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 2 

Abstract 20 

The challenges of defining the biofilm phenotype has been clear for decades. Many biomarkers for 21 

biofilm are known, but methods for identifying these are often invasive and/or complicated. These 22 

methods often rely on disrupting the biofilm matrix or examining virulence factors and compounds, 23 

which may only be expressed under certain conditions. 24 

We used microcalorimetric measurements of metabolic energy release to investigate whether 25 

unchallenged, planktonic Pseudomonas aeruginosa displayed differences in metabolism compared 26 

to surface-bound and non-attached biofilms.  27 

The pattern of energy release observed in the recorded microcalorimetric thermograms clearly 28 

depended on growth state, though the total energy expenditure was not different between growth 29 

states. To characterize these differences, we developed a classification pipeline utilizing machine 30 

learning algorithms to classify growth state, based on the observed patterns of energy release. With 31 

this approach, we could with high accuracy detect the growth form of blinded samples. To challenge 32 

the algorithm, we attempted to limit the amount of training data. By training the algorithm with only 33 

a single data point from each growth form, we obtained a mean accuracy of 90.5% using two principal 34 

components. Further validation of the classification pipeline showed that the approach was not limited 35 

to P. aeruginosa but could also be used for detection of gram-positive Staphylococcus aureus biofilm.  36 

We propose that microcalorimetric measurements, in combination with this new quantitative 37 

framework, can be used as a non-invasive biomarker to detect the presence of biofilm.  38 

These results could have a significant potential in clinical settings where the detection of biofilms in 39 

infections often means a different outcome and treatment regime for the patient. 40 

 41 

  42 
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Introduction  43 

Bacteria residing in biofilms are thought to be phenotypically distinct from their planktonic 44 

counterparts. Many publications have identified specific biomarkers to characterize this distinction,  45 

such as differential gene expression (Folsom et al., 2010), secretion of extracellular polymers 46 

(Costerton et al., 1995; Goltermann and Tolker-Nielsen, 2017), virulence factors (Hauser, 2011), 47 

metabolism (Solokhina et al., 2017) and increased tolerance towards antibiotics and host response 48 

(Bjarnsholt et al., 2013; Ciofu and Tolker-Nielsen, 2019). However, physical aggregation (observed 49 

by microscopy) and increased antibiotic tolerance are the most dominant and consistent of these 50 

biofilm-associated phenotypes. Traditionally, biofilm research has focused on surface-attached 51 

biofilms, but there is an increasing focus on embedded and non-attached biofilm aggregates (Secor 52 

et al., 2018; Alhede et al., 2011; Kragh et al., 2016). In the majority of biofilm-related infections, 53 

bacteria are found as non-attached aggregates embedded in host material, such as slough or mucus 54 

(Bjarnsholt et al., 2013). The difference in growth geometry between planktonic bacteria, surface-55 

attached, and non-attached biofilms may result in distinctive microenvironments (Stewart and 56 

Franklin, 2008; Stewart et al., 2016; 2019), which could differentially impact the metabolic activity 57 

and number of bacteria aggregating (Sønderholm et al., 2018) and vice versa.  58 

The increased tolerance of biofilms toward antibiotics is frequently attributed to a lower metabolic 59 

rate (Kolpen et al., 2017), upregulated efflux pumps (Frimodt-Møller et al., 2018; Bartell et al., 60 

2019), protection by matrix components (Tseng et al., 2013; Cao et al., 2016) or SOS responses 61 

(Nguyen et al., 2011; Bernier et al., 2013), and is determined by direct exposure to antibiotics and 62 

measure of killing either by plating and enumeration of surviving colony forming units (CFU) or 63 

live/dead staining.  The CFU method, however, can be slow and prone to biases, such as counting 64 

aggregates as single CFUs or false negatives due to the induction of viable but non-culturable state 65 

of the bacteria (Kvich et al., 2019).  Similarly, live/dead staining may overestimate the proportion of 66 

dead cells, due to the binding of propidium iodide to eDNA (Rosenberg et al., 2019). 67 

