of the most commonly mutated proteins in clear cell ovarian cancer: PIK3CA, 182 

ARID1A and TP53. Therefore, designation here as clear cell is most likely an accurate representation 183 

of this cell line. 184 

 185 

Low grade serous 186 

In our analysis TYK-nu and 59M cluster together in cluster 3, which we believe to represent 187 

LGS. The CCLE/broad institute report TYK-nu as having a TP53 mutation, which molecular studies 188 

of LGS suggest are less common in this subtype (8% in LGS versus 96% in HGSOC) (Bell et al., 189 

2011; Singer et al., 2005). However, LGS is also characterized by activation of the mitogen-activated 190 

protein kinase (MAPK) pathway. Mutations affecting this pathway are seen in KRAS, NRAS and 191 

BRAF genes, in addition to multiple alterations affecting other genes related to this pathway 192 

(Etemadmoghadam et al., 2017; Fernandez et al., 2019; Jones et al., 2012). In addition, copy 193 

number alterations and mutations affecting 61 MAPK-related genes were recently identified in 14 194 

LGS cell lines (Fernandez et al., 2019). In this vein, TYK-nu have two mutations within NRAS, a 195 

member of the RAS/RAF pathway not included within Domcke’s scoring schema. Furthermore, TYK-196 

nu is derived from a 38-year-old patient in line with reports that LGS affects women at a younger 197 

age than HGSOC, with a median age at diagnosis for LGS of between 43 and 47 years (Gershenson, 198 

2016; Gershenson et al., 2015). 59M, while also harbouring a TP53 mutation, has three mutations 199 

in proteins in the MAPK pathway (Ghandi et al., 2019), and is therefore characteristic of LGS 200 

(previously annotated as endometroid). (Wilson et al., 1996) 201 

The group of Coscia et al. used a proteomic signature to stratify putative HGSOC cell lines 202 

into three distinct groups (Coscia et al., 2016). Although the majority of cell lines with a high genetic 203 

fidelity to HGSOC were classified as group I and bore a more epithelial proteome, the two cell lines 204 

that clustered in group III with a more mesenchymal proteome were 59M and TYK-nu. While there 205 

was a striking concordance between the proteomic signature of group I cell lines and HGSOC patient 206 

samples, as well as cultured fallopian tube epithelial cells, group III cell lines resembled the signature 207 

of immortalized ovarian surface epithelial cells. Although the authors suggest that heterogeneity 208 

exists in the proteome of HGSOC based on disparate sites of origin (Coscia et al., 2016), it could be 209 

argued that these differences actually represent the differences between HGSOC and LGS-derived 210 

cell lines.  211 

Collectively, this suggests TYK-nu and 59M form part of a cluster of 8 LGS cell lines (Fig. 212 

1B; light purple). As LGS represents a fairly recent descriptor, it is difficult to infer this annotation 213 

from primary literature annotations of cells lines. Here we identify 4 cell lines, TYK-nu, HeyA8, ES2, 214 

and OVCAR8, which were previously unspecified in the literature, to be representative of LGS. In 215 

addition, JHOM-1 also clusters here, which was initially annotated as mucinous in its primary 216 

literature source.  217 
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 218 

Mucinous 219 

Of five cancer cell lines annotated in their primary reference as mucinous, four of them fall into cluster 220 

number 4. These are MCAS, RMUG-S, COV644 and JHOM-2B. Of the cell lines determined to be 221 

in the top 20 of HGSOC likely cell lines by Domcke et al., JHOM-2B is reported in the literature as 222 

mucinous and our NMF also clusters it with the majority of other mucinous cell lines, suggesting its 223 

original classification is correct. In fact, Domcke et al. ranked JHOM-2B as 19th, close to the 224 

threshold for designation as ‘possibly HGS’. Indeed, this cell line does harbour a TP53 mutation, 225 

which may disproportionately influence its standing in the analysis by Domcke et al. However, while 226 

