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Abstract 

MaxEnt is an important aid in understanding the influence of climate change on 

species distributions and abundance. There is growing interest in using IPCC-class global 

climate model outputs as environmental predictors in this work. These models provide 

realistic, global representations of the climate system, projections for hundreds of variables 

(including Essential Climate Variables), and combine observations from an array of satellite, 

airborne, and in-situ sensors. Unfortunately, direct use of this important class of data in 

MaxEnt modeling has been limited due to the large size of climate model output collections. 

In this study, we investigated the potential of a Monte Carlo method to find a useful subset of 

predictors in a larger collection of environmental variables in a reasonable amount of time.  

Our proposed solution takes an ensemble approach wherein many MaxEnt runs, each 

drawing on a small random subset of variables, converges on a global estimate of the top 

contributing subset of variables in the larger collection. The Monte Carlo approach resulted 

in a consistent set of top six variables within 540 runs, and the four most contributory 

variables of the top six accounted for approximately 93% of overall permutation importance 

in the final model. These preliminary results suggest that a Monte Carlo approach could offer 

a viable means of selecting environmental predictors for MaxEnt models that is amenable to 

parallelization and scalable to large data sets, including externally-stored collections. This 

points to the possibility of near-real-time multiprocessor implementations that could enable 

broader and more exploratory use of global climate model outputs in environmental niche 

modeling and aid in the discovery of viable predictors.    
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Introduction 

MaxEnt is an important aid in understanding the influence of climate change on 

species distributions and abundance. Based on a machine learning approach to maximum 

entropy modeling, the software allows researchers to construct ecological niche models 

(ENMs) that estimate the habitat suitability of a species using occurrence data and a set of 

environmental variables [1–3]. The need for reliable climate projections in this work is 

leading to greater use of global climate model (GCM) outputs as predictors [4]. While 

creating important new opportunities for research, this trend is also creating a “Big Data” 

challenge for the MaxEnt community [5]. The largest and most sophisticated GCMs — 

sometimes referred to as “IPCC-class” models because of the critical role they play in the 

work of the Intergovernmental Panel on Climate Change (IPCC) — produce petabyte-scale 

data sets comprising hundreds of variables, a volume that vastly exceeds what is generally 

used in bioclimatic modeling today [6–8]. Moreover, the direct outputs of these systems are 

being transformed into derived climate data products on an unprecedented scale [9,10]. As a 

result, model tuning and variable selection, which are crucial aspects of any species 

distribution modeling effort, are becoming more complicated issues [11]. 

Part of the problem lies in the fact that MaxEnt, like many machine learning systems, 

acts on its inputs as a piece: predictors and observations must be memory-resident for the 

program to work [12]. This results in run-times and space requirements that scale linearly 

with the size of a model’s inputs. In most cases, these scaling properties pose few difficulties. 

But when the number of predictors under consideration becomes large, compute times can 

become impractically long, models can become overly complex, and efforts to understand 

any particular variable’s contribution to model formation, either as an aspect of model 
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analysis or as a way of selecting subsets of variables for further model refinement, can 

become challenging [11,13–16]. Clearly, an effective way of dealing with large 

environmental data sets that preserves the many advantages of MaxEnt while overcoming its 

current limitations would benefit the MaxEnt community.  

In this study, we investigated the potential of a Monte Carlo method to help 

accomplish such an outcome. Monte Carlo optimizations are a common way of finding 

approximate answers to problems that are solvable in principle but lack a practical means of 

solution [17]. Our objective was to find a useful subset of predictors in a larger collection of 

environmental variables in a reasonable amount of time. Our proposed solution takes an 

ensemble approach wherein many MaxEnt runs, each drawing on a small random subset of 

variables, converges on a global estimate of the top contributing subset of variables in the 

larger collection.  

Preliminary results suggest that the method reliably selects a subset of the original 

predictors that is capable of producing a well-tuned, parsimonious model of high quality. 

Since each model run is independent and uses a set number of variables, the method is totally 

parallelizable, independent of the scaling properties of MaxEnt, and amenable to 

implementation as an external memory algorithm. If proved to be effective, such an approach 

could provide a practical way of constructing MaxEnt models when there is a need to select a 

small set of predictors in a pool comprising a potentially very large number of predictors. 

This could lead to greater use of climate model outputs by the ecological research community 

and aid the search for viable predictors when variable selection through ecological reasoning 

is not apparent. 
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Materials and Methods 

Cassin’s Sparrow (Peucaea cassinii Woodhouse, 1852) is an elusive resident of arid 

shrub grasslands of Middle America and the Southwestern United States [18]. Desert-adapted 

birds, such as Cassin’s Sparrow, appear to be especially vulnerable to climate change 

[19,20]. We chose Cassin’s Sparrow as a target for our study as an example of a species 

whose study could benefit from the technical advances described here. Occurrence data was 

obtained from the Global Biodiversity Information Facility (GBIF) for the year 2016 [21]. 

