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Abstract 39 

Viruses are ubiquitous microbiome components, shaping ecosystems via strain-specific predation, 40 

horizontal gene transfer and redistribution of nutrients through host lysis. Viral impacts are 41 

important in groundwater ecosystems, where microbes drive many nutrient fluxes and metabolic 42 

processes, however little is known about the diversity of viruses in these environments. We 43 

analyzed four groundwater plasmidomes and identified 200 viral sequences, which clustered into 44 

41 ~ genus-level viral clusters (equivalent to viral genera) including 9 known and 32 putative new 45 

genera. We use publicly available bacterial whole genome sequences (WGS) and WGS from 261 46 

bacterial isolates from this groundwater environment to identify potential viral hosts. We linked 47 

76 of the 200 viral sequences to a range of bacterial phyla, the majority associated with 48 

Proteobacteria, followed by Firmicutes, Bacteroidetes and Actinobacteria. The publicly available 49 

microbial genome sequences enabled mapping bacterial hosts to a breadth of viral sequences. The 50 

WGS of groundwater isolates increased depth of host prediction by allowing identification of hosts 51 

at the strain level. The latter included 4 viruses that were almost entirely (>99% query coverage, 52 

>99% identity) identified as integrated in the genomes of specific Pseudomonas, Acidovorax and 53 

Castellaniella strains, resulting in very high-confidence host assignments. Lastly, 21 of these 54 

viruses encoded putative auxiliary metabolite genes for metal and antibiotic resistance, which 55 

might drive their infection cycles and/or provide selective advantage to infected hosts. Exploring 56 

the groundwater virome provides a necessary foundation for integration of viruses into ecosystem 57 

models where they act as key players in microbial adaption to environmental stress. 58 

 59 

Importance 60 

To our knowledge, this is the first study to identify the bacteriophage distribution in a groundwater 61 

ecosystem shedding light on their prevalence and distribution across metal-contaminated and 62 
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background sites. Our study is uniquely based on selective sequencing of solely the 63 

extrachromosomal elements of a microbiome followed by analysis for viral signatures, thus 64 

establishing a more focused approach for phage identifications. Using this method, we detect 65 

several novel phage genera along with those previously established. Our approach of using the 66 

whole genome sequences of hundreds of bacterial isolates from the same site enabled us to make 67 

host assignments with high confidence, several at strain levels. Certain phage-encoded genes 68 

suggest they provide an environment-specific selective advantage to their bacterial hosts. Our 69 

study lays the foundation for future research on directed phage isolations using specific bacterial 70 

host strains to further characterize groundwater phages, their lifecycles, and its effects on 71 

groundwater microbiome and biogeochemistry. 72 

 73 

 74 

Introduction 75 

Viruses are known to influence the structure and diversity of microbial communities by infection 76 

and lysis of microbial cells. Their influence has been widely studied in aquatic communities1 where 77 

they are predicted to infect approximately one-third of seawater microbes at any given time2. In 78 

marine ecosystems, major biogeochemical cycles are known to be influenced by viruses affecting 79 

community composition, metabolic activity, and evolutionary trajectories2, 3. As the recent 80 

focus on exploration of viruses in aquatic environments has been on marine ecosystems4-9, fresh 81 

water environments remained mostly unexplored despite their importance as drinking water 82 

supply10. The Oak Ridge Field Research Center (ORFRC)11-13 is a well-studied United States 83 

Department of Energy site that includes groundwater areas with and without metal contamination, 84 

referred to as the contaminated and background sites, respectively. It has been well characterized 85 

in terms of the physical parameters, microbiome distribution and fluctuation in response to 86 

different environmental stresses and thus served as an excellent model groundwater system for 87 

studies. We chose this environment to study the incidence of viruses in groundwater microbiome.  88 