TP53 mutations are almost ubiquitous in HGSOC ovarian cancer, around 16% of mucinous tumours 227 

show mutated TP53 (Schuijer & Berns, 2003). The fifth cell line reported as mucinous in its original 228 

publication is JHOM-1, falls into the cluster we tentatively class as LGS (discussed previously). 229 

The cell line OV-90 also clusters with the mucinous cell line, which originally was not designated a 230 

subtype in the original articles. In support of its mucinous designation, it harbours ERB2 amplification 231 

and BRAF mutation which have been demonstrated in mucinous ovarian cancer (Cheasley et al., 232 

2019; Friedlander et al., 2015).  233 

 234 

Endometrioid 235 

Finally, the fifth cluster, designated endometroid, is constituted of two cell lines that were 236 

annotated as such in their primary reference, namely TOV112D and OVK18. Two other cell lines 237 

annotated as endometroid in their primary reference fall into cluster 3 (which we tentatively label as 238 

the LGS cluster; 59M) and cluster 1 (HGSOC cluster; COV362), and their suitability to fit these 239 

clusters has been discussed previously. Two further cell lines that cluster as endometroid here, 240 

A2780 and OC314, were not assigned a subtype in their primary literature source and are therefore 241 

newly annotated as potential models of endometroid ovarian cancer. 242 

Lastly, EFO-27 also clusters within the endometroid cluster. Although this cell line was 243 

originally classified as serous in the literature, it received a poor HGS-likelihood score in the work by 244 

Domcke et al., giving initial evidence of its unsuitability as a HGSOC model cell line. EFO27 cells 245 

harbour a missense mutation in PPP2R1A, which has previously been found to be mutated in 12.2% 246 

(5/41) of endometrioid ovarian cancers, but not in 50 high-grade and 12 low-grade serous 247 

carcinomas (McConechy et al., 2011). More recent genetic screens of endometrioid ovarian cancer 248 

identified similar driver mutations to endometrial carcinoma, including PTEN, CTNNB1, PIK3CA, 249 

ARID1A, TP53, KMT2D, KMT2B and PIK3R1 (Pierson et al., 2020). Indeed, with the exception of 250 

CTNNB1, EFO-27 have mutations in all these genes (Ghandi et al., 2019). Therefore, the genetic 251 

similarities between EFO-27 and endometrioid ovarian cancer support it representing a better model 252 

of this type of ovarian cancer, than of HGSOC. However, it should be noted that this cell line has a 253 
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poor silhouette score in our consensus map (Fig. 2B), clustering with other endometrioid cell lines 254 

58% of the time, and with cluster 4 (the mucinous cluster) in the other NMF runs. Of the genetic 255 

lesions associated with mucinous ovarian cancer (Friedlander et al., 2015), EFO-27 harbours PTEN 256 

and PIK3CA. This cell line does not harbour KRAS mutation or ERBB2 amplification, however, which 257 

have been shown to be mutated in mucinous ovarian cancer (Cheasley et al., 2019). 258 

 259 

Evaluating machine learning algorithms to classify ovarian cancer subtypes 260 

We next sought to determine whether the NMF class given to each cell line could be used to 261 

train a machine learning model to predict the subtype of a ‘hold-out’ set. Genes whose expression 262 

levels were characteristic for each cluster were extracted with each cluster containing between 23 263 

and 82 such metagenes. The largest number of metagenes was associated with the putative 264 

HGSOC cluster (82), followed by, endometrioid (40), LGS (35), mucinous (28) and clear cell (23) 265 

(Fig. 3A). We next evaluated the classification potential of several common machine learning 266 

algorithms: KNN, random forests and SVM. The 45 cell lines were randomly partitioned into four 267 

groups, such that each group had an even representation of cell lines from each subtype. Then, 268 

each model was trained to each successive set of 3 groups, and model performance tested on the 269 

omitted group. This meant that each sample had an opportunity to be both trained and tested on. 270 