After removing replicates, a total of 1865 records were acquired. To limit spatial extent and 

avoid pseudo-replication, we thinned the points to a radius of 16 km, which resulted in a total 

of 609 observations. For predictors, we used Worldclim’s standard 19 Bioclimatic (bioclim) 

environmental variables at a resolution of 2.5 arc-minutes throughout (Table 1)  [22]. We did 

not attempt to minimize collinearity by removing variables, because the current study focuses 

on an assessment of stochastic down-selection from a full variable set, and because MaxEnt 

has a demonstrated ability to account well for redundant variables [23]. 

We used MaxEnt Version 3.4.1 [24], R Version 4.0.1 [25], the ENMEval Version 

0.3.0 R package [26], RStudio Version 1.2.5033 [27], and ENMTools Version 1.4.4 [28] 

running on a 2.8 GHz Intel Core i7 MacBook Pro with 16 GB of memory in the study. First, 

we developed a baseline model using the stand-alone MaxEnt program operated through its 

graphical user interface (GUI). MaxEnt users can apply various combinations of five 

mathematical transformations (‘feature classes’ or FCs) to predictor variables to enable more 

complex fits to the observational data. The available feature types for continuous variables 

are linear (L), quadratic (Q), hinge (H), product (P), and threshold (T) [1]. Users can also 

adjust a regularization multiplier (RM) to maximize predictive accuracy and offset the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.15.202945doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.202945
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

 

overfitting that FC adjustments can introduce. We applied MaxEnt’s default FC and RM 

settings (i.e. the “Auto features” setting) with 10 replicate cross-validation and jackknife 

evaluation of variable importance. By default, MaxEnt uses all feature classes and a 

regularization multiplier of 1.0 when there are more than 80 training samples, which was the 

case here [24]. Ten thousand background points were selected from across the study area 

following the recommendations of Phillips et al. [29] and Fourcade et al. [30]. We 

determined the average permutation importance for each variable in three replicated runs. 

The top six predictors in the three-run ensemble were used to develop the final MaxEnt 

baseline model. 

We then developed an alternative method to select the top six variables that is based 

on random sampling. We implemented our Monte Carlo approach as an R script that invokes 

MaxEnt through ENMEval, which provides convenient control over model settings, built-in 

evaluation metrics, and improved performance [15,26]. To reduce variability and isolate 

outcomes as much as possible to the effects of the sampling process, we adopted a feature 

Table 1. Worldclim Bioclimatic Variables.
bio01 Annual Mean Temperature
bio02 Mean Diurnal Range (Mean of monthly (max temp - min temp))
bio03 Isothermality (BIO2/BIO7) (×100)
bio04 Temperature Seasonality (standard deviation ×100)
bio05 Max Temperature of Warmest Month
bio06 Min Temperature of Coldest Month
bio07 Temperature Annual Range (BIO5-BIO6)
bio08 Mean Temperature of Wettest Quarter
bio09 Mean Temperature of Driest Quarter
bio10 Mean Temperature of Warmest Quarter
bio11 Mean Temperature of Coldest Quarter
bio12 Annual Precipitation
bio13 Precipitation of Wettest Month
bio14 Precipitation of Driest Month
bio15 Precipitation Seasonality (Coefficient of Variation)
bio16 Precipitation of Wettest Quarter
bio17 Precipitation of Driest Quarter
bio18 Precipitation of Warmest Quarter
bio19 Precipitation of Coldest Quarter

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.15.202945doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.202945
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

class setting of LQHP and a regularization multiplier setting of 1.0 as fixed parameters in all 

the Monte Carlo runs. We defined ensemble, in this case, to mean a collection of 100 sprints, 

where each sprint consisted of ten model runs. A tally table was used to maintain a count of 

the number of times a variable was used in a model run along with a cumulative sum of the 

variable’s permutation importance. The tally table thus provided the information needed to 

determine the average permutation importance of a predictor at any point along the way.  

To process a sprint, we initialized each of its ten model runs with a random subset of 

environmental variables read from the filesystem. Random integers drawn from a uniform 

distribution ranging 1–19 corresponding to the 19 bioclim predictors were used to make the 

selection. At the conclusion of each model run, the tally table was updated appropriately. At 

the conclusion of each sprint, we computed a MaxEnt model using the six predictors in the 

original starting set having the highest average permutation importance values at that point. 

This process was repeated 100 times to produce a complete ensemble. We assessed the 

algorithm’s performance in two ensembles. In the first, we chose two random variables for 

each sprint run; in the second, six random variables were used for each run. This resulted in 

an overall total of 2000 model runs.  

The predictive distribution maps produced by the models were judged for 

reasonableness based on first-hand knowledge of the species, its habitat preferences, and 

known range [31]. We further compared model predictions to observational records from 

Cornell Lab’s eBird citizen-scientist database [32]. We used the area under the operating 

curve (AUC) [33] as an indication of a model’s classification accuracy (higher values 

indicating greater accuracy) and the Akaike information criterion corrected for small sample 

size (AICc) [34] as a measure of relative explanatory power (lower values indicating less 
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information loss). Model similarity was compared with Warren’s I-statistic [35] and 

Schoener’s D statistic [36] (higher values in both indicating greater similarity) using 

ENMTools. Single-processor run times were recorded to aid our understanding of algorithm 

performance and help identify opportunities for multiprocessor parallelization.  