A measurable biomarker is needed in order to move the field forward and improve our understanding 68 

of the difference between bacteria living as single-cells or in biofilms (Jefferson, 2004). 69 

Non-invasive measurements of activity in biofilms are not trivial, as many current methods rely on 70 

disrupting the biofilm and altering the chemical microenvironment, though some genetic (Poulsen et 71 

al., 1993; Kragh et al., 2014) and chemical reporters do exist (Corte et al., 2019). Most of these 72 

methods, however, only cover part of the metabolic output linked to, e.g., growth or production of 73 

molecules produced under certain conditions (Whooley and McLoughlin, 1982; Poulsen et al., 1993). 74 
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Since metabolic activity seems to play a distinguishing role between bacteria in planktonic- and 75 

biofilm states, a fine-scale measurement of energy release could be a biomarker of interest.  76 

Microcalorimetry has been used in material research for decades, but is gaining interest in life 77 

sciences (Braissant et al., 2015; Baldoni et al., 2009; Butini et al., 2019; Tellapragda et al., 2020). 78 

This technique records energy release in the form of heat flow, providing a real-time measurement of 79 

the population-level metabolic activity in a sample (Braissant et al., 2015; Wadsö et al., 2017). 80 

In the present study, we examined the heat flow of planktonic bacteria (PC) and biofilm-associated 81 

bacteria (Fig. 1) using non-invasive, isothermal microcalorimetry. Due to the increased focus on non-82 

attached biofilm aggregates, we also compared the metabolism of non-attached aggregates embedded 83 

in alginate beads (AB) with surface-attached biofilms (SB) (Alhede et al., 2011; Sønderholm et al., 84 

2017b).  85 

We aimed to investigate whether bacteria growing in biofilms displayed distinct metabolic features 86 

compared to the planktonic state. 87 

 88 

Results 89 

Metabolic activity of alginate bead biofilms, surface-attached biofilms and planktonic culture 90 

After equilibration of the thermal signal (~30 min), all three models containing P. aeruginosa showed 91 

signal increases. Thermograms from all models showed 2-3 peaks in heat flow, but the position and 92 

magnitude of the peaks varied between models.  93 

The accumulated energy in each well was 2.19 J ± 0.17 (mean ± SD) and did not vary within or 94 

between conditions (p>0.05; One-way ANOVA test). In two follow-up experiments, we tested 95 

whether the cease in heat flow was related to electron acceptor or -donor limitation by 1) opening the 96 

wells to let in new atmospheric air after the thermogram had reached zero after which we observed a 97 

second peak, and 2) by adding 10mM NO3-. When this was done, the total energy increased by ~35% 98 

for the alginate embedded biofilm, and we concluded that, under the specifications used for these 99 

experiments, the heat flow reached zero due to electron acceptor limitation rather than carbon source 100 

limitation. 101 

The recorded thermograms displayed some variation in temporal dynamics as well as in the 102 

magnitude of the heat flow within experiments. We tested possible explanations and inoculated 103 

increasing amounts of bacteria into alginate beads and as planktonic cells to test if the variation could 104 

be explained by bacterial concentration. These variations resulted in both lateral and horizontal shifts 105 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.15.203828doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.203828


 5 

in the position of peaks (Fig. S3) as also shown for other microbes previously (Braissant et al., 2015; 106 

Wadsö et al., 2017). 107 

The number of viable bacteria in each well were generally not statistically different between models 108 

or preincubation times neither at the start or at the end of experiments (p>0.05; Tukey's multiple 109 

comparison test), though the 24h and 48h preincubated alginate beads contained more bacteria than 110 

the other models at the start of the experiment but not at the end (p<0.01; Tukeys multiple comparison 111 

test) (Fig. S1).  112 

 113 

Numerical model of metabolic output 114 

To investigate the systematic differences in the thermograms between the different growth-models, 115 

we fitted the experimental data to a mathematical model, assuming that energy release was non-116 

linearly correlated to bacterial concentration (competition for space) and O2 availability. Metabolic 117 

curves of P. aeruginosa were then calculated based on the theoretical bacterial concentration curves. 118 

