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Abstract 21 
 22 
Many decisions in life are sequential and constrained by a time window. Although mathematically 23 
derived optimal solutions exist, it has been reported that humans often deviate from making 24 
optimal choices. Here, we used a secretary problem, a classic example of finite sequential decision-25 
making, and investigated the mechanisms underlying individuals’ suboptimal choices. Across 26 
three independent experiments, we found that a dynamic programming model comprising 27 
subjective value function explains individuals’ deviations from optimality and predicts the choice 28 
behaviors under fewer opportunities. We further identified that pupil dilation reflected the levels 29 
of decision difficulty and subsequent choices to accept or reject the stimulus at each opportunity. 30 
The value sensitivity, a model-based estimate that characterizes each individual’s subjective 31 
valuation, correlated with the extent to which individuals’ physiological responses tracked stimuli 32 
information. Our results provide model-based and physiological evidence for subjective valuation 33 
in finite sequential decision-making, rediscovering human suboptimality in subjectively optimal 34 
decision-making processes.  35 
 36 
Keywords: Suboptimality, Subjective valuation, Secretary problem, Decision-making, Pupil 37 
dilation 38 
 39 
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Introduction 42 
 43 
Hiring a new employee is one of the toughest decisions to make as a team leader. Most of the time, 44 
there are only a limited number of job openings available and a limited time period in which to 45 
complete the hiring process. This process is even more difficult when applicants are accepted on 46 
a rolling basis, because one has to make a choice whether to accept the current applicant without 47 
knowing whether other future potential applicants would have been a better fit for the job. Likewise, 48 
there are many decision problems in life that are sequential and constrained by a certain time 49 
window. The ‘secretary problem’ is a classic example of this finite sequential decision problem 50 
and has been widely used to understand the optimal policy in making choices (e.g., to hire or not) 51 
under a limited number of opportunities (Ferguson, 1989; Freeman, 1983). Provided with the full 52 
information (i.e., the distribution of candidates), the optimal solution for the problem is to choose 53 
the first number that is above a mathematically calculated decision threshold (Hill & Krengel, 54 
1991). However, it is not clear whether and how humans deviate from optimal choices. Here, we 55 
used one variant of the secretary problem, in which the distribution of candidates is given and the 56 
reward is the value of the chosen candidate, to investigate (i) whether individuals make the optimal 57 
decision in a finite sequential decision problem, and (ii) if not, how do they make their decisions. 58 
Our results provide behavioral and physiological evidence supporting that individuals make 59 
threshold-based choices in a finite sequential decision problem and that seemingly suboptimal 60 
decision patterns (deviation from the optimal) originate from the process of optimally calculating 61 
thresholds using individuals’ subjective value function. 62 
  63 
 64 