Results 

On the basis of permutation importance, 13 of the 19 original bioclim variables were 

among the top ten most contributory predictors across all three replicated runs of the MaxEnt 

baseline: bio02, bio03, bio05, bio06, bio08–bio12, bio14, bio15, bio17, and bio18 (Table 2). 

Of those, bio02, bio05, and bio14 appeared in only one run each at 10th place. Bio18 showed 

strong dominance throughout. When performance was averaged across all three runs, the top 

six contributory variables in the ensemble collectively accounted for 65% of overall 

permutation importance (ensemble average). In descending order of importance, the top six 

predictors included bio18, bio03, bio10, bio15, bio11, and bio06. When these six top-

contributing variables were used in a final MaxEnt run, the model’s four most contributory 

variables (bio18, bio03, bio10, and bio15) accounted for approximately 86% of overall 

permutation importance, and its predicted habitat suitability distribution corresponded well 

with what is known about the natural history of the species and observational records for 

Cassin’s Sparrow for the year 2016 (Fig 1) [32].  
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Fig 1. Cassin’s Sparrow distribution maps. Cassin’s Sparrow range map from Cornell 

Lab’s eBird observational database (A). Predicted habitat suitability distributions from the 

MaxEnt baseline (B) and Monte Carlo Ensembles #1 (C) and #2 (D). 
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A distinct pattern of progression toward a stable subset of key variables was observed 

in the Monte Carlo ensembles (Figs 2,3). In both cases, the top three contributory variables 

among the top six were selected early in the sprint runs, and AICc values fluctuated within a 

narrow range around an average that changed little over the course of the selection process. 

Greater variability in the composition of the top six subset was seen in Ensemble #1 where 

two random variables at a time were selected for each sprint run (Table 2, Fig 2). In 

Ensemble #2, where six random variables at a time were selected for the MaxEnt runs, the 

top six variables were identified by the 25th sprint and had settled into their final rank order 

by sprint 54 (Fig 3). Ensemble #2 appeared to produce the best overall results and shared 

four variables in common with the top six selected by the MaxEnt baseline (bio03, bio06, 

bio11, and bio18) (Table 2). Ensemble #2’s final model had the lowest overall AICc, and its 

four most contributory variables accounted for approximately 93% of overall permutation 

importance, the highest attained overall.  

Ensemble #1 had only one variable in common with the top six selected by both the 

baseline run and Ensemble #2. What accounts for this difference is not immediately apparent; 

however, we speculate that the random pair-wise comparisons occurring in Ensemble #1 may 

alter the relative global influence of the collinearities known to exist in the bioclim variables 

[37–39]. The average number of times a variable was sampled appeared to have a marginal, 

positive influence on resulting model quality once an adequate minimum was attained. 

Ensemble #2 results suggest that at least 80 uniformly distributed samples per starting-set 

variable are needed to identify a reasonable top six set of variables; the best overall model 

resulted from over 300 samples per variable (Table 2).  
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Fig 2. Monte Carlo Ensemble #1 results. Two random variables at a time were chosen for 

each MaxEnt sprint run. The sprint log on top shows the progressive selection of a stable set 

of top six variables in yellow. The graph on the bottom shows the narrow range of fluctuating 

AICc values over the course of the ensemble runs. Maximum and minimum AICc values are 

shown in red. 

 