 89 

Identification of viral sequences in the environment is difficult given the lack of approaches similar 90 

to ribosomal DNA profiling in bacteria and their isolation remains challenging because of the 91 

difficulties in identifying the bacterial host(s) and our limited ability to culture them. Recently, 92 

research has been directed towards exploring viral diversity from metagenome data7, 14, 15 thus 93 
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circumventing these limitations and providing direct insights into the composition of 94 

environmental viral communities16. In this study we explore an alternate method to sifting through 95 

large amounts of chromosomal DNA sequences to find viral sequences by specifically searching 96 

circular DNA sequence data generated from the plasmidome analysis. Specifically, we mined the 97 

plasmidome data from a well-characterized groundwater system and analyzed the resulting viral 98 

sequences complete with genomic and ecological contexts. 99 

 100 

Methods 101 

2.1 Groundwater sample collection and sequencing analysis 102 

The groundwater samples were obtained from Oak Ridge Field Research Center (ORFRC) site11-103 
13 and included metal-contaminated (wells FW104 and FW106) and background (wells GW456 104 

and GW460) areas. An earlier study17 described the circular DNA isolation (plasmidome analysis) 105 

procedure from 4 liters of groundwater from background sites (GW456 and GW460), followed by 106 

sequencing, assembly, annotation and other analyses. Additionally, for this present study, we also 107 

use plasmidome sequence data from two contaminated site samples comprised of 8 liters ground 108 

water from FW104 and FW106 and subjected to the same analysis (manuscript in preparation, 109 

sequencing data available via MG-RAST IDs mgm4830571.3 and mgm4830867.3).  110 

 111 

 2.2 Identification of viral contigs 112 

Post sequencing, the assembly of all contigs (including plasmid and viral DNA), along with 113 

prediction of circular sequences using bioinformatic analyses were performed as described 114 

previously17. Briefly, all plasmid sequences obtained were subjected to a pipeline method for 115 

postassembly detection of circularity among scaffolds, and any scaffolds failing this are termed as 116 

non-circular contigs, to distinguish them from those plasmid sequences which passed the criteria. 117 

All circular contigs along with non-circular contigs encoding more than 10 proteins were subjected 118 

to VirSorter analysis18, an iVirus tool available via Cyverse19 for identification of viruses. 119 

VirSorter was used to identify and remove microbial contigs using the ‘virome decontamination’ 120 

mode, with every contig that was not identified as viral considered to be a microbial contig. The 121 

final set of viral contigs was formed by compiling sequences detected as VirSorter categories 1 122 

and 2 along with prophage categories 4 and 5 (Table S1). Thus, we focus on the 200 viral sequences 123 

with high confidence assignments (VirSorter categories 1,2 4, and 5), and ignored the low 124 
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confidence assignments (VirSorter categories 3 and 6). Vcontact 220 was used to perform viral 125 

cluster analysis, and the results were visualized using cytoscape21. Since the groundwater from 126 

background site was spiked with strains Desulfovibrio vulgaris Hildenborough (ATCC 29579), 127 

Escherichia coli DH1 (ATCC 33849), and E. coli strain J-2561 as controls for the plasmidome 128 

study17, any viruses associated with these strains were removed from the analysis. Given that the 129 

DNA isolation procedure concentrated on targeted isolation of circular DNA, there is an expected 130 

inherent bias in identifying circular dsDNA viral sequences from this dataset. 131 

 132 

2.2 Generation of host database  133 

2.2.1 Generation of host database from ORFRC bacterial isolates 134 

Isolation of bacterial strains 135 

The bacterial isolates were obtained via direct-plating under aerobic or anaerobic conditions at 25-136 

30 ºC in the dark, using ORFRC groundwater or sediment extract as inoculum, or via two-step 137 

isolation: enrichment incubation of 1 ml groundwater in 9 ml liquid media aerobically for two 138 

weeks followed by direct-plating for isolation. A subset of isolates were obtained from biofilm 139 

reactors (CDC reactors) that were fed ORFRC groundwater and had non-porous glass beads (30 140 

um) as matrix for biofilms in coupons.  Water or beads from the reactors were used as inoculum. 141 