The per-subtype specificity and sensitivity metrics were compared across KNN, random forest and 271 

SVM algorithms (Fig. 3B). As can be seen, all models predicted the HGSOC subtype well, achieving 272 

balanced accuracy scores of 1 (KNN), 0.935275 (RF) and 0.984375 (SVM) for this class. This 273 

presumably reflects the larger number of samples labelled HGSOC and the number of metagenes 274 

present to predict this subtype versus the others. Therefore, additional samples representative of 275 

non-HGSOC ovarian cancer would greatly aid the training of a classifier. This is especially true in 276 

the case of endometrioid ovarian cancer cell lines, which was represented by only 4 of the 44 cell 277 

lines analysed in this study. Nevertheless, the overall kappa values achieved for each model was 278 

0.918 (KNN), 0.78905 (RF) and 0.878 (SVM). This suggests that NMF coupled with KNN may be a 279 

powerful tool for ovarian cancer cell line subtype classification.  280 

	  281 
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Conclusion 282 

The EOC subtype from which commonly used ovarian cancer cell lines were derived has 283 

remained a controversial topic for many years (Anglesio et al., 2013; Beaufort et al., 2014; Coscia 284 

et al., 2016; Domcke et al., 2013). We sought to determine whether recently released RNAseq data 285 

from the CCLE could shed light on this subject. Previous studies have sought to define an 286 

immunohistochemical, genetic or combinatorial panel, and determine the suitability of cells to fit this 287 

mould. Here we have not imposed any prior knowledge or structure onto the data, instead opting to 288 

use NMF, a clustering algorithm that has been used not only in gene expression studies, but other 289 

pattern-recognition problems such as facial recognition and deciphering the meaning of words 290 

(Brunet et al., 2004; Lee & Seung, 1999). Our NMF clustering allowed cell lines to cluster with others 291 

that they most closely resembled at the transcriptional level, revealing novel subtype classifications 292 

for some cell lines. Inclusion of additional cell lines would improve the predictive utility of our 293 

machine-learning based classifier, especially subtypes that are underrepresented in the CCLE 294 

dataset, namely endometrioid and mucinous. Future work, therefore, could relate to the integration 295 

of multiple different sources of transcriptional profiles. Additionally, datasets containing patient-296 

derived cell lines could be utilised to further evaluate the performance of any classifier, including the 297 

recently published living ovarian biobank and others (Fernandez et al., 2019; Nelson et al., 2020).  298 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.14.202457doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.202457


Barnes et al   Page 12 of 18 

Materials and Methods 299 

Literature search 300 

 We performed an extensive PubMed literature search to determine the usage of 301 

CCLE ovarian cancer cell lines. The list of search queries used is supplied in table S2, 302 

demonstrating the different aliases used for the different cell lines. It should be noted that these 303 

search queries only count the number of articles where the cell line name was specified in the title 304 

and/or abstract, therefore missing some articles that only specify within article the cell lines used. 305 

This will be especially true for larger studies that utilize many of these cell lines where it is not 306 

possible to list them in an abstract.  307 

RNAseq data 308 

Forty five cell lines representative of the major ovarian cancer subtypes analysed by RNA-309 

sequencing as part of the Cancer Cell Line Encyclopedia (CCLE) project (Ghandi et al., 2019) were 310 

identified (table S1). Raw sequence files in FASTQ format were obtained from the European 311 

Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/). STAR (v2.7.2a) (Dobin et al., 2013) was used 312 

to map reads to the GRCh38 human genome assembly with gene annotations from Gencode v32. 313 

The number of reads per gene were counted using --quantMode GeneCounts within the STAR 314 

command.  315 

Non-negative matrix factorisation 316 

Data analyses in R was performed using v3.6.2 and in Bioconductor v3.10. The DESeq2 317 