 65 
Figure 1. Experimental procedures and behavioral results of Experiment 1. (A) Participants 66 
made a series of choices between accepting and rejecting a presented number. At each round, they 67 
had up to K opportunities (K = 5 in Experiment 1, K = 2 or 5 in Experiment 2) to reject the number 68 
and get a new random number; the round ended when participants accepted a presented number. 69 
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At the last opportunity, participants were given no choice but to accept the presented number. A 70 
new set of stimuli (numbers) was used in the next round. (B) The optimal decision threshold per 71 
opportunity (blue), calculated under the assumption of the full information, was compared with a 72 
corresponding empirical decision threshold (red). (C) Response times (RTs) for each opportunity 73 
were computed against the presented stimuli values. Regardless of the opportunity, RTs showed 74 
negative association with the absolute distance between the presented stimuli and the 75 
corresponding decision threshold. That is, participants showed the shortest RTs for the numbers 76 
that are farthest from decision thresholds, and vice versa. Error bars represent s.e.m. 77 
  78 
 79 
To examine how individuals make choices in a finite sequential decision problem, we recorded 80 
behavioral choices, response time (RT), and pupil dilation of 91 participants (male/female = 45/46, 81 
age = 22.88 ± 1.93 years) as they made a series of choices to accept or reject a random number 82 
presented on the screen (Fig. 1A). During each round, they had a fixed amount of opportunities 83 
(chances) to evaluate a new random number by rejecting previously presented numbers. When 84 
they accepted, the presented number was added to their final payoff, and then they moved on to 85 
the next round (up to 200 rounds) that consisted of a new set of chances. Overall, we implemented 86 
three separate experiments. In Experiment 1, participants had up to five opportunities (K = 5), and 87 
they were not explicitly informed of the maximum number that would be presented. Experiment 2 88 
had up to two or five opportunities (K = 2 or 5), and the participants were informed of the full 89 
distribution information (including the maximum). In Experiment 3, to temporally dissociate 90 
actions (choosing to accept or reject) from physiological responses to stimuli, participants were 91 
not allowed to make a choice until an audio cue was played. All the other settings were equal to 92 
Experiment 2 where participants had up to five chances (K = 5). Non-overlapping samples were 93 
obtained from each experiment (see Materials and Methods for detailed experimental 94 
procedures). 95 
 96 
 97 
Results 98 
 99 
Experiment 1 100 
 101 
Individuals show higher decision thresholds than the optimal decision model. Each presented 102 
number, sampled from a uniform distribution ranging from 0 to 150, could be considered as an 103 
option whose value matches its face value (the number). Because individuals can only accept a 104 
single number within each round, they should accept a number only when it is large enough. 105 
Specifically, an optimal decision-maker should not accept a presented number unless it is larger 106 
than the expected value of successive opportunities. For example, individuals should accept any 107 
numbers at the last opportunity (i.e., the fifth opportunity in Experiment 1) and thus the expected 108 
value of the last opportunity is 75. Based on this information, at the opportunity one before the last 109 
(the fourth in Experiment 1), a value-maximizing individual should accept any numbers higher 110 
than 75 but reject other numbers. Following the dynamic programming approach,(Bellman, 1966) 111 
we computed an optimal threshold for each opportunity (Fig. 1B, blue). 112 
 113 
To examine whether individuals follow such decision processes, we calculated empirical 114 
thresholds—the value where individuals were equally likely to accept or reject—from 20 115 
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participants’ behavioral choices (male/female = 10/10, age = 22.85 ± 1.31 years) (Fig. 1B). 116 
Consistent with the optimal thresholds (blue), empirical thresholds (red) at the later opportunities 117 
were lower than those at the earlier opportunities (mean threshold differences between the first 118 
and the second = 4.70, t(19) = 5.24, Cohen’s d = 1.17, p = 4.66e-5; the second and the third = 5.39, 119 
t(19) = 3.99, Cohen’s d = 0.89, p = 7.84e-4; and the third and the fourth = 15.38, t(19) = 7.10, 120 
Cohen’s d = 1.59, p = 9.41e-7). However, participants showed empirical thresholds significantly 121 
higher than the optimal thresholds, indicating that people have higher expectations about later 122 
opportunities (the difference between empirical and optimal thresholds = 8.49, t(19) = 3.28, 123 
Cohen’s d = 0.73, p = 0.004). 124 
 125 
Compared with optimal thresholds, it is not difficult to notice that the average empirical thresholds 126 
have a shallower slope as evidenced by the increasing difference between the empirical and 127 
optimal thresholds across opportunities (mean slope of [empirical - optimal]: 3.75, t(19) = 4.40, 128 
Cohen’s d = 0.98, p = 3.08e-4). Although the empirical decision thresholds suggest otherwise, one 129 
may still suspect that an alternative heuristic individuals might have used was to apply a constant 130 
threshold regardless of the number of remaining opportunities (i.e., applying a constant threshold 131 
across all opportunities). It is well known that easier choices—here, deciding whether to accept or 132 
not the presented value that is far smaller or larger than the threshold—require shorter response 133 
times (RT) (Ratcliff, 1978). If individuals applied the same threshold across all opportunities, 134 
mean RTs should be symmetric around a certain value (i.e., threshold). To examine this possibility, 135 
we calculated mean RT within each opportunity. The symmetric pattern was observed only when 136 
mean RTs were calculated as a function of presented values adjusting for the estimated empirical 137 
threshold within each corresponding opportunity (Fig. 1C). This result suggests that individuals 138 
did apply differential thresholds for each opportunity during decision-making. 139 
  140 
Subjective optimality explains individual choice patterns. Prospect theory has suggested that 141 
outcomes are perceived as gains and losses relative to a certain reference point, and that gains and 142 
losses are valued following concave and convex subjective value functions, respectively (Tversky 143 
& Kahneman, 1979). We drew on this framework to evaluate potential decision processes 144 
accounting for individuals’ sub-optimal decision thresholds. In accordance with Prospect theory 145 
(Tversky & Kahneman, 1979), we hypothesized that individuals’ subjective valuation (U) for a 146 
given value (v) is dependent on their individual reference point (r) and nonlinear value sensitivity 147 
(ρ), as follows: 148 
  149 

U = (v – r)ρ     if v ≥ r 150 
U = –(r – v)ρ    otherwise. 151 

  152 
Note, we focused on valuation per se, and thus, the time it took for individuals to establish (learn) 153 
their reference points (their own perspective of the environment) was assumed negligible (see 154 
Discussion for further consideration of learning effects). Importantly, two additional components 155 
were introduced. First, individuals may perceive the waiting time till acceptance costly and take it 156 
into account in valuation. Second, we hypothesized that this subjective value-based computation 157 
occurs not only during active decision-making, but also at mental simulation such that individuals 158 
use their subjective valuation in constructing expectations of each opportunity (i.e., computing 159 
decision thresholds; Fig. 2A).  160 
 161 
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 162 

 163 
Figure 2. Subjective optimality model. (A) The optimal decision model assumes that individuals 164 
compute the decision threshold of a certain opportunity based on the expected value of successive 165 
opportunities. In the ‘Subjective optimality model’, expected values of the successive 166 
opportunities are replaced by expected utilities (EU) calculated based on the subjective value 167 
function as per Prospective theory. (B) Two free parameters, reference point, and nonlinear value 168 
sensitivity define subjective valuation of the presented stimuli values. Group average subjective 169 
value function (green) is depicted using the group mean of individual estimates: reference point = 170 
114.77; value sensitivity = 0.47. 171 
 172 
 173 
This ‘Subjective optimality model’ with a waiting cost converges to three nested models in special 174 
cases: the Subjective optimality model without a waiting cost (Cost = 0), the Optimal decision 175 
model (ρ = 1), and the Constant threshold model (ρ = 0) (see Materials and Methods for model 176 
details). A formal model comparison using a likelihood ratio test revealed that the Subjective 177 
optimality models with and without a potential waiting cost explained individuals’ choice 178 
behaviors comparably well (𝜒2(20) = 19, p = 0.52). Moreover, these models showed superior 179 
explanatory power compared to the two other nested decision models (Table S1). These results 180 
suggest that the waiting cost was negligible in Experiment 1, values larger than the reference point 181 
(114.77; Fig. 2B) were perceived as gains, and any value stimuli smaller than the reference point 182 
were perceived as potential losses. Moreover, this result indicates that individuals use marginally 183 
diminishing (concave) and increasing (convex) subjective value function for gains and losses, 184 
respectively, in finite sequential decision-making. 185 
 186 
Experiment 2 187 
 188 
The Subjective optimality model predicts behavioral alterations in the context of scarce 189 
opportunity. In our suggested model, change of reference point reframes one’s subjective 190 
valuation and, in turn, alters decision thresholds. Given this causal relationship, we can predict that 191 
one would lower their decision threshold in the context where one expects less overall outcome 192 
and consequently sets a lower reference point. To examine whether empirical data matches the 193 
prediction from the model, we conducted a second experiment where some participants had five 194 
(K = 5) and other participants had two opportunities (K = 2) in each round (Fig. 1A). That is, in 195 
contrast to Experiment 1, individuals who had two opportunities always had to accept the second 196 
value if they rejected the first presented stimulus. If individuals followed the Optimal decision 197 
model, the decision threshold at the first opportunity among K = 2 should be equal to the decision 198 
threshold at the fourth opportunity among K = 5. As predicted from the Subjective optimality 199 
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model, the decision thresholds estimated from participants (K = 2: N = 23, male/female = 11/12, 200 
age = 23.09 ± 2.09 years; K = 5: N = 21, male/female = 11/10, age = 23.19 ± 1.86 years; non-201 
overlapping from Experiment 1) were significantly different depending on the number of 202 
opportunities one had per round (thresholdK=5, 4th = 90.42 ± 9.72, thresholdK=2, 1st = 79.28 ± 15.45; 203 
t(42) = 2.83, Cohen’s d = 0.85, p = 0.007; Fig. 3A). Of note, different from Experiment 1, the 204 
Subjective optimality model better explained participants’ empirical choices for K = 5 when a 205 
waiting cost was included as a free parameter (Table S1). However, the group mean of the 206 
estimated waiting cost was not different from zero (t(20) = 0.37, Cohen’s d = 0.08, p = 0.71), 207 
suggesting that the additional parameter was needed to explain individual differences in their 208 
subjective waiting costs.  209 
 210 