For direct-plating, rich media (Luria-Bertani, tryptic soy, R2A, Eugon, Winogradsky) agar plates, 142 

or basal medium (4.67 mM ammonium chloride, 30 mM sodium phosphate, with vitamin and 143 

mineral mixes as previously described22) agar plates were used. The liquid media for enrichment 144 

incubation was filtered groundwater amended with one or a combination of the following carbon 145 

sources: glucose (5 mM), acetate (5 mM), benzoate (0.5 mM), casamino acid (10 μg/ml), bacterial 146 

cell lysate, and sediment-extracted dissolved organic matter. After direct-plating, single colonies 147 

were picked and regrown in liquid media for 16-48 h until the culture reached mid-log phase. Then 148 

a portion of the culture was used to extract DNA for 16S rRNA based identification, and the rest 149 

were cryopreserved with sterile glycerol (to a final concentration of 30%), flash frozen with liquid 150 

nitrogen, and stored at -80 ºC. 151 

 152 

Whole genome sequencing and de novo assembly 153 

Cultures were revived from glycerol stocks by streaking onto Luria-Bertani or R2A agar plates. 154 

Individual colonies developed at 30 ºC over 48 h, which were then inoculated into corresponding 155 
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liquid media and grown at 30 ºC for 48 hours. The cultures were centrifuged, the genomic DNA 156 

was extracted using the Qiagen DNeasy kit (Qiagen, Venlo, NL) according to the manufacturer’s 157 

instructions.  All samples were eluted in Qiagen’s AE buffer: 10 mM Tris-Cl, 0.5 mM EDTA, pH 158 

9.0.  Genomic DNA was stored at -20 ºC followed by transfer into a 384-well plate for automated 159 

library preparation.  The isolated genomic DNA was normalized to 0.2 ng/uL in 10 mM Tris (pH 160 

8.0), and libraries were prepared using the Illumina Nextera XT kit at 1/12th reaction size on a 161 

SPT Labtech Mosquito HV. Final libraries were purified using Solid Phase Reversible 162 

Immobilization beads, and sequenced on an Illumina NextSeq 500 with 150 bp paired-end reads. 163 

The program Cutadapt v1.12 was used to remove adapter sequences with parameters -a 164 

CTGTCTCTTAT -A CTGTCTCTTAT23.  We performed sliding window quality filtering with 165 

Trimmomatic v0.36 (parameters -phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:5:20 166 

MINLEN:50)24.  All genomes were assembled de novo using SPAdes v3.9.0 with the following 167 

options (-k 21,33,55,77 --careful)25. Genome quality was validated with the program checkM 168 

v1.0.6 using the lineage_wf pipeline with default parameters22, and all draft genomes passed the 169 

criteria of contamination < 10% and completeness > 95%. The 16S rRNA gene sequences were 170 

recovered with RNAmmer v1.2 (–S bac –m ssu) and taxonomically classified with SINTAX 171 

(usearch v9.2.64) against the Ribosomal Database Project (RDP)28 16S rRNA gene training set 172 

v16 with species names and the following parameters (–strand both –sintax_cutoff 0.8)26, 27. The 173 

whole genome sequences (WGS) of 261 bacterial isolates (details in Table S2) from ORFRC were 174 

combined to form a database for further bioinformatic analyses. The WGS of the 261 strains are 175 

available via (https://kbase.us/n/63776/35) and the DOI (10.25982/63776.53/1637360). 176 

 177 

2.2.2 Generation of host database from NCBI bacterial and archaeal isolates  178 

A genome database of putative hosts for the viruses was generated including all archaeal (311 179 

assembled complete genomes, downloaded in September 2019) and bacterial (14028 assembled 180 

complete genomes, downloaded in August 2019) genomes from NCBI Assembly. The taxonomic 181 

affiliation of the genomes was taken from the NCBI taxonomy. 182 

 183 

2.3 Host prediction and diversity 184 

Three different previously published approaches29, 30  for predicting hosts based on examining 185 

similarities between a) bacterial genome encoded CRISPR spacer and viral genome31 b) viral and 186 
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microbial genomes due to integrated prophages or gene transfers32 and c) viral and host genome 187 

nucleotide signatures (here, tetranucleotide frequency similarity)33 were used as described below.  188 