Sprint Runs Time (min) AICc 1st 2nd 3rd 4th 5th 6th Sprint Runs Time (min) AICc 1st 2nd 3rd 4th 5th 6th
1 10 7.58 12379.01 bio05 bio08 bio14 bio04 bio17 bio03 51 510 7.78 12233.56 bio18 bio16 bio13 bio08 bio05 bio09
2 20 8.04 12200.28 bio15 bio08 bio16 bio12 bio01 bio14 52 520 8.06 12259.47 bio18 bio16 bio13 bio08 bio05 bio09
3 30 6.99 12167.31 bio08 bio16 bio18 bio14 bio05 bio09 53 530 6.91 12241.89 bio18 bio16 bio13 bio08 bio05 bio09
4 40 6.87 12232.75 bio18 bio16 bio08 bio05 bio09 bio12 54 540 8.19 12247.57 bio18 bio16 bio13 bio08 bio05 bio09
5 50 7.31 12170.46 bio18 bio16 bio08 bio05 bio13 bio09 55 550 7.69 12226.76 bio18 bio16 bio13 bio08 bio05 bio09
6 60 7.17 12149.38 bio18 bio16 bio08 bio05 bio13 bio09 56 560 6.49 12210.05 bio18 bio16 bio13 bio08 bio05 bio09
7 70 6.69 12226.38 bio18 bio16 bio13 bio08 bio05 bio09 57 570 7.90 12205.59 bio18 bio16 bio13 bio08 bio05 bio09
8 80 7.73 12222.55 bio18 bio16 bio13 bio05 bio08 bio09 58 580 5.90 12254.37 bio18 bio16 bio13 bio08 bio05 bio09
9 90 6.40 12157.66 bio18 bio16 bio13 bio08 bio05 bio09 59 590 6.75 12273.07 bio18 bio16 bio13 bio08 bio05 bio09
10 100 7.89 12195.88 bio18 bio16 bio13 bio08 bio05 bio15 60 600 6.82 12236.51 bio18 bio16 bio13 bio08 bio05 bio09
11 110 8.48 12221.87 bio18 bio16 bio13 bio08 bio05 bio09 61 610 7.22 12243.03 bio18 bio16 bio13 bio08 bio05 bio09
12 120 7.11 12265.25 bio18 bio16 bio13 bio05 bio08 bio09 62 620 7.73 12198.01 bio18 bio16 bio13 bio08 bio05 bio09
13 130 5.60 12251.47 bio18 bio16 bio13 bio05 bio08 bio11 63 630 8.41 12338.98 bio18 bio16 bio13 bio08 bio05 bio09
14 140 8.10 12218.51 bio18 bio16 bio13 bio08 bio05 bio09 64 640 6.79 12245.66 bio18 bio16 bio13 bio08 bio05 bio09
15 150 7.16 12198.43 bio18 bio16 bio13 bio08 bio05 bio09 65 650 6.98 12251.55 bio18 bio16 bio13 bio08 bio05 bio09
16 160 7.32 12222.59 bio18 bio16 bio13 bio08 bio05 bio09 66 660 7.02 12348.13 bio18 bio16 bio13 bio08 bio05 bio09
17 170 6.99 12216.19 bio18 bio16 bio13 bio08 bio05 bio03 67 670 7.28 12239.33 bio18 bio16 bio13 bio08 bio05 bio09
18 180 6.95 12199.30 bio18 bio16 bio13 bio08 bio05 bio12 68 680 7.92 12343.54 bio18 bio16 bio13 bio08 bio05 bio09
19 190 6.20 12211.87 bio18 bio16 bio13 bio08 bio05 bio03 69 690 7.40 12237.15 bio18 bio16 bio13 bio08 bio05 bio09
20 200 8.30 12257.88 bio18 bio16 bio13 bio08 bio05 bio03 70 700 6.83 12222.24 bio18 bio16 bio13 bio08 bio05 bio09
21 210 7.08 12220.48 bio18 bio16 bio13 bio08 bio05 bio09 71 710 7.89 12280.63 bio18 bio16 bio13 bio08 bio05 bio09
22 220 6.94 12235.24 bio18 bio16 bio13 bio08 bio05 bio09 72 720 6.65 12234.48 bio18 bio16 bio13 bio08 bio05 bio09
23 230 7.53 12209.08 bio18 bio16 bio13 bio08 bio05 bio09 73 730 6.97 12256.76 bio18 bio16 bio13 bio08 bio05 bio09
24 240 8.17 12229.47 bio18 bio16 bio13 bio08 bio05 bio09 74 740 7.58 12279.34 bio18 bio16 bio13 bio08 bio05 bio09
25 250 6.61 12229.17 bio18 bio16 bio13 bio08 bio05 bio09 75 750 7.08 12210.23 bio18 bio16 bio13 bio08 bio05 bio09
26 260 7.67 12227.33 bio18 bio16 bio13 bio08 bio05 bio09 76 760 6.97 12232.46 bio18 bio16 bio13 bio08 bio05 bio09
27 270 7.68 12240.54 bio18 bio16 bio13 bio08 bio05 bio09 77 770 7.14 12298.37 bio18 bio16 bio13 bio08 bio05 bio09
28 280 5.29 12253.73 bio18 bio16 bio13 bio08 bio05 bio09 78 780 6.80 12220.16 bio18 bio16 bio13 bio08 bio05 bio09
29 290 7.69 12245.23 bio18 bio16 bio13 bio08 bio05 bio09 79 790 7.62 12214.21 bio18 bio16 bio13 bio08 bio05 bio09
30 300 8.49 12277.86 bio18 bio16 bio13 bio08 bio05 bio09 80 800 7.41 12227.38 bio18 bio16 bio13 bio08 bio05 bio09
31 310 6.38 12245.44 bio18 bio16 bio13 bio08 bio05 bio09 81 810 7.18 12250.13 bio18 bio16 bio13 bio08 bio05 bio09
32 320 7.53 12189.91 bio18 bio16 bio13 bio08 bio05 bio09 82 820 7.65 12264.45 bio18 bio16 bio13 bio08 bio05 bio03
33 330 7.08 12233.77 bio18 bio16 bio13 bio08 bio05 bio09 83 830 6.20 12245.57 bio18 bio16 bio13 bio08 bio05 bio03
34 340 6.79 12249.50 bio18 bio16 bio13 bio08 bio05 bio09 84 840 6.33 12216.66 bio18 bio16 bio13 bio08 bio05 bio03
35 350 6.52 12213.96 bio18 bio16 bio13 bio08 bio05 bio09 85 850 8.21 12242.54 bio18 bio16 bio13 bio08 bio05 bio03
36 360 6.80 12243.56 bio18 bio16 bio13 bio08 bio05 bio09 86 860 6.49 12282.52 bio18 bio16 bio13 bio08 bio05 bio03
37 370 7.71 12245.80 bio18 bio16 bio13 bio08 bio05 bio09 87 870 6.87 12256.19 bio18 bio16 bio13 bio08 bio05 bio03
38 380 7.96 12225.07 bio18 bio16 bio13 bio08 bio05 bio09 88 880 7.06 12251.20 bio18 bio16 bio13 bio08 bio05 bio03
39 390 6.42 12249.01 bio18 bio16 bio13 bio08 bio05 bio09 89 890 6.78 12237.27 bio18 bio16 bio13 bio08 bio05 bio03
40 400 5.70 12253.59 bio18 bio16 bio13 bio08 bio05 bio09 90 900 8.21 12278.73 bio18 bio16 bio13 bio08 bio05 bio09
41 410 7.08 12206.76 bio18 bio16 bio13 bio08 bio05 bio09 91 910 6.06 12307.16 bio18 bio16 bio13 bio08 bio05 bio09
42 420 7.06 12259.68 bio18 bio16 bio13 bio08 bio05 bio09 92 920 5.29 12210.69 bio18 bio16 bio13 bio08 bio05 bio09
43 430 6.41 12264.71 bio18 bio16 bio13 bio08 bio05 bio09 93 930 7.93 12245.61 bio18 bio16 bio13 bio08 bio05 bio03
44 440 6.70 12246.71 bio18 bio16 bio13 bio08 bio05 bio09 94 940 5.88 12229.42 bio18 bio16 bio13 bio08 bio05 bio03
45 450 6.06 12297.09 bio18 bio16 bio13 bio08 bio05 bio09 95 950 8.25 12236.33 bio18 bio16 bio13 bio08 bio05 bio03
46 460 6.93 12214.90 bio18 bio16 bio13 bio08 bio05 bio09 96 960 6.15 12280.85 bio18 bio16 bio13 bio08 bio05 bio03
47 470 6.81 12250.17 bio18 bio16 bio13 bio08 bio05 bio09 97 970 6.42 12273.77 bio18 bio16 bio13 bio08 bio05 bio03
48 480 6.71 12212.33 bio18 bio16 bio13 bio08 bio05 bio09 98 980 6.38 12247.16 bio18 bio16 bio13 bio08 bio05 bio03
49 490 6.95 12230.75 bio18 bio16 bio13 bio08 bio05 bio09 99 990 7.06 12214.92 bio18 bio16 bio13 bio08 bio05 bio03
50 500 7.06 12230.62 bio18 bio16 bio13 bio08 bio05 bio09 100 1000 7.17 12252.44 bio18 bio16 bio13 bio08 bio05 bio03
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Fig 3. Monte Carlo Ensemble #2 results. Six random variables at a time were chosen for 