 211 
Figure 3. Behavioral results of Experiment 2. (A) In individuals who had five opportunities (K 212 
= 5), empirical decision thresholds (red) along the opportunities were comparable with that of 213 
Experiment 1. To examine whether or not our Subjective optimality model can be generalized to 214 
other contexts, a model prediction of the decision threshold was made for K = 2 (green); value 215 
sensitivity was assumed to be the same even in the different context, but the reference point was 216 
set to a lower level adjusted proportionately to the reduction of the expected payoff. (B) Empirical 217 
(observed) decision threshold in individuals who had two opportunities (K = 2) was consistent 218 
with the prediction. Error bars represent s.e.m. 219 
 220 
 221 
Next, we examined whether our model quantitatively captures behavioral alterations dependent on 222 
the scarcity of opportunities. By lowering the reference point parameter proportionately to the 223 
extent of expected payoff reduction and keeping all the other parameters the same, the model-224 
based threshold prediction for K = 2 (78.50 ± 4.09; Fig. 3B, green) was consistent with the 225 
observed behavioral threshold (see Materials and Methods for model prediction details), which 226 
supports the critical role of the reference point in subjective valuation. One may suggest that the 227 
task with K = 2 is simple enough for participants and that they would have followed the optimal 228 
strategy (i.e., using 75 as a decision threshold at the first opportunity). However, this is unlikely 229 
given that only 7 out of 23 participants’ credible intervals of the empirical decision threshold, 230 
defined by the 95% highest density interval, included 75 (see Materials and Methods). 231 
Furthermore, the large across-individual variability in behavioral decision thresholds (SD = 15.45; 232 
Fig. 3B) showcased that the Optimal decision model cannot explain individuals’ decision 233 
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strategies. These results again support the Subjective optimality model suggesting that individuals 234 
make threshold-based choices in a finite sequential decision problem, and that seemingly 235 
suboptimal decision patterns (e.g., waiting for future chances) may have originated from the 236 
process of calculating thresholds using individuals’ subjective value function. 237 
 238 
Experiment 3 239 
 240 
To further investigate physiological instantiation of the decision processes implemented in our 241 
model, we examined changes of pupil diameter acquired while participants made a series of 242 
choices. A rich set of evidence suggests that pupil dilation (or contraction) reflects not only 243 
individuals’ arousal level (Nassar et al., 2012; Urai, Braun, & Donner, 2017), but also cognitively 244 
complex information, such as value (Van Slooten, Jahfari, Knapen, & Theeuwes, 2018), 245 
uncertainty (Urai et al., 2017), cognitive conflict (Cavanagh, Wiecki, Kochar, & Frank, 2014), and 246 
choice (de Gee, Knapen, & Donner, 2014). Drawing upon these findings, we hypothesized that, 247 
should subjective valuation occur as proposed, changes of pupil diameter may capture value of 248 
stimuli, decision difficulties, and final choices that participants would make. To test this hypothesis, 249 
we operated a slightly modified task; (i) participants had to view the presented stimuli for a period 250 
of time (1.5-2.5 seconds) before being allowed to accept or reject the stimuli, and (ii) an audio cue 251 
was used to announce to participants that they could make a choice (Fig. 4A). This modification 252 
temporally dissociated choice from other cognitive processes (e.g., valuation) and prevented the 253 
introduction of any visual confounds in analyzing physiological signals at the time of decision-254 
making. Participants had up to five opportunities per each round, and all other experimental 255 
settings were equal to Experiment 2 (see Materials and Methods for details). 256 
 257 

 258 
Figure 4. Experimental procedures and behavioral results of Experiment 3. (A) To temporally 259 
dissociate valuation from action selection, we implemented a modified task design where 260 
individuals had to wait for an audio cue to make choices. (B) Empirical decision thresholds (red) 261 
were compared with the optimal decision thresholds (blue). Compared with Experiments 1 and 2, 262 
in Experiment 3, individuals showed lower decision thresholds at the early opportunities. Error 263 
bars represent s.e.m. 264 
 265 
 266 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.204321doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shin, Seon et al. 