The confidence in assignment via these three methods to different clades in bacterial classification 189 

has been previously estimated34 with CRISPR-based predictions being the most accurate while the 190 

tetranucleotide frequency-based predictions were the least accurate at the genus level. 191 

 192 

BLAST-based identification of sequence similarity between viral contigs and host genome 193 

All 200 viral contigs were compared to all archaeal and bacterial genomes with BLASTn 194 

(threshold of 50 for bit score and 0.001 for E-value), to identify regions of similarity between a 195 

viral contig and a microbial genome, indicative of a prophage integration or horizontal gene 196 

transfer. As previously established30, host prediction was made when an NCBI genome displayed 197 

a region similar to the viral contig ≥4.9 kb at ≥70% identity. When one viral sequence had hits to 198 

multiple bacterial strains, the top 5 hits (based on bit score) were analyzed to determine the last 199 

common ancestor clade. This clade was then assigned as the host to the virus. Based on this 200 

methodology, genus level bacterial host predictions were made. Bacterial strain-specific host 201 

predictions were only made when the entire virus was found to be encoded in the bacterial whole 202 

genome sequence. In this case, BLAST with highly stringent parameters, referred to as BLAST99 203 

(>99% query coverage, e-value=0 and >99% identity) was performed to query for the presence of 204 

an entire viral sequence in the host.   205 

 206 

Matches between viral contigs and CRISPR spacers 207 

CRISPR arrays were predicted for all ORFRC microbial genomes with CRISPR Recognition Tool, 208 

CRT35 using default settings (repeat settings used 3 minimum repeats, 19 minimum repeat length, 209 

38 maximum repeat length, and a search window of 8; along with spacer settings used 19 minimum 210 

spacer length and 48 maximum spacer length). We used previously published30, 36 BLAST 211 

parameters for identifying the target of CRISPR spacers (i.e. using the BLASTn-short task, a 212 

maximum expect value of 1; a gap opening penalty 10; a gap extension penalty 2; a word size 7; 213 

and dust filtering turned off). Given that the accuracy of this approach for detecting phage hosts 214 

strongly depends on the maximum number of mismatches allowed between the CRISPR spacer 215 

and the viral sequence, the results were filtered to allow 0 or 1 mismatch. Only the CRISPR spacers 216 

that matched viral sequences were then compared back with the bacterial WGS with no mismatch 217 
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to come up with bacterial host predictions. Based on this methodology, strain level bacterial host 218 

predictions were made. 219 

       220 

Nucleotide composition similarity: comparison of tetranucleotide frequency 221 

Bacterial and archaeal viruses tend to have a genome composition close to the genome composition 222 

of their host, a signal that can be used to predict viral–host pairs30, 33, 37. Here, canonical 223 

tetranucleotide frequencies (also referred to as 4mer) were observed for all viral and host sequences 224 

using Jellyfish38 and mean absolute error (that is, the average of absolute differences) between 225 

tetranucleotide-frequency vectors were computed with in-house Perl and Python scripts for each 226 

pair of viral and host sequence as previously reported34. A viral contig was then assigned if the 227 

average of absolute differences (d) between tetranucleotide-frequency vectors d < 0.001. When 228 

multiple strains had hits to one viral sequence, the top five hits (based on lowest distance) were 229 

analyzed to determine the lowest common ancestor to the group. This lowest common ancestor 230 

was then assigned as the host to the virus. Based on this methodology, genus level bacterial host 231 

predictions were made. 232 

 233 

2.3 Phylogenetic tree construction 234 

For constructing the phylogenetic tree using ORFRC isolates, the 16S rRNA sequences from all 235 

261 strains were aligned using Muscle39. The evolutionary history was inferred by using the 236 

Maximum Likelihood method based on the Tamura-Nei model using MEGA740. The tree with the 237 

highest log likelihood (-7846.44) is shown. Initial tree(s) for the heuristic search were obtained 238 

automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances 239 

estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the 240 

topology with superior log likelihood value. The analysis involved 255 nucleotide sequences. All 241 

positions containing gaps and missing data were eliminated. There were a total of 519 positions in 242 

the final dataset. All branches were collapsed at the genus level. For the phylogenetic tree depicting 243 

