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 2 

Abstract 26 

Tumor-specific T cells likely underpin effective immune checkpoint-blockade 27 

therapies. Yet, most studies focus on Treg cells and CD8+ tumor-infiltrating 28 

lymphocytes (TILs). Here we study CD4+ TILs in human lung and colorectal cancers 29 

and observe that non-Treg CD4+ TILs average more than 70% of total CD4+ TILs in 30 

both cancer types. Leveraging high dimensional analyses including mass cytometry 31 

and single-cell sequencing, we reveal that CD4+ TILs are heterogeneous at both gene 32 

and protein levels, within each tumor and across patients. Consistently, we find 33 

different subsets of CD4+ TILs showing characteristics of effectors, tissue resident 34 

memory (Trm) or exhausted cells (expressing PD-1, CTLA-4 and CD39). In both 35 

cancer types, the frequencies of CD39– non-Treg CD4+ TILs strongly correlate with 36 

frequencies of CD39– CD8+ TILs, which we and others have previously shown to be 37 

enriched for cells specific for cancer-unrelated antigens (bystanders). Ex-vivo, we 38 

demonstrate that CD39– CD4+ TILs can be specific for cancer unrelated antigens, 39 

such as HCMV epitopes. Overall, our findings highlight that CD4+ TILs cells are not 40 

necessarily tumor-specific and suggest measuring CD39 expression as a 41 

straightforward way to quantify or isolate bystander CD4+ T cells.  42 
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Graphical abstract 43 
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Introduction 46 

Numerous studies have established the importance of T cells in controlling 47 

cancer (1). Nonetheless, tumors can escape this immune surveillance by diverse 48 

mechanisms (2). As various forms of cancer therapy exist, immunotherapy is rapidly 49 

evolving and is proved to be remarkably effective at restoring T cell mediated 50 

immune responses. Strategies include immune checkpoint blocking receptors (i.e anti-51 

CTLA4 or anti-PD1 (3), autologous T cell transfer (4), as well as therapeutic cancer 52 

vaccines (5). However, the efficacy of these therapies is unpredictable and only some 53 

patients respond well to the treatments (6). Therefore, a better understanding of T cell 54 

biology – CD8 and CD4 – in the tumor microenvironment is urged to improve cancer 55 

therapies. Recently, we showed in the context of human colorectal and lung cancers 56 

that CD8+ tumor-infiltrating lymphocytes (TILs) are not only specific for tumor 57 

antigens but can also recognize a wide range of cancer-unrelated epitopes (called 58 

bystander CD8+ TILs) (7). We suggested that measuring CD39 expression could be a 59 

straightforward way to quantify or isolate bystander CD8+ T cells and could be a 60 

potential biomarker for immunotherapy (7). These observations have been confirmed 61 

in different cancer types (8-11). 62 

 Although CD4+ TILs are also involved in tumor responses, most studies have 63 

focused on the role of FoxP3-expressing regulatory T cells (Treg) in cancer (12-14). 64 

Treg cells suppress tumor immunity by various mechanisms including: 1) Disruption 65 

of the metabolic pathway (i.e. CD39 expression), 2) Modulation of dendritic cells 66 

function (i.e. CTLA-4 expression), 3) Production of anti-inflammatory molecules (i.e. 67 

IL-10, TGFβ), 4) Induction of apoptosis (15). Abundant Treg infiltration into tumors 68 

is strongly associated with poor prognosis in multiple cancer types (13, 16). Because 69 

of their deleterious role, several molecules have been developed to target specifically 70 

these cells in human cancer (e.g. anti-CTLA-4, anti-CD25) (17-21). 71 

Importantly, a large proportion of CD4+ TILs are made up of non-Treg cells. 72 

Studies in mice have shown that these cells play a key role in anti-tumor responses 73 

(22). By producing IFNγ, they induce an up-regulation of MHC class I and II 74 

expression by tumor cells and dendritic cells (DC) (23). Production of IFNγ by CD4+ 75 

TILs also induce expression of chemokines supporting homing of CD8+ T cells to the 76 

tumor site (e.g. CXCL10) (23). Activated CD4+ T cells express CD40L by which they 77 

can activate DC, and support CD8+ T cells priming and memory formation (23). They 78 
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can have a cytotoxic function and directly kill tumor cells as well (24). Based on these 79 

observations, developing CD4-based therapeutic vaccination and/or adoptive cell 80 

therapies by targeting tumor-specific CD4+ T cells would be essential (22, 25-28). 81 