 9 

Waiting is costly. Twenty-two new participants were recruited for Experiment 3 (10 females, age 267 
= 22.59 ± 2.32 years; non-overlapping from Experiments 1 or 2). With the addition of forced 268 
waiting time, which accumulated over opportunities, we expected that participants would perceive 269 
choices to accept after a longer wait less valuable (Kable & Glimcher, 2007; Loewenstein & Prelec, 270 
1992) and thus, they would accept earlier. Consistent with our expectation, a stark difference in 271 
the behavioral pattern was observed in Experiment 3 compared to Experiments 1 and 2. 272 
Specifically, decision thresholds from empirical data in Experiment 3 (red solid line) were below 273 
the optimal decision thresholds (blue dotted line), indicating that participants were more likely to 274 
accept small numbers that they would have rejected in the other two experimental settings (Fig. 275 
4B).  276 
 277 
This result was corroborated by the model-based results. First, the Subjective optimality model 278 
with a waiting cost showed superior explanatory power for Experiment 3 compared with 279 
alternative models (Table S1), emphasizing again that the waiting cost plays an important role in 280 
finite sequential decision-making. Second, the average of the estimated waiting cost parameter 281 
was significantly larger than zero only in Experiment 3 (t(20) = 63.51, Cohen’s d = 13.86, p = 282 
1.51e-24), and it was larger than the cost parameters in the other two experiments (Experiment 3 283 
> 1: t(40) = 15.67, Cohen’s d = 4.84, p < 1.00e-15; Experiment 3 > 2: t(41) = 5.64, Cohen’s d = 284 
1.72, p =1.41e-6; Fig. 5). Third, as it was intended from the task modification, individuals’ 285 
behavioral change was sourced specifically back to the waiting cost parameter, such that other 286 
parameters (nonlinear value sensitivity and reference point) were not affected (Fig. 5). These 287 
results together support our interpretation suggesting that the perceived cost of waiting underlies 288 
the behavioral alteration in the new task environment.  289 
 290 

 291 
Figure 5. Best fitting parameters. The Subjective optimality model was used to estimate the four 292 
parameters that explain individuals’ behavioral choices. (A) The estimated nonlinear value 293 
sensitivity (⍴) was comparable among all three separate experiments (Experiments 1, 2 (K = 5), 294 
and 3: F(2, 59) = 0.45, p = 0.64). (B) There was a significant difference in reference points between 295 
experiments (F(2, 59) = 3.67, p = 0.032). Post-hoc tests revealed that the difference originates from 296 
the higher reference point in Experiment 1 where participants were not informed of the maximum 297 
stimuli value (Tukey test: Experiment 1 vs. 2: p = 0.036; Experiment 1 vs. 3: p = 0.099; Experiment 298 
2 vs. 3: p = 0.893). (C) There was a significant difference in decision variability between 299 
experiments (F(2, 59) = 8.00, p = 8.40e-4). Post-hoc tests revealed that the difference originates 300 
from the higher decision variability in Experiment 1 (Tukey test: Experiment 1 vs. 2: p = 0.031; 301 
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Experiment 1 vs. 3: p = 0.001; Experiment 2 vs. 3: p = 0.372). (D) Waiting costs were larger than 302 
zero only in Experiment 3 (Experiment 1: t(19) = -1.84, Cohen’s d = -0.41, p = 0.082; Experiment 303 
2: t(20) = 0.37, Cohen’s d = 0.08, p = 0.71; Experiment 3: t(20) = 63.51, Cohen’s d = 13.86, p = 304 
1.51e-24). Moreover, the estimated waiting cost in Experiment 3 was significantly larger than 305 
those in the other two Experiments (Experiment 3 > 1: t(40) = 15.67, Cohen’s d = 4.84, p < 1.00e-306 
15; Experiment 3 > 2: t(41) = 5.64, Cohen’s d = 1.72, p = 1.41e-6). Error bars indicate s.e.m. 307 
 308 
 309 
Pupil dilation reflects choice and decision difficulty. As described above, we then examined 310 
whether physiological responses reflect cognitive decision processes. First, we compared pupil 311 
diameter changes between accepted and rejected opportunities. Consistent with previous reports, 312 
pupil size was significantly different depending on the subsequent choices (de Gee et al., 2014) 313 
(Fig. 6A). Particularly, pupil dilations within 558-726 msec and 1182-1500 msec were associated 314 
with subsequent acceptance of the presented values (t(17) > 2.11, all ps < 0.05). Only the latter 315 
cluster remained significant after controlling for multiple comparisons using a cluster-based 316 
permutation method (Maris & Oostenveld, 2007) (numerical p = 3.50e-4). Still, given the fact that 317 
the time of the earlier cluster (558-726 msec) overlaps with the range of RTs in Experiments 1 and 318 
2 (Fig. 1C, S1), this result suggests that participants may have covertly made choices as early as 319 
550 msec and the cognitive process was reflected in the physiological responses (de Gee et al., 320 
2014) (see Fig. S2 for a pupil size result reflecting individuals’ arousal level).  321 
 322 

 323 
Figure 6. Pupillometry responses reflect subsequent choices and decision values. (A) Pupil 324 
size change from the stimuli onset was measured, separately for the accepted (green) and rejected 325 
(red) opportunities. Paired comparison between the cases revealed significant pupil dilation for the 326 
accepted stimuli at the early stage after the onset, and again at the later time. (B) To examine 327 
whether or not pupil size reflected stimuli value, pupil size 1500 msec after the stimuli onset was 328 
depicted as a function of the signed distance between stimuli value and the corresponding decision 329 
threshold. (C) Individuals who had higher value sensitivity in their estimated parameter (median 330 
split; red) showed more pronounced pupillometric responses reflecting the value information. 331 
Shades represent s.e.m. 332 
 333 
 334 
Next, we calculated mean pupil diameters as a function of subjective values. This was done for 335 
accepted and rejected stimuli separately, so that the relationship between pupil sizes and values is 336 
independent of subsequent choices. Regardless of the choice, as we observed from RT patterns 337 
(Fig. 1C, S1), pupil size was negatively correlated with ‘decision difficulty’. That is, in both 338 
rejected and accepted trials, pupil size decreased as a function of the absolute distance between the 339 
decision threshold and value of the presented stimuli (Rejected trials: slope = -0.0043, t(17) = -340 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.204321doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shin, Seon et al. 