NCBI isolates, existing trees were downloaded using NCBI taxonomy and collapsed to genus 244 

levels. 245 

 246 

3. Viral sequence annotation 247 
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A functional annotation of all virus-encoded predicted proteins was based on a comparison to the 248 

Pfam domain database v.3241 with HmmScan42 (threshold of 30 for bit score and 10−3 for E-value). 249 

The Pfam categories were assigned based on Pfam target name as previously described34, and any 250 

Pfam target name not categorized earlier is referred to as “not categorized”. All contigs were also 251 

uploaded to KBase for annotation. To specifically identify metal and antibiotic resistance genes, 252 

all the unique Pfam target names and their descriptions were manually curated.  253 

 254 

Results and Discussion 255 

New viruses detected in the circular DNA datasets  256 

To study groundwater viruses, we leveraged existing data focused on extrachromosomal circular 257 

DNA templates by identifying viruses from plasmidome datasets (Fig 1). Viruses and plasmids 258 

can coexist stably, support the transfer of each other to new hosts43 or even form a hybrid44. Given 259 

that both can be found as extrachromosomal circular DNA molecules, we used VirSorter, a tool 260 

designed to predict bacterial and archaeal virus sequences on the plasmidome assemblies18 and 261 

identified 200 sequences as groundwater viral sequences from 13,770 plasmidome contigs (Fig 262 

S1). We then categorized viral sequences into viral clusters (approximately equivalent to known 263 

viral genera) using shared gene-content information and network analytics33, 45. Clustering of the 264 

200 groundwater viral sequences with publicly available bacterial and archaeal viruses revealed 265 

that 85 groundwater viral genomes formed 41 viral clusters with at least one representative of 266 

groundwater virus (Table S3). Of these 41 clusters, 9 included a reference viral genome (Fig 2) 267 

and 32 were putative new viral genera. The details on the size of different clusters is depicted in 268 

Fig S2. The largest identified virus was a circular 296,356 bp contig (see virus size distribution 269 

depicted in Fig 3), and was part of a novel viral cluster. Although more viral sequences were 270 

identified from the background versus contaminated groundwaters, the fractions of all contigs 271 

identified as viral sequence was similar across both sites (Fig S1). Thus, the 200 groundwater 272 

viruses spanned a wide variety of sizes and included representatives of both known and novel viral 273 

genera. 274 

 275 
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Several aspects of the viral clusters provide evidence to optimal clustering of groundwater viruses. 276 

All the 9 viral clusters with known reference viral genomes were circular DNA viruses. The VC 277 

with 14 representatives had 11 representatives belonging to the family Microviridae, sub family 278 

Gokushovirinae, which are 4.5–6kb, circular single stranded DNA virus. Interestingly, the 3 viral 279 

contigs that are clustered are from the background site, and are also in the same size range (4.61, 280 

4.78 and 5.09 kb). At least one virus (GW460_nc_scaffold_3616, 8250bp size) from background 281 

site is an inovirus (5-15kb size, circular single-stranded DNA genomes with rod-shaped or 282 

filamentous virions46) clustering with known inovirus Ralstonia~phage~1~NP-2014. The genome 283 

of inoviruses are known to be chromosomally integrated or replicated as a plasmid47, which may 284 

be why this virus was recovered from plasmidome data.  285 

 286 

Host Predictions  287 

Once we identified viral genomes and their clusters, we sought to identify the range of hosts that 288 

these viruses infect. Using the 261 ORFRC bacterial isolates we were able to assign bacterial hosts 289 

to 20 viral genomes (Fig 4) out of the 200, indicating we were able to predict hosts for 10% of the 290 

viral genomes identified (Table S4). As expected, the maximum number of predictions were made 291 

using tetranucleotide frequency (16), followed by BLAST (9) and CRISPR (2) analysis (Fig S3). 292 