(v1.26.0) (Love et al., 2014) package was used to apply a variance stabilizing transformation to the 318 

assembled read count matrix. Transcripts with a median absolute deviation ≥1.5 were selected, 319 

and this list of 6,796 genes was used as input for clustering analysis using the NMF package 320 

(Gaujoux & Seoighe, 2010). To estimate the factorisation rank (k), NMF was performed for a k of 2 321 

to 10 using 50 random initiations. Quality measures were computed for each factorisation rank, 322 

including the cophenetic coefficients, silhouette and RSS. Inspection of the computed quality 323 

metrics revealed 5 clusters fitted the data. Next, 200 iterative runs of NMF were performed from a 324 

fixed random initial condition with a k value of 5. Using annotations given in the primary literature 325 

source for each cell line (table S1), we inferred the likely ovarian cancer histotype of each cluster. 326 

Gene scoring schema was applied to extract genes characteristic of the five identified clusters 327 

(Kim & Park, 2007). Metagene lists were combined, and this was used as input for machine 328 

learning algorithms. 329 

Machine Learning Algorithms for Classification 330 

A plethora of classification algorithms have become available. Here, we explore the utility of 331 

three common classification algorithms: KNN, RF and SVM. We used the R package caret (v6.0-332 

86) for model training and evaluation. The specific modules used were base::knn, randomForest 333 

(v4.6-14) and kernlab (v0.9-29), respectively. The cell lines with their subtype classifications 334 
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outputted from our NMF analysis were partitioned into 4 random subsets, such that each set 335 

contained approximately equal proportions of each subtype. Models were trained using each 336 

combination of partitions, leaving one group out for testing of model performance in each instance. 337 

Metrics compared between models were the per-class (ability to predict each subtype, e.g. 338 

HGSOC, LGS etc.) sensitivity, specificity and balanced accuracy calculations. Overall model 339 

performance was compared using Cohen’s kappa, which compares observed accuracy with 340 

the expected accuracy (subtypes predicted by a random classifier). 341 

K-nearest neighbours 342 

K-nearest neighbours is a non-parametric method proposed by Thomas Cover used for 343 

classification. A cell line within the held-out test set is classified by majority vote of its k-neighbours 344 

from the training set (although no explicit training step is required). K is typically a small positive 345 

integer, and usually of an odd number to avoid ‘tied’ decisions. A large k reduces the impact of 346 

variance caused by random error. However, this may miss the small but important patterns within 347 

the data (Zhang, 2016). 348 

Random Forrest 349 

Random forest is a learning method for classification, regression and other tasks. The 350 

forest is built from the construction of many different decision trees at training time. The power of 351 

the algorithm stems from the low-correlation between decision trees, which may cancel out the 352 

individual errors of any one tree. Each tree decides the subtype of a test-set cell line and the 353 

majority vote becomes the model’s prediction. While some trees may be wrong, many other trees 354 

will be right, so as a group the trees are able to provide a more powerful prediction.  355 

SVM 356 

Support vector machine is a supervised machine learning algorithm that can be employed 357 

for both classification and regression purposes. SVM works by finding the decision boundary (the 358 

“hyperplane”) that separates the classes of the supplied data, in our case the different subtypes of 359 

EOC. During training, the margins of the hyperplanes are maximised, while the cell lines remain on 360 

the correct side of the subtype boundaries. Intuitively, when the subtype of the test is predicted, we 361 

can be more confident that the prediction is correct if the cell lines lies further from the boundaries. 362 

Likewise, doubt is cast on the prediction of a cell line that sits close to the boundaries.  363 

Genetic background and copy number variation of CCLE cell lines 364 

The genetic background of the CCLE cell lines is extensively referred to throughout this 365 

manuscript. We direct the reader to the mutation and copy number variation datasets generated by 366 

this project. The datasets were originally presented in Ghandi et al (2019) and recommend the use 367 

of the cBioPortal for Cancer Genomics (https://www.cbioportal.org/) that enables interactive 368 

exploration of multidimensional cancer genomics data sets (Cerami et al., 2012; Gao et al., 2013).  369 
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Figure legends 

Figure 1. Cell line usage based on PubMed citations. Top, total number of PubMed usages of 

each of the epithelial ovarian cancer cell lines for which RNAseq data is available within the CCLE. 