 11 

2.48, Cohen’s d = -0.58, p = 0.024; Accepted trials: slope = -0.0039, t(17) = -2.49, Cohen’s d = -341 
0.59, p = 0.024; Fig. 6B). Steepness of the slopes was comparable between accepted and rejected 342 
opportunities (t(17) = 0.19, Cohen’s d = 0.05, p = 0.85). However, the intercept, i.e., pupil dilation 343 
at the corresponding threshold, was higher for accepted than rejected trials (t(17) = 2.13, Cohen’s 344 
d = 0.50, p = 0.046). Furthermore, pupil sizes between accepted and rejected trials were 345 
significantly different even after controlling for the distance between stimuli and the threshold 346 
(t(17) = 3.62, Cohen’s d = 0.85, p = 0.002), which indicates that pupil sizes reflect additional 347 
information other than decision difficulty. Together, these results suggest that pupil dilation 348 
reflects both decision difficulty and subsequent choices (Cavanagh et al., 2014; de Gee et al., 2014), 349 
the two crucial components comprising subjective valuation (Kolling et al., 2016; Rangel, Camerer, 350 
& Montague, 2008).  351 
 352 
Physiological sensitivity matches behavioral value sensitivity. As evidenced by the model 353 
parameter estimates, there are individual differences in the extent to which one responds to a unit 354 
increase of presented stimulus value (i.e., value sensitivity). We tested whether or not this 355 
modeling construct of individual characteristics matches with individuals’ physiological responses. 356 
To provide an illustrative description, we divided participants into two subgroups based on their 357 
parameter estimation (median split) where one group had lower value sensitivity and the other 358 
group had higher value sensitivity. For each group, we calculated average pupil dilation as a 359 
function of signed decision difficulty (the difference between stimulus value and the decision 360 
threshold of the corresponding opportunity) (Fig. 6C). Individuals who had high value sensitivity 361 
(red) showed relatively high pupil dilation compared to individuals who had low value sensitivity 362 
(blue). This positive correlation between value sensitivity and pupil dilation was statistically 363 
significant at the threshold where decision difficulty is the highest (Pearson’s correlation r = 0.52, 364 
p = 0.027). The result indicates that individuals who have high behavioral value sensitivity indeed 365 
have higher physiological sensitivity to stimuli value. Moreover, the consistent patterns across 366 
physiological and behavioral data reflecting individuals’ characteristics serve as additional 367 
evidence suggesting the use of subjective valuation in finite sequential decision-making. 368 
 369 
 370 
Discussion 371 
  372 
Our results provide a model-based explanation for suboptimality in finite sequential decision-373 
making. Specifically, we present evidence that subjective valuation reflecting individuals’ belief 374 
about the environment underlies the mechanism of how the brain computes decision thresholds in 375 
the problem.  376 
 377 
As a classic example of a finite sequential decision problem, various versions of the secretary 378 
problem were investigated (Ferguson, 1989; Freeman, 1983). The standard secretary problem 379 
simulates the cases where only the relative ranks matter, such that individuals have to find the best 380 
option (e.g., a candidate in a hiring scenario) among the sequentially presented options (Chow, 381 
Moriguti, Robbins, & Samuels, 1964; Guan & Lee, 2018). In this setting, inferior choices 382 
(choosing options that are not the best) lead to no reward, but we have to note that this is hardly 383 
the case in real-life. First, any choices we make should have some value even in the case where 384 
they were not the best option. For example, an employee who ends up not meeting the employer’s 385 
original expectation still can make some contribution (except for an unfortunate case in which the 386 
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employee turns out to be a con artist and shuts down the business). Second, in reality, it is 387 
impossible for the decision maker to learn the true relative rank of the chosen option, because the 388 
decision maker will have no knowledge about the subsequent options that were to follow. In other 389 
words, there is no one who can examine the success of the choice and deliver a reward if, and only 390 
if, the choice were correct. The current study addressed this discrepancy by implementing a task 391 
where each option had a monetary reward that matched its face value. Although there was no 392 
explicit instruction saying that individuals should find the best option within the finite number of 393 
opportunities, participants were informed that the final payoff would be determined by the 394 
accumulated reward amount across the entire task and thus, the task preserved the goal of reward 395 
maximization. We believe that the current variation of the secretary problem provides a more 396 
naturalistic setting to investigate individuals’ sequential decision-making. 397 
 398 
A typical behavior pattern observed across various versions of the secretary problem is that 399 
individuals show suboptimal choices, such that they wait less than the optimal stopping point 400 
(Bearden, Rapoport, & Murphy, 2006; Seale & Rapoport, 1997). This suboptimal choice tendency 401 
is accounted for by lower decision thresholds than the optimal decision threshold, indicating that 402 
they are more likely to accept the option that has low value. Our results across the three 403 
experiments may seem inconsistent from this perspective. Particularly, individuals showed higher 404 
thresholds for both Experiments 1 and 2, but lower thresholds for Experiment 3. The main change 405 
in Experiment 3 was the additional forced wait introduced before the cue when participants were 406 
allowed to submit their choice. Our model-based analysis results suggest that this subtle change in 407 
task design may have triggered participants to think more about the tradeoff between payoffs and 408 
time they spent per round. Such an impact of additional ‘cost of waiting (extra time)’ is consistent 409 
with previous reports showing that non-zero interview cost was associated with lowering decision 410 
thresholds (Costa & Averbeck, 2015; Seale & Rapoport, 1997; Yeo, 1998). Our model parameter 411 
estimates supported this interpretation, such that only in Experiment 3, the estimated cost was 412 
significantly larger than zero. These results highlight that the context of decision-making (e.g., 413 
task schedule) as well as the extent to which individuals find the task costly (e.g., cognitively 414 
demanding or mentally boring) are crucial in decision-making processes (Kool, McGuire, Rosen, 415 
& Botvinick, 2010).  416 