All 9 viral sequences that had bacterial host genus predicted via BLAST, also had strain level 293 

predictions using BLAST99. An example of host prediction via BLAST99 is depicted in Fig S4 294 

where the entire viral sequence was found in five different Acidovorax strains. Interestingly, 7 viral 295 

genomes were assigned hosts using both BLAST and tetranucleotide frequency methods and 6 of 296 

them were predicted to the exact same bacterial genus, increasing the confidence in their host 297 

prediction. Out of 20, 10 viral genomes had Pseudomonas predicted as its bacterial host, and 298 

overall 18 viral genomes were assigned to Proteobacteria. This could be attributed to the fact that 299 

out of 261 ORFRC isolates, over 50% were Pseudomonads, and over 85% were Proteobacteria, 300 

making it easier to identify them as host strains. Thus, several ORFRC bacterial genus and strains 301 

belonging to phyla Proteobacteria, Actinobacteria, and Firmicutes were predicted as hosts for the 302 

viruses.  303 

 304 

We also leveraged the complete archaeal and bacterial genome sequences available on NCBI, to 305 

make predictions of bacterial hosts for the 200 viral genomes. No hits were found using the 311 306 
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archaeal strains. Using the 14,028 bacterial strains, host predictions could be made for about 36.5 307 

% (73 out of 200) of the viral genomes, with a vast majority assigned to the phylum Proteobacteria 308 

(Table S5). Other bacterial hosts were in the phyla Actinobacteria, Bacteroidetes, Firmicutes, 309 

Chlamydiae and Chloroflexi. Again, the maximum number of predictions were made using 310 

tetranucleotide frequency (71), followed by BLAST (5) analysis (Fig S3). The BLAST99 had no 311 

hits, so strain specific bacterial host predictions were not made. Interestingly all 5 viral genomes 312 

that had predictions with BLAST, also had predictions using tetranucleotide frequency method. 313 

Although a higher number of viral sequences could be assigned to bacterial hosts using WGS from 314 

NCBI compared to ORFRC, the probability of finding a host for every bacterial WGS tested was 315 

higher with ORFRC strains (7.6%) compared to NCBI strains (0.5%), highlighting the benefits of 316 

including bacterial strains from the same environment as the viral sequence itself. More 317 

importantly, strain-specific host assignments could only be made using groundwater bacterial 318 

isolates, and such high-resolution host assignment is important when designing experiments aimed 319 

at isolating specific phages. 320 

 321 

Together using the ORFRC and NCBI strains host predictions we were able to assign bacterial 322 

hosts to 38% (76 out of 200) of the viral genomes (Fig 5). Around 17 viruses had host predictions 323 

based on both ORFRC and NCBI strains (Fig S3), with the same bacterial phyla predicted as hosts 324 

(Table S6). Differences like this could be attributed to the non-overlapping nature of the strains 325 

from NCBI and ORFRC, and differences in the strength of host prediction methodologies. Next, 326 

we compared host prediction between members of the same viral cluster (Table S7). The bacterial 327 

host predicted mostly remained consistent within the same viral cluster. The minor discrepancy 328 

seen in the viral clusters can likely be explained on further analysis, for instance the exceptional 329 

viral cluster (VC_138_0), consists of ten members with six being groundwater viruses and their 330 

hosts were predicted to be either Burkholderiales or Pseudomonadales based on the prediction 331 

method used. Interestingly, the four known viruses they cluster with were Bordetella virus BPP1, 332 

Pseudomonas phage AF, Pseudomonas phage vB_PaeP_Tr60_Ab31, and Xanthomonas citri 333 

phage CP2 indicating members of this cluster infect both Burkholderiales and Pseudomonadales. 334 

Thus, consistent patterns of host prediction emerge within the same viral cluster. 335 

 336 

Presence of metabolic genes 337 
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In addition to affecting groundwater biogeochemistry through their physical contribution to 338 

dissolved organic matter and the lysis of their hosts, viruses can also affect the diversity and 339 

function of microbial populations through the incorporation and expression of Auxiliary Metabolic 340 