The limited number of tools that allow studying non-Treg CD4+ TILs (i.e. MHC class 82 

II tetramers, in-vitro assays) had so far made this population poorly characterized, 83 

compared to CD8+ TILs and Treg cells. Uncovering the role of these cells in the 84 

tumor microenvironment would thus help design new strategies to manipulate them 85 

and improve immunotherapy efficiency. Here we study CD4+ TILs in human 86 

colorectal cancer (CRC) and non-small cell lung cancer (NSCLC) using 87 

complementary high-dimensional single-cell analysis (single-cell sequencing, mass-88 

cytometry) and in-vitro stimulation assay. Our findings highlight that non-Treg CD4+ 89 

TILs are heterogeneous and can be specific for cancer unrelated antigens, just as 90 

observed for CD8+ TILs, and these cells lack expression of CD39. Taken together, we 91 

hypothesize that CD39 expression is a straightforward way to quantify or isolate 92 

bystander CD4+ TILs, thus opening new diagnostic and therapeutic avenues.  93 
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Results 94 

Single-cell Protein/mRNA sequencing reveals the heterogeneity of CD4+ TILs. 95 

In order to comprehensively examine CD4+ tumor infiltrating T cells (TILs), we 96 

leveraged the use of a recent single-cell sequencing technology that allows 97 

simultaneous analysis of surface protein and mRNA expression at the single-cell level 98 

(29, 30) (Figure 1A). The surface protein antibodies panel for instance included a 99 

broad range of markers associated with T cell differentiation, activation, tissue 100 

residency, and dysfunction/exhaustion status (co-stimulatory and co-inhibitory 101 

receptors). Prior to the single-cell experiment, tumor cells (Epcam+), myeloid cells 102 

(CD14+) and B cells (CD19+) were depleted (See Methods). To assess the 103 

composition of the total sequenced cells, we performed a Uniform Manifold 104 

Approximation and Projection (UMAP) based on surface protein expressions (31). 105 

UMAP is a dimension reduction algorithm that performs a pair-wise comparison of 106 

the cellular phenotypes to optimally plot similar cells close to each other (31). For our 107 

analysis, 48 surface parameters, or dimensions, were reduced into two dimensions 108 

(UMAP1 and UMAP2). This visualization allowed us to easily identify a population 109 

of contaminating tumor cells (CD45–), NK cells (CD3–), CD8+ TILs (CD3+ CD8+) 110 

and our cells of interest: CD4+ TILs (CD3+ CD4+) (Figure 1B, 1C and S1A). The 111 

phenotypic profile that we observed for these cells was depicted in a heatmap 112 

showing expression intensities of surface markers (Figure 1D). As for the CD4+ TILs, 113 

we observed a first subset characterized by markers associated with Treg cells 114 

(CD25+ CD39+ ICOS+ GITR+). Interestingly, the remaining CD4+ TILs could be 115 

divided based on their expression of CD39, a marker associated with chronic TCR 116 

stimulation (32)(Figure 1D and S1B). Based on their phenotypic difference, we 117 

studied each population at the transcriptomic level. As expected, the CD4+ subset 118 

defined phenotypically as Treg cells expressed their signature genes (i.e. FOXP3, 119 

CTLA4, DUSP4) (33). Interestingly, both Treg and CD39+ CD4+ TILs expressed 120 

IL32, a cytokine which enhances NK cell sensitivity and cytotoxicity against tumor 121 

cells (34). Furthermore, compared to CD39+, CD39– CD4+ TILs expressed more of 122 

TNF transcript, suggesting a non-exhausted profile. Our results did not show 123 

significant differences in IFNG, cytotoxicity or chemokine expression between the 124 

different subsets of CD4+ TILs (Figure 1E). 125 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.204172doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204172


 7 

Taken together, our results indicated that CD4+ TILs were composed of 126 

heterogeneous populations that could be divided into Treg, CD39+ and CD39– non-127 

Treg CD4+ T cells. Additional samples will be needed to validate these observations 128 

in other patients. 129 

 130 

CD4+ TILs are composed of a majority of non-Treg cells with a contrasted 131 

phenotypic profile. 132 

We next investigated whether the heterogeneity we observed were consistent across 133 

patients and different tumor types. For that purpose, we profiled a cohort of patients 134 

with Non-small cell lung cancer (NSCLC, n=28) and colorectal cancer (CRC, n=51). 135 