To simplify such a model, we ignored the differences in spatial organization and modeled the system 119 

as a well-mixed suspension, which is only valid for the planktonic culture at t=0. The parameters for 120 

the biofilm growth forms are thus to be seen as effective. For mathematical details on the model used, 121 

see Supporting Information. 122 

We solved the coupled system of differential equations numerically to theoretical curves of 123 

metabolism (Fig. 3). We expect that many of the parameters are shared between the datasets, since 124 

we used the same species and strain of bacteria. We divided the data into four categories: AB 125 

inoculated at t = 0 hours, AB at t = 24 and 48 hours, PC, and SB and performed simultaneous fits on 126 

the four different growth-forms, forcing specific parameters to be shared (Table 1). The model 127 

represented the data well, although it did not describe the smaller secondary peaks observed. These 128 

may be a product of switching to electron acceptors with lower energy yields such as NO3- or pyruvate 129 

which were not included in this model (see Discussion). The effective parameters obtained from the 130 

fits are shown in Table 1. 131 

Evidently, the growth-model influences physiological parameters where, e.g. bacteria pre-inoculated 132 

in alginate beads showed higher death rates compared to when they were grown as planktonic culture 133 

and as a surface biofilm. The growth rate of AB(0) was lower than all the remaining conditions and 134 

also displayed the most substantial growth non-linearity evident from the different shape of the 135 

thermogram compared to the other growth-forms that were pre-incubated. 136 

 137 
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Cluster analysis 138 

To assess whether thermograms of P. aeruginosa grown in different models showed distinct 139 

clustering, we made principal component analysis (PCA) with no scaling, which showed clear 140 

separation of the different models across the two first principal components (Fig. S2). Thermograms 141 

were recorded in models with varying times of preincubation of 0, 24, and 48 hours. In most cases, 142 

the model seemed to separate the thermograms as opposed to the preincubation time. However, the 143 

newly inoculated alginate beads (AB0) clustered independently of all other models and preincubation 144 

times primarily along the first principal component, which accounted for 55.4 % of the total variance. 145 

Interestingly, it seems that the switch from single-cell lifestyle to biofilm is explained by the second 146 

principal component, which accounted for 22.9 % of the total variance.    147 

 148 

Machine learning algorithm - Framework for detection of growth mode 149 

To demonstrate the feasibility of using the obtained signals to distinguish the mode of growth, we 150 

applied machine learning algorithms to classify samples.  151 

Again, we divided the data into four categories: AB inoculated at t = 0 hours, AB at t = 24 and 48 152 

hours, PC, and SB. Using a standard 50 % train-test split on the data, we employed a Gaussian Process 153 

with radial basis kernels and, with limited modifications, immediately obtained 100 % classification 154 

accuracy on the data. This demonstrated the quality of the data for segmenting the mode of growth. 155 

To challenge this, we tried to limit the training data and see how well a Gaussian Process could do 156 

by only training with a single data point of each category. A major hindrance of using just a single 157 

data point of each category is that there is no information of data variation. To compensate for this, 158 

we augmented the data point with warped versions of itself. In particular, we employed smooth 159 

spatio-temporal warping kernels that distort the original signals in amounts that resemble the 160 

variations found in the original datasets (for further detail see SI). 161 

Using just a single data point from each growth-form, we achieved a mean accuracy of 90.5 % using 162 

two principal components (classification accuracy for each category was 0.95 (AB0), 0.87 163 

(AB24,48), 0.88 (PC), and 0.94 (SB)). When we expanded to 9 data points from each growth form, 164 

the accuracy increased to 98 %, on average. Using 20 % of the entire dataset, we obtained 100 % 165 

accuracy on the data set directly. 166 

 167 

 168 

 169 
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Validation of classification approach 170 