each MaxEnt sprint run. The sprint log on top shows the progressive selection of a stable set 

of top six variables in yellow. The graph on the bottom shows the narrow range of fluctuating 

AICc values over the course of the ensemble runs. Maximum and minimum AICc values are 

shown in red. 

Sprint Runs Time (min) AICc 1st 2nd 3rd 4th 5th 6th Sprint Runs Time (min) AICc 1st 2nd 3rd 4th 5th 6th
1 10 18.07 12185.35 bio18 bio06 bio12 bio16 bio03 bio11 51 510 18.53 12175.76 bio18 bio16 bio13 bio11 bio06 bio03
2 20 18.32 12182.82 bio18 bio16 bio06 bio12 bio03 bio14 52 520 20.15 12198.96 bio18 bio16 bio13 bio11 bio06 bio03
3 30 17.60 12232.96 bio18 bio16 bio13 bio06 bio03 bio15 53 530 20.48 12168.05 bio18 bio16 bio13 bio06 bio11 bio03
4 40 18.92 12180.38 bio18 bio16 bio13 bio03 bio12 bio14 54 540 17.22 12163.76 bio18 bio16 bio13 bio11 bio06 bio03
5 50 16.99 12207.91 bio18 bio16 bio13 bio03 bio06 bio04 55 550 17.28 12165.65 bio18 bio16 bio13 bio06 bio11 bio03
6 60 16.67 12191.40 bio18 bio16 bio13 bio03 bio06 bio11 56 560 20.14 12189.90 bio18 bio16 bio13 bio06 bio11 bio03
7 70 15.97 12167.45 bio18 bio16 bio13 bio06 bio03 bio11 57 570 20.86 12161.10 bio18 bio16 bio13 bio06 bio11 bio03
8 80 17.16 12188.02 bio18 bio16 bio13 bio06 bio03 bio11 58 580 19.10 12182.45 bio18 bio16 bio13 bio06 bio11 bio03
9 90 18.62 12161.62 bio18 bio16 bio13 bio06 bio03 bio11 59 590 17.63 12179.96 bio18 bio16 bio13 bio06 bio11 bio03
10 100 17.70 12179.81 bio18 bio16 bio13 bio06 bio11 bio03 60 600 19.88 12182.09 bio18 bio16 bio13 bio06 bio11 bio03
11 110 18.57 12163.00 bio18 bio16 bio13 bio06 bio11 bio03 61 610 18.92 12166.12 bio18 bio16 bio13 bio06 bio11 bio03
12 120 17.67 12161.86 bio18 bio16 bio13 bio06 bio11 bio03 62 620 19.17 12163.61 bio18 bio16 bio13 bio06 bio11 bio03
13 130 18.03 12195.77 bio18 bio16 bio13 bio06 bio11 bio03 63 630 18.74 12152.40 bio18 bio16 bio13 bio06 bio11 bio03
14 140 17.45 12162.09 bio18 bio16 bio13 bio06 bio11 bio03 64 640 20.34 12201.92 bio18 bio16 bio13 bio06 bio11 bio03
15 150 16.41 12153.21 bio18 bio16 bio13 bio06 bio11 bio03 65 650 19.29 12202.01 bio18 bio16 bio13 bio06 bio11 bio03
16 160 17.04 12169.11 bio18 bio16 bio13 bio06 bio11 bio03 66 660 19.49 12185.66 bio18 bio16 bio13 bio06 bio11 bio03
17 170 16.71 12173.60 bio18 bio16 bio13 bio06 bio11 bio03 67 670 19.05 12177.32 bio18 bio16 bio13 bio06 bio11 bio03
18 180 16.99 12160.81 bio18 bio16 bio13 bio06 bio11 bio03 68 680 18.96 12192.10 bio18 bio16 bio13 bio06 bio11 bio03
19 190 19.12 12165.07 bio18 bio16 bio13 bio06 bio11 bio03 69 690 18.21 12164.35 bio18 bio16 bio13 bio06 bio11 bio03
20 200 17.50 12160.62 bio18 bio16 bio13 bio06 bio11 bio03 70 700 20.04 12183.12 bio18 bio16 bio13 bio06 bio11 bio03
21 210 18.51 12151.23 bio18 bio16 bio13 bio06 bio11 bio03 71 710 18.20 12200.74 bio18 bio16 bio13 bio06 bio11 bio03
22 220 17.35 12281.16 bio18 bio16 bio13 bio06 bio11 bio03 72 720 19.34 12173.30 bio18 bio16 bio13 bio06 bio11 bio03
23 230 16.64 12200.43 bio18 bio16 bio13 bio06 bio11 bio03 73 730 17.71 12160.29 bio18 bio16 bio13 bio06 bio11 bio03
24 240 16.82 12172.95 bio18 bio16 bio13 bio06 bio11 bio03 74 740 19.39 12187.62 bio18 bio16 bio13 bio06 bio11 bio03