We developed a mass cytometry panel consisting of 38 heavy metal-labelled 136 

antibodies to identify and characterize CD4+ TILs with markers of tissue residency, 137 

activation and inhibitory receptors (Table S1).  We distinguished Treg and non-Treg 138 

cells based on the expression of FoxP3 (Figure 2A). With only 35% and 24% of CD8+ 139 

TILs in NSCLC and CRC respectively, the majority of CD3+ TILs were composed of 140 

CD4+ TILs (Figure 2B and 2C). Non-Treg CD4+ TILs accounted for a higher 141 

proportion of the CD4+ TILs as compared to Treg CD4+ TILs, with a mean frequency 142 

of 78.8% vs. 19% in NSCLC and 66% vs. 35% in CRC, supporting the importance of 143 

studying this population in tumor immune response (Figure 2B and C). All non-Treg 144 

CD4+ TILs displayed a memory or effector phenotype (CD45RO+ – 95.7%) and many 145 

expressed the activation/tissue residency marker CD69 (CD69+ – 77%), excluding a 146 

blood contamination for most of these cells (Figure 2D and S2A). Expression of 147 

activation markers and inhibitory receptors varied greatly in these cohorts, indicating 148 

an important phenotypic diversity of CD4+ TILs between patients (Figure 2D and 149 

S2A).  Non-Treg CD4+ TILs expressed co-stimulatory receptors, such as CD28, 150 

CD38, ICOS but only a small fraction expressed CD127 (17.1%). Interestingly, some 151 

non-Treg CD4+ TILs expressed CD25 (26.7%), suggesting that the use of CD25 and 152 

CD127 alone to identify Treg cells in the context of tumor infiltrates could lead to a 153 

contamination by non-Treg CD4+ TILs (i.e. Foxp3–) (Figure 2D, S2A and 2E). More 154 

interestingly, non-Treg CD4+ TIL cells also expressed hallmarks of “exhausted” cells 155 

at different levels between patients. Expression of inhibitory receptors associated with 156 

chronic antigen stimulation such as TIGIT (56.9%), PD-1 (71.6%), CTLA-4 (29.6%) 157 

suggested a role for these cells in tumor immunity (Figure 2D and S2A). Of note, 158 
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frequency of CD39+ non-Treg CD4+ TILs (38.2%) was very heterogeneous, ranging 159 

from 4.6% to 70%.  160 

After exploring the diversity of non-Treg CD4+ TILs across patients, we performed 161 

UMAP analysis to explore the heterogeneity of CD4+ TILs within individuals. In one 162 

example, we distinguished several cell clusters, illustrating a broad phenotypic 163 

heterogeneity (Figure 2E and S2B). We first identified a cell population with Treg 164 

cells features (FoxP3+, CD25+, CD127–, CTLA-4+). Among the non-Treg CD4+ TILs, 165 

we observed presence of multiple cell clusters expressing stimulatory and inhibitory 166 

markers at variable intensities. For instance, CD127 (a.k.a IL-7R) that promotes 167 

survival of effector cells, could only be found in some of the clusters. Within the cell 168 

clusters expressing CD39, we detected differential expression levels of inhibitory 169 

receptors such as PD-1, CTLA-4 and Ki-67 suggesting an ongoing antigen exposure 170 

and cell expansion (Figure 2E and S3).  171 

Overall, these data showed a high degree of phenotypic diversity among non-Treg 172 

CD4+ TILs within individual tumors and across patients. Phenotypic analysis showed 173 

that both effectors and exhausted cells were found at the same time in the same tumor. 174 

 175 

Cancer-unrelated non-Treg CD4+ TILs infiltrate tumor and lack CD39 176 

expression. 177 

As we and others have shown that cancer-unrelated bystander CD8+ TILs are 178 

abundant in cancer and phenotypically distinct (i.e. lack of CD39 expression) (7-9), 179 

we explored whether CD39– non-Treg CD4+ TILs could be also enriched for cancer 180 

unrelated antigen-specific cells. Strikingly, we observed an important heterogeneity 181 

for CD39 expression across both cohorts, with patients showing up to 95% of CD39– 182 

non-Treg CD4+ TILs and others showing less than 20% (Figure 3A, 3B and 3C). We 183 

performed a correlation analysis comparing frequencies of CD39– non-Treg CD4+ 184 