To further validate our method for classifying planktonic from biofilm growing bacteria, we tested 171 

the method on the gram-positive coccoid bacterium Staphylococcus aureus. Metabolic thermograms 172 

showed overall different shapes than displayed by P. aeruginosa (Fig. S6). We again tried to classify 173 

the samples using the machine learning algorithm using the same growth-form classifications as for 174 

P. aeruginosa (Fig. 5). Here, the clusters were slightly different from what was observed for P. 175 

aeruginosa. AB24, and -48 grouped independent of all other conditions but closer to AB0 than seen 176 

for P. aeruginosa. Surprisingly, the planktonic cultures grouped together with the 24 h preincubated 177 

surface biofilm while the 48 hour preincubated surface biofilm grouped closer with the other 178 

“biofilm-states”. The average classification accuracy for each category was 0.95 (AB0), 0.96 179 

(AB24,48), 0.56 (PC), and 0.39 (SB). 180 

 181 

Discussion  182 

Since the first descriptions of biofilm in modern microbiology around 40 years ago (Geesey et al., 183 

1977; Høiby, 1977; Jendresen and Glantz, 1981; McCoy et al., 1981), considerable scientific research 184 

has focused on discovering which factors define a biofilm. Many biomarkers have been proposed, 185 

such as the irreversible attachment to a surface, deployment of quorum sensing (QS) systems, overall 186 

altered transcription profile, and increased antibiotic tolerance. However, the only consistent 187 

“biofilm-phenotypes” are physical aggregation (attached as well as non-attached) and increased 188 

antibiotic tolerance. The mechanism that governs this increased tolerance is continuously debated 189 

and has, for some types of antibiotics, been linked to protection by matrix components (Tseng et al., 190 

2013; Cao et al., 2016; Goltermann and Tolker-Nielsen, 2017) or slow growth of the bacteria (Pamp 191 

et al., 2008). 192 

But still, the classification of planktonic and biofilm growing bacteria is a complex task both 193 

experimentally and diagnostically. Evidently, we do not have other direct biomarkers than 194 

microscopic visualization to distinguish single cells and biofilms, which is impractical for routine 195 

purposes, such as in diagnostics. Here, we show that microcalorimetric measurements of metabolic 196 

energy release combined with a novel data analysis approach were able to differentiate the two growth 197 

forms. 198 

Calorimetry has traditionally been used in materials research, using either isothermal titration 199 

calorimetry to determine, e.g. the Gibbs free energy (∆G) of the binding of ligands to macromolecules 200 

or as differential scanning calorimetry to assess the stability of, e.g. proteins (Krell, 2008). In life 201 
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sciences, isothermal microcalorimetry has been used to discriminate treatments or bacteria (Solokhina 202 

et al., 2017; Butini et al., 2019) and also to estimate minimum inhibitory concentrations (MIC) of 203 

antibiotics (Tellapragda et al., 2020). Simplistic measures such as maximum heat flow, total energy 204 

release, time to peak, etc. might be sufficient in some cases, but also ignore fundamental differences 205 

in the shape of the thermograms that may be related to characteristic metabolic processes. 206 

 207 

Metabolic differences between single cells and biofilms 208 

The total energy in each well was not different between the models and is ultimately linked to either 209 

the availability of electron acceptors or -donors for respiration in the sealed well and we found total 210 

released energy similar to what was seen before (Braissant et al., 2015). Here we showed that the 211 

cease in metabolism was related to electron acceptor- rather than electron donor availability by 212 

supplementing with NO3-. P. aeruginosa is able to grow anaerobically with high biomass yield on 213 

NO3- (Strohm et al., 2007; Line et al., 2014) and further on arginine and pyruvate fermentation 214 

(Eschbach et al., 2004; Schreiber et al., 2006) and reduction-oxidation reactions of self-produced 215 

phenazines (Price-Whelan et al., 2007). This supports the current setup for studying clinical biofilm 216 

where multiple studies have showed that bacterial metabolism is halted by electron acceptor 217 

availability (Kragh et al., 2014; Jensen et al., 2017) rather than carbon source. 218 