 417 
Our Subjective optimality model included two free parameters essential in capturing individuals’ 418 
choice patterns. First, the reference point reflects each individual’s belief about the environment 419 
(Tversky & Kahneman, 1979). It is known that beliefs can alter how individuals respond to given 420 
information, which not only affects their behavioral choices, but also neural responses (Gu et al., 421 
2015). In line with this, we showed that discouraged expectation (scarce opportunities in 422 
Experiment 2) causes individuals to be more pessimistic about future chances and wait less in 423 
deciding (lowering thresholds). In addition, interestingly, individuals’ expectations (reference 424 
point) were significantly higher when they did not have full information about stimuli distribution 425 
(Experiment 1). This result suggests that humans, in general, have optimistic bias (Sharot, Korn, 426 
& Dolan, 2011), which may diminish or even become inverted in other contexts (e.g., scarce 427 
opportunities, mental costs).  428 
 429 
Second, the nonlinear value sensitivity indicates the extent to which individuals’ subjective 430 
valuation increases for an additional unit of reward. In the current study, the sensitivity represented 431 
as an exponent term in the utility function was smaller than one, which captures marginally 432 
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diminishing returns for gains and marginally increasing returns for losses (Tversky & Kahneman, 433 
1979). In our suggested model, a range of value sensitivity characterizes a spectrum of decision 434 
characteristics in individuals. Value sensitivity close to zero represents a rather categorical 435 
valuation (gain or loss relative to the reference point) and choices that are accounted for by a 436 
constant threshold being insensitive to the context (i.e., remaining opportunities). On the other 437 
hand, value sensitivity close to one represents objective valuation and choices that follow the 438 
Optimal decision model. In concert with the reference point, individuals’ value sensitivity shapes 439 
the extent to which they take into account uncertainty of future opportunities in decision-making. 440 
This wide range of individual differences may explain why some individuals are more stubborn 441 
with their opinions (e.g., stereotype), while others easily adapt to contextual information (Taylor, 442 
1981).  443 
 444 
In the current study, the pupil responses encode both decision difficulty and the subsequent choice 445 
of whether individuals will accept or reject the presented stimulus. Both types of information 446 
temporally preceded actual choice, so these pupil dilations are the physiological representations of 447 
the processed information regarding decision-making, rather than a simple reflection of the 448 
presented visual information. As suggested from previous studies, pupil dilation may reflect the 449 
downstream processing of the anterior cingulate cortex (Cavanagh et al., 2014; Critchley, Tang, 450 
Glaser, Butterworth, & Dolan, 2005), the brain region that is involved in encoding decision 451 
difficulty (Shenhav, Straccia, Cohen, & Botvinick, 2014), and, more broadly, a wealth of value-452 
related information—including difficulty signals—during decision-making processes (Kolling et 453 
al., 2016). Differential pupil sizes depending on the subsequent choices suggest that there is more 454 
to neurophysiological representation than simple decision difficulties. Individuals may pay more 455 
attention to the stimuli that they plan to accept for accumulating more evidence (Krajbich, Armel, 456 
& Rangel, 2010). Of course, such a process may have the opposite causality, in that the rich amount 457 
of accumulated evidence of a particular stimulus may induce even higher attention levels (e.g., 458 
saliency driven bottom-up attention (Koch & Ullman, 1987)). In the current study, the latter is 459 
unlikely, given that all low-level visual information (e.g., contrast) of the displayed stimuli were 460 
matched or controlled for. The current results show that the two pieces of information essential in 461 
subjective valuation are linked together at the physiological level.  462 
 463 
The future direction of the current study includes expanding our model to further explain the 464 
mechanisms of how individuals learn the stimulus distribution (e.g., reinforcement learning). In 465 
the current study, we assumed that the learning process is rapid and negligible in relevance to other 466 
decision processes. Previous studies reported no evidence of learning in various versions of the 467 
secretary problem (Campbell & Lee, 2006; Seale & Rapoport, 1997). Moreover, we showed that 468 
decision processes under imperfect information (no knowledge of the maximum stimuli value) 469 
were comparable with the processes under the full information. This result suggests that, even 470 
without explicit information about the stimuli distribution, people, in general, have a rough idea 471 
about the range of values of an uncertain option. Alternatively, people were able to learn early 472 
enough (Goldstein, McAfee, Suri, & Wright, 2020) that the behavioral strategy for the rest of the 473 
task was not different from the case where individuals knew about the distribution from the 474 
beginning. Still, inclusion of learning mechanisms in the model would be essential to examine 475 
whether or not the decision model generalizes to broader contexts (e.g., a volatile environment).  476 
 477 
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Examples of finite sequential decision problems span a wide range of life choices, including 478 
finding the right life partner and choosing a career, the aims of which are to maximize reward 479 
under a limited amount of resources and opportunities. Such value-based decision processes with 480 
reference to costs are not unique to humans but extend from fish choosing a mate, who become 481 
less selective under costly environments (Milinski & Bakker, 1992), to primates making foraging 482 
decisions (Hayden, Pearson, & Platt, 2011). The Subjective optimality model provides a way in 483 
which individual subjective valuation generates systematic biases in sequential decision-making 484 
and opens a window to decompose physiological responses into decision difficulty and signatures 485 
of subsequent choice, of which levels differ in the extent of individual value sensitivity. In sum, 486 
our data support a mechanistic account of suboptimal choices varying from overly impulsive 487 
choices in individuals with substance-use problems (Ekhtiari, Victor, & Paulus, 2017) to delayed 488 
choices in individuals who suffer from indecisiveness (Rassin & Muris, 2005).  489 
 490 