25 250 17.11 12176.06 bio18 bio16 bio13 bio06 bio11 bio03 75 750 17.44 12164.62 bio18 bio16 bio13 bio06 bio11 bio03
26 260 17.25 12166.65 bio18 bio16 bio13 bio06 bio11 bio03 76 760 17.59 12197.39 bio18 bio16 bio13 bio06 bio11 bio03
27 270 16.91 12203.32 bio18 bio16 bio13 bio06 bio11 bio03 77 770 17.78 12191.93 bio18 bio16 bio13 bio06 bio11 bio03
28 280 15.79 12182.27 bio18 bio16 bio13 bio06 bio11 bio03 78 780 19.23 12180.93 bio18 bio16 bio13 bio06 bio11 bio03
29 290 17.31 12186.27 bio18 bio16 bio13 bio06 bio11 bio03 79 790 18.43 12175.62 bio18 bio16 bio13 bio06 bio11 bio03
30 300 18.19 12238.20 bio18 bio16 bio13 bio06 bio11 bio03 80 800 18.13 12154.68 bio18 bio16 bio13 bio06 bio11 bio03
31 310 16.43 12177.40 bio18 bio16 bio13 bio06 bio11 bio03 81 810 18.11 12164.86 bio18 bio16 bio13 bio06 bio11 bio03
32 320 17.14 12159.92 bio18 bio16 bio13 bio06 bio11 bio03 82 820 20.02 12161.18 bio18 bio16 bio13 bio06 bio11 bio03
33 330 18.26 12149.59 bio18 bio16 bio13 bio06 bio11 bio03 83 830 19.08 12176.15 bio18 bio16 bio13 bio06 bio11 bio03
34 340 16.17 12178.16 bio18 bio16 bio13 bio06 bio11 bio03 84 840 19.17 12178.22 bio18 bio16 bio13 bio06 bio11 bio03
35 350 16.78 12153.80 bio18 bio16 bio13 bio11 bio06 bio03 85 850 20.01 12187.92 bio18 bio16 bio13 bio06 bio11 bio03
36 360 18.70 12158.82 bio18 bio16 bio13 bio06 bio11 bio03 86 860 17.05 12165.70 bio18 bio16 bio13 bio06 bio11 bio03
37 370 18.12 12179.92 bio18 bio16 bio13 bio11 bio06 bio03 87 870 17.78 12164.13 bio18 bio16 bio13 bio06 bio11 bio03
38 380 17.30 12187.95 bio18 bio16 bio13 bio11 bio06 bio03 88 880 18.00 12155.70 bio18 bio16 bio13 bio06 bio11 bio03
39 390 17.48 12208.89 bio18 bio16 bio13 bio11 bio06 bio03 89 890 16.87 12250.99 bio18 bio16 bio13 bio06 bio11 bio03
40 400 17.13 12203.25 bio18 bio16 bio13 bio11 bio06 bio03 90 900 17.98 12186.50 bio18 bio16 bio13 bio06 bio11 bio03
41 410 18.86 12167.30 bio18 bio16 bio13 bio11 bio06 bio03 91 910 17.64 12179.19 bio18 bio16 bio13 bio06 bio11 bio03
42 420 18.89 12166.73 bio18 bio16 bio13 bio11 bio06 bio03 92 920 17.89 12175.84 bio18 bio16 bio13 bio06 bio11 bio03
43 430 17.32 12170.09 bio18 bio16 bio13 bio11 bio06 bio03 93 930 15.97 12186.11 bio18 bio16 bio13 bio06 bio11 bio03
44 440 17.30 12181.02 bio18 bio16 bio13 bio11 bio06 bio03 94 940 17.25 12170.26 bio18 bio16 bio13 bio06 bio11 bio03
45 450 16.42 12194.59 bio18 bio16 bio13 bio11 bio06 bio03 95 950 16.83 12199.93 bio18 bio16 bio13 bio06 bio11 bio03
46 460 18.32 12148.92 bio18 bio16 bio13 bio11 bio06 bio03 96 960 16.43 12176.31 bio18 bio16 bio13 bio06 bio11 bio03
47 470 17.03 12196.84 bio18 bio16 bio13 bio11 bio06 bio03 97 970 18.13 12221.18 bio18 bio16 bio13 bio06 bio11 bio03
48 480 18.00 12178.66 bio18 bio16 bio13 bio11 bio06 bio03 98 980 17.58 12169.45 bio18 bio16 bio13 bio06 bio11 bio03
49 490 17.28 12168.32 bio18 bio16 bio13 bio11 bio06 bio03 99 990 15.28 12197.56 bio18 bio16 bio13 bio06 bio11 bio03
50 500 16.30 12198.48 bio18 bio16 bio13 bio11 bio06 bio03 100 1000 16.84 12151.75 bio18 bio16 bio13 bio06 bio11 bio03
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Discussion 