We developed a numerical model that allows us to guess about the determining factors during growth. 219 

In this model, we chose to make it as simple as possible and only include two parameters (growth 220 

and O2 consumption) to see how much of the data could be explained by these simple factors. By 221 

making global fits where some parameters were kept constant between the growth-models (Table 1), 222 

the numerical model was able to explain a surprisingly high proportion of the thermograms by only 223 

fitting growth/die rates, initial concentration of bacteria, and a growth nonlinearity constant Ka. All 224 

fits had R2 values of >0.9 and, not surprisingly, the fit for the planktonic culture was highest, since 225 

the model assumed a homogenous distribution of cells.     226 

Such simple models cannot capture the complexity of the myriad of different metabolic pathways 227 

that P. aeruginosa can employ (Sønderholm et al., 2017a). Therefore, the secondary peak was not 228 

captured well by the model. This peak may be linked to a switch to alternative and lower yield 229 

metabolism as a response to the deprivation of O2 which is known to initiate the transcription of a 230 

suite of different genes (Guest, 1992) regulated by the concentration of different electron acceptors 231 

using e.g., FNR-type regulators (Unden and Schirawski, 1997). Additionally, the slow growth of 232 

biofilms is not necessarily equivalent to a low metabolic activity, as part of the metabolic energy will 233 
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be used for maintenance and other growth unrelated processes (Kiviet et al., 2014; Monod, 1949; 234 

Sherman and Albus, 1924) not accounted for by this model. The numerical model suggested that P. 235 

aeruginosa grown in alginate beads was associated with higher death rates than the other models. For 236 

simplicity, we used the term death rate, but it might better be explained by a switch to an inactive 237 

state,  as it has previously been shown that bacteria can resume growth after prolonged starvation and 238 

electron acceptor depletion (Kvich et al., 2019).   239 

Interestingly, it seems that there are also fundamental metabolic differences between surface-attached 240 

and embedded biofilms. From this study, the mechanism by which they differ remains speculative 241 

but could be related to the differences in resource stratification experienced by bacteria in the different 242 

models. In the surface attached biofilm, a thin layer of cells was adherent to the bottom and sides of 243 

the well, and they will experience a less steep gradient of electron acceptor and carbon source. As a 244 

result of the more pronounced resource gradient in the alginate beads, a gradient of individual 245 

aggregate sizes is seen from the bead edge toward the center (Sønderholm et al., 2017b) with free 246 

space between aggregates. It has been shown that such zonation can create individual compartments 247 

with distinct pharmacokinetics (Christophersen et al., 2020) and we speculate that the 248 

microenvironmental characteristics could also cause distinct metabolic compartments (Kirketerp-249 

Møller et al., 2020). 250 

 251 

Machine learning algorithm differentiates growth form 252 

To analyze fundamental differences in the thermograms, we performed PCA analysis to investigate 253 

if clustering between groups existed (Fig. S2). From the PCA plot, it was evident that the three 254 

different growth forms had distinct signatures. This is a novel way of analyzing microcalorimetric 255 

data where the dimensionality of raw signals is reduced while minimizing information loss. To 256 

explore if we could use these signals as a potential “biofilm-biomarker” we designed an algorithm to 257 

analyze raw microcalorimeter signals. We used a warping function technique (Fig. S4) for correcting 258 

signals that vary in temporal dynamics, as taking the average of such signals will produce a smoothed-259 

out version with none of the original features. In addition, we also used a warping function to correct 260 

for the difference in magnitude of heat flow signals. The warping in two dimensions allows for 261 

comparing more fundamental differences in the shape of the thermograms and not only use predefined 262 

parameters to describe differences or similarities with the risk of missing characteristic metabolic 263 

features.  264 
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By combining the dynamic warping approach and data augmentation, the variation of day to day 265 

experiments and small operator differences are widely imitated by producing variance by multiple 266 

iterations making the algorithm more robust. Resultantly, the algorithm was able to accurately 267 

classify each sample into the correct category for P. aeruginosa. The algorithm was designed using 268 

the thermograms of P. aeruginosa and was validated on S. aureus using the same classification 269 

categories into the specific growth-models. As these two microbes are distinct in both their 270 

metabolism, morphology and cell wall composition (gram positive vs negative), we did not expect 271 

them to fall into the exact same categories. However, there still seems to be a separation between the 272 