491 
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Materials and Methods 492 
 493 
Participants.  Ninety-one healthy young adults (male/female = 45/46, age = 22.88 ± 1.93 years) 494 
participated in the current study. All participants provided written informed consent and were paid 495 
for their participation. The study was approved by the Institutional Review Board of Ulsan 496 
National Institution of Science and Technology (UNISTIRB-18-39-C, UNISTIRB-18-14-A). 497 
None of the participants reported a history of neurological or psychiatric illness. Three separate 498 
experiments were conducted and there were no overlapping participants across experiments. 499 
Twenty students participated in Experiment 1 (male/female = 10/10, age = 22.85 ± 1.31 years), 500 
and 47 students were recruited for Experiment 2 where they had five or two opportunities per 501 
round (male/female = 23/24, age = 23.00 ± 1.98 years). Among the participants in Experiment 2, 502 
three participants were excluded from the analyses due to their reported suspicion about the 503 
payment structure of the experiment. Among the included participants, 21 students (male/female 504 
= 11/10, age = 23.19 ± 1.86 years) were randomly assigned to the condition where they were given 505 
five opportunities per round, and 23 participants (male/female = 11/12, age = 23.09 ± 2.09 years) 506 
were assigned to the condition where they were given two opportunities per round. Twenty-four 507 
students participated in Experiment 3 (male/female = 12/12, age = 22.67 ± 2.28 years). Two 508 
participants were excluded due to their reported suspicion about the payment structure of the 509 
experiment, and one participant was excluded due to data loss from a computer error. Three 510 
participants were excluded from the pupil diameter analyses due to poor calibration. After 511 
exclusion, data from 21 participants (male/female = 11/10, age = 22.62 ± 2.38 years) were used 512 
for behavioral analyses, and a subsample of the data (N = 18; male/female = 8/10, age = 22.33 ± 513 
2.30 years) was used for further pupil diameter analyses. All participants reported normal or 514 
corrected-to-normal vision under soft contact lenses (no glasses were allowed due to potential 515 
reflections during eye-tracking).  516 
 517 
Stimuli and apparatus. All stimuli were generated using Psychophysics Toolbox Version 3 518 
(www.psychtoolbox.org) and MATLAB R2017a (MathWorks), and presented on a DLP projector 519 
(PROPixx VPX-PRO-5050B; screen size of 163 × 92 cm2; resolution of 1920 × 1080 pixels; 520 
refresh rate of 120 Hz; linear gamma). The distance between the participants’ eyes and screen was 521 
fixed at 153 cm. The ambient and background luminance were set at 1.1 and 69.2 cd/m2, 522 
respectively. The main stimuli were three-digit integer numbers, randomly selected between zero 523 
and 150. To minimize luminance effects on pupil size, one- or two- digit numbers were displayed 524 
as three-digit numbers with extra zeros attached in front of the stimuli (e.g., 1 is displayed as ‘001’). 525 
During the task, fixation was enforced at the center of the screen with an infrared eye tracker 526 
(Eyelink 1000 Plus, SR Research, Canada), and a chin and forehead rest were used to minimize 527 
head movement.  528 
  529 
Experiments. At the beginning of the task, the eye-tracker was calibrated, referencing eye fixation 530 
data at the four corners of the screen. During the task, participants made a series of choices either 531 
to accept or to reject presented stimuli (Fig. 1A). As explained above, the stimuli were randomly 532 
selected integers between zero and 150 where each number had equal probability of being selected 533 
(uniform distribution). Each presented number could be considered as an option whose value 534 
matches its face value because participants were instructed that all accepted numbers would be 535 
added to their final payoff at the end of the task. Given this knowledge, participants had a fixed 536 
number of opportunities (chances) to evaluate and reject a new randomly selected number. The 537 
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present ‘round’ ended when participants accepted a presented number within this limited number 538 
of opportunities, or when they ran out of the opportunities where they had no other choice but to 539 
accept the presented number at the last chance. At the beginning of each opportunity, participants 540 
were shown which opportunity they were currently at, so that they would not lose track of the 541 
number of remaining opportunities. A new round followed, at which the number of available 542 
opportunities was reset to the original maximum quantity. Participants were paid at the end of the 543 
study (after completing 200 rounds), based on the sum of the numbers they chose during the task. 544 
All instructions were provided through illustrated slides.  545 
 546 
Overall, we implemented three separate experiments, each of which had slightly different settings. 547 
In Experiment 1, participants had up to five opportunities (K = 5), and they were not explicitly 548 
informed of the maximum number (150) that would be presented. Use of the context with 549 
incomplete information was to incorporate a more naturalistic setting as real-life problems where, 550 
as in most of the cases, individuals do not have knowledge about the best potential option (e.g., 551 
even if the current candidate for a job has a good enough fit for the position, one cannot assure that 552 
a potential future candidate will not have a superior fit). Participants were instructed that the 553 
presented stimuli would be sampled from a uniform distribution, and thus, we expected that 554 
participants would quickly deduce the maximum range through iterative experiences. At the 555 
beginning of the new round, the accumulated payoff amount up until the last round was presented 556 
at the bottom of the screen. In Experiment 2, participants were randomly assigned to one of two 557 
conditions where one condition had five (K = 5) and one condition had two (K = 2) opportunities. 558 
Here, participants were also informed of the maximum number (i.e., 150). In addition, participants 559 
were given a practice session that comprised two rounds where all the stimuli were ‘000’, which 560 
allowed them to be familiarized with associated buttons and the task screen settings. All the rest 561 
of the task settings were identical to Experiment 1.   562 
 563 
Experiment 3 was designed to temporally dissociate actions (i.e., accept or reject) from the 564 
stimulus onset, so that physiological responses to stimuli independent from potential motor 565 
preparatory signals could be measured. Particularly in Experiment 3, participants were not allowed 566 
to make choices until an audio cue was played (Fig. 4). The audio cue was played between 1.5 and 567 
2.5 seconds after stimulus onset (uniform distribution), which allowed us to tease out potential 568 
confounding factors related to action from the pupil diameter measures at 0-1.5 seconds after 569 
stimulus onset. In addition, to prevent participants from making unnecessary eye movements, all 570 
the information including number stimuli were presented at the center of the screen. As 571 
implemented in Experiment 2 where K = 5, participants were informed that the maximum number 572 
was 150 and that they have up to five chances to evaluate the stimuli per each round.  573 
 574 
Behavioral analysis. For all three tasks, behavioral choices (accept or reject) and response time 575 
(RT) were measured. Individuals’ decision threshold for each opportunity was estimated from their 576 
choices. To estimate empirical decision threshold for each opportunity, a cumulative distribution 577 
function of Gaussian distribution was fitted to individuals’ choice data that corresponded to the 578 
same opportunity across all 200 rounds. The mean and variance parameters of the Gaussian 579 
distribution represent the decision threshold and decision variability, respectively. A set of best-580 
fitting parameters that maximize the likelihood of the data was estimated per individual using the 581 
Nelder-Mead simplex algorithm provided by MATLAB R2017b.  582 
 583 
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Computational modeling and model comparison. For a formal model comparison at the group 584 
level, choices from all 200 rounds per participant were used for parameter estimation. We used 585 
likelihood-ratio tests to compare goodness-of-fit of the models for explaining participants’ 586 
decisions.  587 
 588 
Optimal decision model. An optimal decision maker is expected to maximize their payoff by 589 
estimating the expected value of each opportunity. This computation can be conducted from the 590 
final opportunity to the first, given the full information about the stimuli distribution (U[0, 150]). 591 
For example, in a condition where K = 5, the expected value of the last opportunity is 75, and 592 
therefore a payoff-maximizing optimal decision maker should set 75 as the decision threshold of 593 
the fourth opportunity (i.e., accept numbers larger than 75 and reject those that are lower). Then, 594 
this decision strategy should again determine the expected value of the fourth opportunity. 595 
Generalizing this dynamic programming approach, the decision threshold of the ith opportunity 596 
(ϑ[i]) can be written as follows: 597 
 598 