The most striking outcome of the study is the similarity in results. Final models in the 

MaxEnt baseline and the Monte Carlo ensembles produced predicted habitat suitability 

distributions that are nearly indistinguishable from one another (Fig 1). Internal metrics 

likewise reveal little difference in outcomes, with AUC values ranging only from 0.801 to 

0.818 and AICc ranging from 12,152 to 12,222, suggesting that the traditional MaxEnt runs 

and the Monte Carlo approach both produced reasonable models (Table 2). The two 

approaches also each identified four variables that collectively contributed more than 80% to 

the formulation of their respective models. Across the board, models showed a high degree of 

similarity in Schoener’s D and the I-statistic (Table 3).  

 

 

 

Schoener's D Statistic

MODELS  ↓ → Maxent-Run1 Maxent-Run2 Maxent-Run3 Maxent-Final MC-E1-025 MC-E1-050 MC-E1-100 MC-E2-025 MC-E2-050 MC-E2-100
Maxent-Run1 1 0.9712 0.9738 0.9355 0.8629 0.8630 0.9044 0.8882 0.8903 0.8906
Maxent-Run2 x 1 0.9793 0.9397 0.8639 0.8648 0.9078 0.8915 0.8949 0.8947
Maxent-Run3 x x 1 0.9354 0.8579 0.8586 0.9039 0.8871 0.8903 0.8902
Maxent-Final x x x 1 0.8667 0.8673 0.9214 0.9104 0.9138 0.9142
MC-E1-025 x x x x 1 0.9880 0.9006 0.8810 0.8801 0.8785
MC-E1-050 x x x x x 1 0.9026 0.8813 0.8804 0.8786
MC-E1-100 x x x x x x 1 0.9393 0.9389 0.9365
MC-E2-025 x x x x x x x 1 0.9815 0.9810
MC-E2-050 x x x x x x x x 1 0.9844
MC-E2-100 x x x x x x x x x 1