“biofilm-state” and single cell state for S. aureus except for the 24 h preincubated surface biofilm that 273 

clustered closer to the planktonic cultures. The algorithm was trained with a data point from the 24 h 274 

preincubated surface biofilm which resulted in the poor classification accuracy for the combined 275 

SB(24,48) category. This could have been accounted for by splitting this data into two separate 276 

categories. Similarly, the PC category overlaps with the SB category. From this study, it is unknown 277 

why the 24 h preincubated surface biofilm share more metabolic features with the planktonic culture 278 

but we speculate that S. aureus surface biofilms could need more time to change their metabolism 279 

into a “mature” biofilm phenotype than P. aeruginosa. 280 

 281 

Conclusions 282 

Recently, it was shown that different bacterial species, organisms, and tissues displayed visually 283 

distinct thermograms (Braissant et al., 2015). Here, we propose a quantitative framework that could 284 

be used to classify different microbes and tissues based on their metabolic flux profiles. However, it 285 

is essential to note that the algorithm in its current form is a proof of concept that was developed 286 

using in vitro data. In e.g., infections, there will most likely be a mix of not only different species but 287 

also a mix of single cells and aggregates. The ability of our approach to differentiate such situations 288 

remains to be tested but we speculate that sophisticated analysis can successfully decipher such 289 

complex signals, similar to the process of spectral deconvolution. 290 

Using our non-biased algorithm directly on the raw microcalorimetric data, we have elucidated that 291 

the specific heat flow of a bacterial culture reveals whether it is planktonic or biofilm growing which 292 

may be used as a biofilm biomarker. The biomarker can potentially be used as a diagnostic tool 293 

detecting the presence of different bacterial species and their growth state. Additionally, the analysis 294 

approach can also be used generally to classify differences in thermograms. 295 
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Materials and methods 296 

Strains and growth conditions 297 

We used a wild type P. aeruginosa, PAO1 strain obtained from the Pseudomonas Genetic Stock 298 

Center, ECU, USA (strain PAO0001) and a wild type S. aureus strain (NCTC8325) for 299 

microcalorimetric measurements. For microscopy, we used a PAO1 tagged with a stable green 300 

fluorescent protein (GFP) constitutively expressed by plasmid pMRP9 (Bjarnsholt et al., 2005). All 301 

experiments were performed at 37 °C in R2A broth (Lab M Ltd, UK) supplemented with 0.05 M 302 

Tris-HCl buffer (pH = 7.6) and 0.5 % glucose (henceforth mentioned as R2A media). Overnight (ON) 303 

cultures were started according to (Kragh et al., 2017) in R2A media.  304 

 305 

Preparation of planktonic cultures, surface-attached biofilms, and alginate beads 306 

All samples were prepared inside plastic inserts (non-activated calWells, Symcel, Sweden). For 307 

surface-attached biofilms, the ON culture was diluted to a final optical density (OD450) of 0.005 with 308 

fresh R2A media. A 200 µL aliquot of diluted culture was inoculated into each insert, covered with 309 

parafilm, and incubated for either 24 or 48 hours at 37 °C, 120 rpm. This allowed biofilm to develop 310 

on the sides and bottom of the insert. Each insert was then washed with saline (0.9% NaCl) to remove 311 

planktonic biomass. After washing, 200 µL fresh R2A media was added and the insert was positioned 312 

in the calPlate (Symcel, Sweden). 313 

For planktonic cultures, the ON culture was filtered through a sterile, syringe filter (ɸpore = 10µm) to 314 

remove aggregated bacteria. The filtered culture was then diluted to an OD450 of 0.005 with fresh 315 