Bottom, HGSOC-likelihood scores as determined by Domcke et al. analysis of ovarian cancer cell 
lines correlated with The Cancer Genome Atlas HGSOC patient samples. Cell lines are separated 

along the x-axis based on the year of their first usage. Cell lines are coloured by the subtype of 

epithelial ovarian cancer reported in their primary literature source. Green, clear cell; red, 
endometrioid; orange, mucinous; purple, serous; dark grey, mixed; light grey, not specified (NS).  

Figure 2. Ovarian cancer cell lines can be divided into five clusters that recapitulate the 
histological subtypes based on transcriptional profiles. (A) Selected quality metrics describing 

the performance of non-negative matrix factorisation for 2 to 10 clusters. From left, the cophenetic 
correlation, dispersion and silhouette coefficients. Colours indicate the type of measure plotted. (B) 

Consensus map showing cell line clustering for 200 iterative runs of NMF using 5 clusters. The 
blocks of the consensus map are coloured by the probability of two samples clustering together, 

where red, 1; white, 0.5 and blue, 0. The annotation track atop the heatmap indicates (top) the 

HGSOC-likelihood score of a cell line determined by Domcke et al. Where darker shades 
represent a higher score. The pure white blocks indicate the cell line was not included in this 

analysis. Middle track, the ovarian cancer subtype provided in the cell line’s original literature 

source where green, clear cell; red, endometrioid; orange, mucinous; purple, serous; dark grey, 
mixed; light grey, not specified (NS). Bottom track, the consensus cluster assignment across 200 

NMF runs where dark purple, cluster 1; green, cluster 2; light purple, cluster 3; orange, cluster 4 
and red, cluster 5.  

Figure 3. A k-nearest neighbour classifies accurately predicts subtype of ovarian cancer 
cell lines. (A) Metagenes for which high expression is informative of each cluster were extracted 

using gene scoring scheme as per Kim and Park (2005). Colours represent the strength of the 
association between that gene and the cluster, where red, 1 and white, 0. The track above the 

heatmap indicates cluster number, as per Fig. 2, where dark purple, cluster 1; green, cluster 2; 

light purple, cluster 3; orange, cluster 4 and red, cluster 5. (B) Evaluation of three machine learning 
algorithms for ovarian cancer cell line subtype classification, k-nearest neighbour (KNN), random 

forest (RF) and support vector machine (SVM). Cell lines were designated the subtype indicated 

by NMF clustering, and partitioned into 4 subsets. Three subsets were used to train each of the 
machine learning algorithms, with the fourth set held out as a test set. The four subsets were 

rotated such that each sample had the opportunity to be trained and tested upon. The average per-
class sensitivity and specificity scores across the four tested sets is shown where dark purple, 

HGSOC; green, clear cell; light purple, LGS; orange, mucinous and red, endometrioid. 

Figure S1 consensus cluster maps for NMF at different values of k. (A-F) consensus cluster 

maps (in order of increasing k) from 2 to 7 clusters. The blocks of the consensus map are coloured 
by the probability of two samples clustering together, where red, 1; white, 0.5 and blue, 0. The 

annotation tracks atop the heatmap indicate the ovarian cancer subtype provided in the cell line’s 

original literature source where green, clear cell; red, endometrioid; orange, mucinous; purple, 
serous; dark grey, mixed; light grey, not specified (NS). Middle track, the consensus cluster 

assignment across 50 NMF runs. The cluster numbers and the colours assigned are shown in the 

legends to the right of each of the heatmaps. Bottom track, silhouette width for each sample pair 
where dark green indicates a silhouette width of 1 (perfect clustering).  
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