Warren's I Statistic
MODELS  ↓ → Maxent-Run1 Maxent-Run2 Maxent-Run3 Maxent-Final MC-E1-025 MC-E1-050 MC-E1-100 MC-E2-050 MC-E2-100 MC-E2-100
Maxent-Run1 1 0.9991 0.9994 0.9948 0.9760 0.9758 0.9874 0.9828 0.9833 0.9834
Maxent-Run2 x 1 0.9995 0.9949 0.9760 0.9760 0.9878 0.9831 0.9838 0.9839
Maxent-Run3 x x 1 0.9945 0.9748 0.9748 0.9869 0.9823 0.9830 0.9831
Maxent-Final x x x 1 0.9755 0.9753 0.9894 0.9871 0.9878 0.9880
MC-E1-025 x x x x 1 0.9998 0.9887 0.9798 0.9797 0.9784
MC-E1-050 x x x x x 1 0.9889 0.9795 0.9794 0.9781
MC-E1-100 x x x x x x 1 0.9910 0.9912 0.9906
MC-E2-025 x x x x x x x 1 0.9996 0.9994
MC-E2-050 x x x x x x x x 1 0.9996
MC-E2-100 x x x x x x x x x 1

Table 3. Model Similarity Metrics.
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The most significant drawback identified in the study was the long run times. 

MaxEnt’s linear scaling behavior can be challenging in a single-processor environment. In 

the baseline runs, producing a single model through MaxEnt’s GUI using our selected 

settings involved writing many files to disk and took from 18 minutes (with six variables) to 

over two hours (with all 19 variables). MaxEnt in the R environment outputs memory-

resident objects, which results in faster run times. Still, with its repeated invocations of 

MaxEnt, Ensemble #2 took nearly 30 hours to complete (Table 2).  

The Monte Carlo approach also exhibits linear scaling properties; however, its scaling 

behavior is not determined by the MaxEnt program, since each of the MaxEnt runs in the 

Monte Carlo method operates on a set number of predictors. The method’s linear scaling 

property is determined, instead, by the need to adequately sample the starting set of 

environmental variables in order to obtain a good result. What makes a practical 

implementation of the Monte Carlo method possible is that each of its MaxEnt runs is 

entirely independent from all other runs in the ensemble. This high level of subtask 

independence is sometimes referred to as an “embarrassingly parallel” workload, which 

makes it relatively straightforward to implement in a cluster computing environment. If 1000 

processors were recruited into service — which is becoming increasingly convenient with the 

proliferation of multiprocessor, high performance cloud computing — a 1000-run ensemble 

could conceivably take about as long as a single MaxEnt run.  

The potential significance of this advantage becomes apparent when one considers 

the method’s use with large collections of environmental data. The Monte Carlo approach 

described here provides an approximate solution to the problem of finding a useful k-size 

subset of an n-size collection of variables. In principal, there are n! / [k!(n-k)!] variable 
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combinations to consider in such an evaluation, a staggering 27,000-plus six-variable subsets 

with the 19 bioclim variables alone. Algorithms that accomplish variable selection through 

stepwise removal or are otherwise bound to the linear scaling properties of underlying 

software components are inherently unable to exhaustively explore this combinatorial space. 

A Monte Carlo method makes such a search possible by randomly sampling the universe of 

possible combinations and returning approximate solutions in practical amounts of time, 

particularly if implemented as a high-performance cloud service.  

The use of IPCC-class climate model outputs in efforts to assess the impacts of 

climate change on biodiversity and other ecosystem processes is growing. Exploring the 

potential of these massive data sets, expanded use of ensemble modeling, and the actual work 

of fitting models for the thousands of species scientists wish to study will require hundreds to 

thousands of projections [4,5]. An improved capacity to use large environmental data sets in 

MaxEnt modeling would benefit this work. We are encouraged to think that innovative use of 

Monte Carlo techniques might provide a helpful means of meeting this challenge. 

Conclusions 

This small-scale, proof-of-concept study leaves many practical and theoretical 

questions unanswered. Preliminary results, however, suggest that a Monte Carlo method 

could offer a viable means of selecting environmental predictors for MaxEnt models that is 

amenable to parallelization and scalable to large data sets, including externally-stored 

collections. This points to the possibility of near-real-time multiprocessor implementations 

that could enable broader and more exploratory use of global climate model outputs in 

environmental niche modeling and aid in the discovery of viable predictors. Next steps will 

focus on implementing this capability in NASA’s Advanced Data Analytics Platform 
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(ADAPT) science cloud, evaluating the method’s behavior using products generated by the 

Goddard Earth Observing System, Version 5 (GEOS-5) modeling system, extending 

stochasticity to feature class and regularization multiplier selection, developing automatic 

stopping rules, and evaluating the method’s effectiveness in addressing research questions 

relating to climate change influences on Cassin’s Sparrow abundance and distribution.  
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