R2A media. An aliquot of 200 µL was added to each insert and positioned in the calPlate (Symcel, 316 

Sweden). 317 

Alginate beads containing bacteria were produced as previously described (Sønderholm et al., 318 

2017b). Alginate beads were produced by mixing seaweed alginate (2% w/v) (Protanal LF 10/60 FT; 319 

FMC Biopolymer, Norway) with an ON culture adjusted to an OD450 of 2 to a final OD450 of 0.1. 320 

Beads were formed by extrusion dropping through a 21-gauge needle placed 3 cm above the surface 321 

of a stirred 0.25 M CaCl2 solution and left to harden for 1 h, producing beads of ɸ = 2.4 mm 322 

(Sønderholm et al., 2017b). Beads were rinsed in 0.9% saline and transferred to prewarmed (37 °C) 323 

R2A media. The beads were incubated in R2A media at 100 rpm at 37 °C for either 0, 24, or 48 hours. 324 

After incubation, beads were gently rinsed in 0.9 % saline to remove non-embedded cells from the 325 

bead surface. A single bead was then placed in each insert, the insert was filled with 190 µL fresh 326 

R2A media, resulting in a final volume of 200 µL in the insert. The insert was then positioned in the 327 
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calPlate (Symcel, Sweden). Microcalorimetric measurements of S. aureus were performed identically 328 

to P. aeruginosa, but with Mueller-Hinton broth containing with 10mM KNO3 instead of R2A 329 

medium. 330 

           331 

Microcalorimeter procedure 332 

Microcalorimetric measurements were conducted according to the manufacturer’s procedures and 333 

guidelines (Symcel, Sweden) and as previously described (Braissant et al., 2015; Wadsö et al., 2017). 334 

Each plastic insert was placed inside sterile, titanium cylinders with forceps. Each cylinder was sealed 335 

with a titanium lid and tightened to identical torque (40 cNm). A rack of 48 cylinders, including 32 336 

samples and 16 references (filled with sterile media), was inserted into the microcalorimeter 337 

(calScreener, Symcel, Sweden) running the software calView 1.033. The rack was preheated in 338 

position 1 for 10 minutes, then moved to position 2 for 20 minutes before being moved into the 339 

measuring chamber. The wells were stationary during measurements and the system was allowed to 340 

equilibrate for approximately 30 minutes before stable signals were recorded. Measurements of heat 341 

flow (in µW) were recorded at a rate of 1 hertz. 342 

 343 

Numerical model 344 

We constructed a system of coupled differential equations and solved them numerically to theoretical 345 

curves of metabolism, assuming that the metabolic behavior was non-linearly dependent on bacterial 346 

concentration and the O2 availability in the wells. For details, please see Supporting Information. 347 

   348 

Machine learning algorithm 349 

We employed Gaussian Processes (Pedregosa et al., 2011) as the base machine learning algorithm. 350 

To augment single data points, we employed Gaussian warping functions. Briefly, we chose a small 351 

number M (M=5 here) and defined the warped signal of f(t), ∈ [0,T] as:  352 

𝑓#(𝑡) = 𝑓(𝑡 + ∑ 𝑎+𝑤+(𝑡)) + ∑ 𝑏+𝑤+(𝑡).
+/0

.
+/0   353 

where 354 

𝑤+(𝑡) =
𝑒
2
32+4.

56447
8

∑ 𝑒
2
3294.