Genes (AMGs)4, 48. AMG definitions are still being refined49, but generally these genes are not 341 

involved in viral replication or structure but instead allow viruses to directly manipulate host 342 

metabolism during infection. Examination of all the viral sequences revealed a total of 1,486 hits 343 

classified into known Pfam categories34 (Fig S5). Exploring Pfam domains associated with 344 

microbial metabolism resulted in the identification of 51 unique putative AMGs (Table S8). Since 345 

these viral sequences are from a site where metal and antibiotic resistance genes are routinely 346 

seen17, 50, 51, all the unique PFAM hits were manually curated to identify metal and antibiotic 347 

resistance genes. We found that the metal resistance genes identified as putative AMGs were those 348 

providing resistance to copper, while the antibiotic resistance genes in the list of putative AMGs 349 

were annotated as beta lactamase multi-resistance providing resistance to β-lactam antibiotics, 350 

multi-drug efflux pumps AcrB/AcrD/AcrF family providing multi-drug resistance, and 351 

streptomycin adenylyltransferase providing resistance to streptomycin. An excellent example is 352 

viral sequence GW456_c_scaffold_130 which was annotated to encode metal and antibiotic 353 

resistance genes along with signature phage genes consistent with a complete phage genome (Fig 354 

6, annotation details in Table S9). The compilation of all the data discussed is available in Table 355 

S10. To the best of our knowledge, this is the first report of the presence of metal and antibiotic 356 

resistance genes on viral sequences. The presence of metal and antibiotic resistance genes suggests 357 

that groundwater viruses may manipulate metal tolerance mechanisms enabling their hosts to adapt 358 

to environmental stressors.   359 

 360 

Conclusion 361 

We demonstrate identification of novel viruses by leveraging plasmidome data for exploring 362 

environmental viral communities. Our analyses revealed the presence of novel viruses, likely 363 

representing new viral genera, in the underexplored groundwater environment. Using different 364 

datasets, we achieved bacterial host predictions for a substantial number of the viral sequences. 365 

Several of these phages encode genes related to signaling and tolerance mechanisms, thus likely 366 

augmenting ecosystem function by modifying the metabolism of their bacterial hosts. 367 

Interestingly, we find genes annotated to provide tolerance to metals, which is significant source 368 
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of stress at this site. These predictions form the basis of future work on guiding phage isolation 369 

efforts and functional assessment of virus-host linkages. The ability to isolate phages would open 370 

new avenues for targeted manipulation of specific subsets of bacteria thus allowing for the 371 

systematic dissection of a microbiome for probing community dynamics and function.    372 

 373 
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Figures with captions 513 

 514 

515 
Fig 1: Overview of the study. Groundwater from the Oak Ridge Field research Site from 516 

background (B) and contaminated (C) areas was filtered and subjected to circular DNA extraction. 517 

Sequencing, assembly and annotation resulted in identification of both plasmids and viral 518 

genomes. The viral genomes were subjected to viral cluster analysis to study the virus types, host 519 

association analysis to get a prediction of bacteria they might infect and Auxiliary Metabolite 520 

Analysis (AMG) analysis to study what functional genes they encode.   521 
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 522 
 523 

Fig 2: vContact generated viral cluster map depicting clustering of 85 viral sequences from 524 

background (light blue) and contaminated (dark blue) groundwater, along with known virus 525 

reference genomes (white). The 9 viral clusters that contain known viruses are annotated on the 526 

figure as 1) Microviridae 2) Podoviridae (Caudovirales) 3) Myoviridae (Caudovirales) 4) 527 

Myoviridae (Caudovirales) 5) Podoviridae (Caudovirales) 6) Siphoviridae (Caudovirales) 7) 528 

Podoviridae (Caudovirales) 8) Inoviridae and 9) Myoviridae (Caudovirales). The order and 529 

distance between different viruses is an arbitrarily selected value.  530 
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 531 

 532 

Fig 3: Size distribution of viruses from the background and contaminated groundwaters.  533 

 534 

 535 
 536 
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Fig 4: Viral host predictions based on BLAST, high stringency BLAST (BLAST99), 537 

tetranucleotide frequency (4mer) and CRISPR methods using whole genome sequence(WGS) 538 

information from 261 ORFRC bacterial isolates. The details of the 20 viruses (“a”-“t”) are 539 

provided in Table S4. The viruses “h”, and “p” have their hosts assigned to Class 540 