TILs with CD39– CD8+ TILs of the same patient (Figure 3B and 3C). In both tumor 185 

types, we observed that frequencies of bystander CD8+ TILs strongly correlate with 186 

the frequency of CD39– non-Treg CD4+ TILs. We hypothesized that if CD39– non-187 

Treg CD4+ TILs were bystander, they should express a different phenotypic profile. 188 

By looking at inhibitory receptors associated with chronic antigen stimulation, we 189 

observed a significantly lower expression of TIGIT, CTLA-4 and PD-1 on CD39– 190 

non-Treg CD4+ TILs as compared to their CD39+ counterparts (Figure 3D, 3E and 191 

S3). Functionally, CD39– non-Treg CD4+ TILs produced more of TNFα and IL-2, 192 
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suggesting that these cells are more functionally capable and less exhausted (Figure 193 

3F, 3G and S3).  194 

To confirm our hypothesis of bystander CD4+ TILs, we first screened tumor tissues 195 

with MHC class II tetramers specific for allergen, tumor antigens, EBV or Flu 196 

epitopes. Even though we detected these cells in blood after tetramer enrichment 197 

(Figure S4), we failed to detect them in tumor tissues (see Discussion). In order to 198 

bypass the use of tetramers to assess presence of CD4+ T cells specific for cancer 199 

unrelated antigens in the tumors, we optimized an activation-induced marker (AIM) 200 

assay to assess activation of CD4+ TILs stimulated with cancer-unrelated epitopes 201 

(here HCMV peptide pool, see methods)(35)(Figure 4A). By measuring the up-202 

regulation of both CD40L and CD69, we observed the presence of HCMV-specific 203 

CD4+ TILs from the tumors (Figure 4B). When compared with the paired CD4+ T 204 

cells from PBMC, we observed a higher frequency and fold change of HCMV-205 

specific cells in CD4+ TILs, showing that similarly to CD8+ TILs, cancer-unrelated 206 

CD4+ T cells infiltrate tumor tissues (Figure 4C and D). These cells also lacked CD39 207 

expression when analyzed together with total CD4+ TILs (Figure 4E), suggesting that 208 

the lack of CD39 could also be a straightforward marker to identify non-Treg cancer-209 

unrelated CD4+TILs.  210 
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Discussion 211 

Since the late 1990s, research has highlighted the central role of T cells in antitumor 212 

immunity (36). Notably, because of their ability to directly kill tumor cells and a 213 

better knowledge of MHC class I tumor antigens, much more attention has been 214 

dedicated to the role of CD8+ T cells (37-39). In the meantime, many studies have 215 

also elucidated the detrimental role of CD4+ Treg cells in antitumor immunity and put 216 

these cells at the center stage as immunotherapy targets (40). Our work brings to light 217 

that consistently large fractions of total T cells infiltrating the tumor are made up of 218 

non-Treg CD4+ T cells in both colorectal and lung cancer. Similar observation has 219 

been previously made in breast cancer (14). In lymph nodes, non-Treg CD4+ T cells 220 

support the priming of tumor-specific CD8+ T cells (41). In tumor microenvironment, 221 

these cells enhance the activity of CD8+ TILs by producing cytokines (i.e. TNFα, 222 

IFNγ) but can also act as effectors by eliminating tumor cells in a direct or indirect 223 

way (42, 43). Contrary to MHC class I which is expressed by tumor cells and presents 224 

tumor antigens to CD8+ TILs, MHC class II is usually not expressed (or expressed at 225 

low levels) by human tumor cells (44). However, we clearly observe an up-regulation 226 

of markers associated with chronic antigen exposure in non-Treg CD4+ TILs, such as 227 

Ki-67, PD-1, CTLA-4 indicating that these cells can be activated at the tumor site as 228 

well (3). We hypothesize that this activation might be mediated by antigen presenting 229 

cells, such as macrophages and dendritic cells. The distinct phenotype of non-Treg 230 

CD4+ TILs observed across patients, especially regarding expression of inhibitory 231 

receptors, could be explained by tumor-intrinsic factors shaping the individual tumor 232 

immune microenvironment (45). Furthermore, we also observe heterogeneity of non-233 

Treg CD4+ TILs within the same tumor, with cells showing an effector phenotype and 234 

others expressing hallmarks of chronic antigen stimulation, notably CD39. 235 

CD39 is an enzyme that converts extracellular ATP to AMP. In turn, CD73 converts 236 