564.7
8

9

 355 
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Here {ai} and {bi} are control points that determine smooth time shifts and smooth value shifts, 356 

respectively. These 2 × M values can be chosen to map one curve onto another as best as possible. In 357 

this sense, this is similar to a soft dynamic time warping with added value warping. See Supporting 358 

Information for details. 359 

These warping functions were also used to generate augmented data for the training of the algorithm. 360 

In particular, we drew random numbers for {ai} and {bi}. The result of this is shown in Fig. S5. 361 

 362 

Statistics 363 

ANOVAs and Tukey’s Multiple Comparison tests were performed in Prism (v. 7.0 GraphPad, USA). 364 

Principal component analysis was made in R (v. 3.6.3). Numerical model, and the machine learning 365 

algorithm was made in Python. CalScreener measurements were conducted with four technical 366 

replicates and four independent biological replicates from experiments conducted at four separate 367 

time points for P. aeruginosa and 4 technical replicates and three independent biological replicates 368 

from experiments conducted at three separate time points for S. aureus.  369 
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Figure legends: 532 

Figure 1. Schematic drawing of the experimental conditions. Pseudomonas aeruginosa or 533 

Staphylococcus aureus was either grown as planktonic culture (PC), as surface-attached biofilm (SB), 534 

or as aggregates embedded in alginate beads (AB). The three models were measured in an isothermal 535 

microcalorimeter with 0h, 24h or 48h preincubation (surface-attached biofilm = only 24h and 48h 536 

preincubation). Microscope images were acquired on a confocal laser scanning microscope (Zeiss 537 

880LSM) using a strain of PAO1 with constitutively expressed GFP.  538 

 539 

Figure 2. Example of thermograms for Pseudomonas aeruginosa grown A) in alginate beads, B) as 540 

planktonic culture, and C) as a surface biofilm. Colors correspond to preincubation times of 0h (red), 541 

24h (green) and 48h (blue).   542 

 543 

Figure 3. Numerical model of metabolic output of Pseudomonas aeruginosa with non-linear 544 

dependencies on the concentration of bacteria and O2. Some parameters were kept constant between 545 

models, while others were allowed to be fitted (see Table 1 and main text). The main graph shows 546 

planktonic culture data (PC). Insets show fit to alginate bead biofilm (AB) and surface biofilm (SB). 547 

Blue circles represent empirical data, while orange lines are the fitted numerical model. R2 values are 548 

shown in Table 1. 549 

 550 

Figure 4. Machine learning classification algorithm developed for thermograms of Pseudomonas 551 

aeruginosa grown in alginate beads (AB), in planktonic culture (PC), and as surface biofilms (SB) 552 

with various preincubation times (0, 24, 48 hours).  Large, solid circles represent the data points that 553 

were used to train the algorithm; small, solid circles represent the empirical data, and crosses represent 554 

the augmented data created by the warping functions. Contours show different categories where the 555 

gradient colors of the contours correspond to probability. 556 

 557 
Figure 5. Machine learning classification algorithm applied on thermograms of Staphylococcus 558 

aureus grown in alginate beads (AB), in planktonic culture (PC), and as surface biofilms (SB) with 559 

various preincubation times (0, 24, 48 hours).  Large, solid circles represent the data points that were 560 

used to train the algorithm; small, solid circles represent the empirical data, and crosses represent the 561 

augmented data created by the warping functions. Contours show different categories where the 562 

gradient colors of the contours correspond to probability. 563 
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Table 1:  564 

Fixed parameters among all fits in the numerical model 565 
Yield 

1/Y (h-1) 
Unit conversion 

a (µW) 
Non-growth O2 consumption  

e 
Exponent  

g r 

O2 non-linearity  
kc 

Asymmetry exponent  
gc 

0.13 6.2 0.0020 3.5 36 2.7 

Variable parameters between fits in the numerical model 566 
  Growth rate  

a (h-1) 
Death rate  
b (h-1) 

Initial concentration  
b(0) 

Non-linearity  
Ka 

Goodness of fit 
R2 

AB (0) 0.28 0.14 0.064 1.40 0.920 
AB (24, 48) 0.96 0.25 0.23 0.65 0.970 
PC (0, 24, 48) 0.89 0.045 0.039 0.64 0.993 
SB (24, 48) 0.87 0.049 0.12 0.82 0.990 
 567 

  568 
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Fig. 4 581 
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Fig. 5 584 
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