Betaproteobacteria and Family Comamonadaceae. The rest of the viruses are assigned to the 541 

genera. The phylogenetic tree was made from 16S rRNA sequence of 261 ORFRC isolate strains. 542 

The viral sequence “s” appears twice because it was predicted to infect two different genera based 543 

on the different prediction methods.  544 

 545 

 546 
Fig 5: Compilation of viral sequences from the groundwater sites based on availability of bacterial 547 

host prediction. Circular viral sequences are depicted in blue, while the rest are in red. The size of 548 

the circle is indicative of the viral sequence size. 549 

 550 
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 551 
Fig 6: Example of a viral contig carrying auxiliary metabolite genes. Map of the virus 552 

(gw456_c_scaffold_130) from background groundwater with phage-related genes highlighted in 553 

green (darker green represents true hallmark genes of viruses), metal (copper, cobalt, zinc, 554 

cadmium, lead, mercury, arsenic) resistance genes highlighted blue, antibiotic (spectinomycin and 555 

fosfomycin) resistance genes highlighted in pink and metabolism (lactate dehydrogenase) gene in 556 

yellow. The viral contig was annotated via Prokka in Kbase54 and the annotation for virus-557 

associated genes were updated on the map using virSorter18 predictions, details in Table S10. 558 
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 559 

Supplementary Information Figures 560 

 561 
 562 

 563 

Fig S1: Breakdown of the all the contigs tested, with the those predicted to be viral highlighted in 564 

blue.     565 

 566 
 567 
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Fig S2: Distribution of viral clusters and the number of phages in each cluster. 568 

 569 

 570 
 571 

Fig S3: Details of numbers of viral sequences for which hosts are predicted using various bacterial 572 

host prediction methods on ORFRC and NCBI strains with whole genome sequences. Venn 573 

diagram shows the overlap of host prediction for viral sequences when using the ORFRC and 574 

NCBI strains.     575 

 576 
 577 
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Fig S4: Results of host association for virus GW456_nc_scaffold_4557. About 99.9% of the viral 578 

sequence (e-value = 0) could be found in 5 Acidovorax strains isolated from ORFRC. 579 

 580 

 581 
Fig S5: Major categories of 1486 virus encoded genes predicted via Pfam database. The hits were 582 

sorted into categories based on gene names as previously established based on AMGs seen in 583 

ocean viruses34.  584 

 585 

 586 

Supplementary Information Tables 587 

 588 

Table S1: This file contains information on all contigs identified as viruses. These are sorted into 589 

categories phage (1, 2, 3) and prophage (4, 5, 6). Only the higher confidence categories 1, 2, 4 and 590 

5 and considered as phage in this study. 591 

 592 

Table S2: This file contains details of the 261 bacterial strains isolated from ORFRC. 593 

 594 

Table S3: This file contains information on all 41 viral clusters that groundwater viruses fall into. 595 

This includes 32 novel clusters and 9 known clusters including known phages.   596 

 597 

Table S4: Host association predictions based on ORFRC groundwater bacterial whole genome 598 

sequences. 599 
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 600 

Table S5: Host association predictions based on NCBI bacterial whole genome sequences. 601 

 602 

Table S6: Breakdown of host assignments made using NCBI and ORFRC bacterial whole genome 603 

sequences. 604 

 605 

Table S7: Comparison of host prediction between members of the same VC using NCBI and 606 

ORFRC bacterial whole genome sequences. 607 

 608 

Table S8: Details of all the Pfam domains detected on the 200 viral sequences. Pfam domains 609 

related to metal resistance, antibiotic resistance and toxin-antitoxin encoding genes are also listed. 610 

 611 

Table S9: Details of the 121 genes encoded on the viral sequence GW456_c_scaffold_130 612 

including their location, size, directionality and description.  613 

 614 

Table S10: Details of all 200 viral sequences with compilation of all analyses including virus size, 615 

viral cluster, host prediction, and AMG analysis.  616 

 617 
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