AMP into adenosine, shown to possess immunosuppressive activity (46). Conversion 237 

of extracellular ATP in adenosine by CD39 thus leads to inhibition of CD4, CD8, NK 238 

cell function, decreased phagocytosis and antigens presentation activities by 239 

macrophages and dendritic cells (47, 48). Widely reported in Treg-related literature, 240 

CD39 has also been described on HIV- , HBV- and tumor-specific CD8+ T cells as a 241 

marker expressed during chronic antigen stimulation (7, 49-51). Yet, only few groups 242 

have characterized this marker on non-Treg CD4+ TILs. In-vitro, CD39 is expressed 243 
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on Non-Treg CD4+ TILs after activation and on Listeria-specific CD4+ T cells after 244 

infection (32). Interestingly, a pioneer study reported an increased frequency of 245 

pathogenic CD39+ non-Treg CD4+ T cells in the peripheral blood of patients with 246 

renal allograft rejection (52). As previously observed for CD8+ TILs, CD39 could be 247 

a useful marker to identify tumor-specific CD4+ T cells as well within the tumor 248 

micro-environment. Additional studies will be needed to confirm this hypothesis and 249 

to better understand the regulation of CD39 in non-Treg CD4+ TILs.  250 

By investigating the antigen specificity of CD4+ TILs, we failed to detect MHC class 251 

II tetramer positive cells in the tumors. This negative result could be attributed to the 252 

limited number of tetramers tested, the low frequency of specific T cells for any given 253 

epitope combined with the low number of cells obtained from tumor dissociation(53). 254 

Using the AIM assay, we detected cancer unrelated CD4+ TILs. These HCMV-255 

specific cells lack CD39 expression, which mirrors our previous observations with 256 

CD39– CD8+ TILs specific for cancer unrelated antigens (HCMV, EBV, Flu) (7). Of 257 

note, the observation that tumor-specific CD4 and CD8 responses are coordinated is 258 

consistent with the notion that tumor-specific CD4 responses are also required for the 259 

induction of tumor-specific CD8 response as recently illustrated in mice (22). 260 

Besides, up to 95% of non-Treg CD4+ TILs lack CD39 expression in some patients. 261 

Taken together, these two observations could suggest that the majority of effectors 262 

TILs are not tumor-specific. This hypothesis could explain, along with other factors, 263 

the absence of response in most patients treated with anti-PD-1 (54). Bystander CD4+ 264 

(and CD8+) TILs are in fact not passive in the tumor microenvironment, and several 265 

reports have highlighted their role in modulating disease severity upon TCR-266 

independent activation (55, 56). Because of their TCR specificity for known viral 267 

epitopes, virus-specific bystander TILs could also be specifically targeted by 268 

therapeutic approaches to produce cytokines and enhance anti-tumor response (11). 269 

Overall, our findings highlight that non-Treg CD4+ TILs cells represent one of the 270 

main lymphocytes recruited at the tumor site and as well a potential target of interest 271 

for immunotherapy.   272 
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Methods 273 

Human samples.  274 

PBMC and tumor samples were obtained from patients with colorectal cancer or lung 275 

cancer. The use of human tissues was approved by the appropriate institutional 276 

research boards, A*STAR and the Singapore Immunology Network, Singapore. 277 

 278 

Cell isolation.  279 

Samples were prepared as previously described (57). In brief, tissues were 280 

mechanically dissociated into small pieces and incubated at 37 °C for 15 to 40 min in 281 

DMEM + collagenase IV (1 mg/ml) + DNase (15 µg/ml). Digestion was stopped by 282 

addition of RPMI containing 5% FBS. Dissociated tissues were filtered and washed in 283 

RPMI 5% + DNase (15 µg/ml) FBS. All samples were cryopreserved in 90% FBS + 284 

10% DMSO and stored in liquid nitrogen.  285 

 286 

Single-cell Sequencing  287 

Experiment was performed as previously described (29). In brief, frozen samples 288 

were thawed and washed in RPMI 10% FBS + DNAse (15 ug/ml). Samples were 289 

depleted of tumor cells (αEpCAM – clone 9C4), Myeloid cells (αCD14 – clone 290 

TUK4) and B cells (αCD20 – clone 2H7) using anti-Mouse IgG microbeads (Miltenyi 291 

– 130-048-401).  Cells were then incubated with BD AbSeq Ab-oligos following 292 

manufacturers’ instructions. Single cells were isolated using Single Cell Capture and 293 

cDNA synthesis with the BD Rhapsody Express Single-cell Analysis System. Parallel 294 

RNA and BD AbSeq sequencing libraries were generated using BD Rhapsody 295 

targeted mRNA (BD – 633751) and AbSeq amplification and BD Single-cell 296 

Multiplexing kits and protocol (BD – 633771). Quality of final libraries was assessed 297 

using Agilent 2200 TapeStation with High Sensitivity D5000 ScreenTape, quantified 298 

using a Qubit Fluorometer (ThermoFisher), and carried through to sequencing with 299 

Novaseq S1 on Illumina sequencer. FASTQ files containing sequenced data were 300 

analyzed using the Seven Bridges platform provided by BD (See “BD Single Cell 301 

Genomics Bioinformatics Handbook – 54169 Rev. 6.0” for specific details) (29).  302 

 303 

Mass-cytometry staining 304 
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Samples were stained as previously described (57, 58). In brief, antibody conjugation 305 

was performed according to the protocol provided by Fluidigm (See Table S1 for 306 

clone list and metals). Prior to surface staining, cells were stained with Cisplatin 307 

(viability marker) 5 µM in PBS for 5 min. Cells were then stained in PBS + 0.5% 308 

BSA buffer with surface antibodies at 4°C for 15 min. After two washing steps, cells 309 

were fixed in fixation FoxP3 buffer (eBioscience – 00-5521-00) for 30 min at 4°C. 310 

After washing in perm buffer cells were stained with biotinylated FoxP3 during 30 311 

min at 4°C in perm buffer. Cells were washed and stained with streptavidin coupled 312 

to heavy metal for 30mn at 4°C in perm buffer. After two washing steps, cells were 313 

fixed in PBS 2% PFA overnight. Prior to CyTOF acquisition, cells were stained for 314 

DNA (Cell-ID intercalator-Ir, Fluidigm) for 10 min at room temperature, washed 315 

three times with dH20 and acquired on CyTOF. 316 

 317 

Data analysis and UMAP 318 

After mass cytometry (CyTOF) acquisition, any zero values were randomized using 319 

a uniform distribution of values between 0 and −1 using R. The signal of each 320 

parameter was normalized based on EQ beads (Fluidigm) as described previously 321 

(59). Samples were then used for UMAP analysis similar to that previously 322 

described using customized R scripts based on the ‘flowCore’ and ‘uwot’ R 323 

packages (31). In R, all data were transformed using the logicleTransform function 324 

(flowCore package) using parameters: w = 0.25, t = 16409, m = 4.5, a = 0 to roughly 325 

match scaling historically used in FlowJo. For heatmaps, median intensity 326 

corresponds to a logical data scale using formula previously described (60). The 327 

colors in the heat map represent the measured means intensity value of a given 328 

marker in a given sample. A seven-color scale is used with black–blue indicating 329 

low expression values, green–yellow indicating intermediately expressed markers, 330 

and orange-red representing highly expressed markers. Violin plots were generated 331 

using customized R scripts based on the ‘ggplot2’ R package (geom_violin, 332 

geom_boxplot, geom_quasirandom). 333 

 334 

AIM (activation induced marker) assay 335 

AIM assay was performed as described previously (35). Briefly, on day 1, frozen 336 

paired blood and tumor samples were thawed and prepared as stated above. APC 337 

(gated as all CD3-CD45+live) were sorted from the PBMC, CD4+ T cells (gated as 338 
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CD45+live CD3+CD4+) were sorted from blood and the tumors using BD FACSAria 339 

II. After sorting, cells were rested for 3h at 37°C, incubated with a CD40 blocking 340 

antibody for 15 min and put in coculture at a ratio of 1 CD4: 5 APC. Cells were then 341 

stimulated with either HCMV peptides pool (Catalogue number, 86.25ug/ml), DMSO 342 

(negative control, 100ug/ml) or SEB (positive control, 500ug/ml) for 18h. On day 2, 343 

cells were washed, stained with surface flow antibodies (Table S2) and acquired on 344 

BD FACSCelesta. Activation was measured with CD69 and CD40L expression on 345 

total CD4+ T cells and bystander CD4+ T cells were analyzed for CD39 expression.  346 
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