𝜗[i]= ⌊'[i+1]⌋
151

𝜗[i+1]+ 1
151
∑ 𝑣150
. = ⌊'[i+1]⌋+1    (i Î (K-1, K-2, …, 1)) 599 

𝜗[K]=0 600 
 601 
where ⌊x⌋ indicates the greatest integer less than or equal to x. 602 
 603 
Subjective optimality model. Our hypothesis was that individuals use subjective valuation in 604 
reference to their own expectations about the environment during finite sequential decision-605 
making. To test the hypothesis, we constructed a computational model drawn upon Prospect theory 606 
(Kahneman & Tversky, 1979). Particularly, individuals’ subjective valuation (U) of an objective 607 
value (v) was defined as below:  608 
 609 

U = (v – r)ρ     if v ≥ r 610 
U = –(r – v)ρ    otherwise 611 

  612 
where ρ and r indicate individuals’ nonlinear value sensitivity and reference point, respectively. 613 
Subjective valuation is also used in computing decision thresholds: 614 
 615 

𝜗[i]=U/0 1⌊'[i+1]⌋
151

U(𝜗[i+1])+ 1
151
∑ U(𝑣)150
. = ⌊'[i+1]⌋+1 4  616 

 617 
where U-1(.) indicates an inverse function of the aforementioned subjective value function.  618 
 619 
Subjective optimality model with a waiting cost. In our secretary problem task, choosing to 620 
reject the current stimulus means that participants have to go through further steps (opportunities) 621 
to receive rewards (or at least to find out how much reward they will receive) until they choose to 622 
accept at a later opportunity. Such an additional wait may introduce a disutility (i.e., negative value) 623 
against the choice to reject. To test this possibility and quantitatively estimate this ‘mental waiting 624 
cost’, we modified our suggested Subjective optimality model to a more general format as follows: 625 
 626 

𝜗[i]=U/0 1⌊'[i+1]⌋
151

U(𝜗[i+1])+ 1
151
∑ U(𝑣)150
. = ⌊'[i+1]⌋+1 − 𝐶4  627 

 628 
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where C indicates a waiting cost per opportunity. Note that the waiting cost lowers the expected 629 
utility of the following opportunity (i+1th), and thus has an effect of lowering the decision threshold 630 
of the current opportunity (ith).  631 
 632 
Constant threshold model. There is a simple alternative decision strategy for the secretary 633 
problem: to use a constant decision threshold throughout all opportunities. To examine this 634 
possibility, we estimated one decision threshold per individual. This constant threshold model 635 
provides a quantitative baseline for a formal model comparison. 636 
 637 
Predicting change of decision threshold based on the altered decision context. To examine 638 
whether or not our suggested model can be generalized under different contexts with scarce 639 
opportunities, we took a prediction approach using model-based information from the context with 640 
abundant opportunities. Specifically, the reference point and nonlinear value sensitivity parameters 641 
estimated from behavioral choices of individuals (N=21) who participated in Experiment 2, K = 5 642 
were used to predict the decision threshold in the two opportunities condition (K = 2). Particularly 643 
for the nonlinear value sensitivity, the parameter distribution in the K = 2 condition was assumed 644 
to be the same as that in the K = 5 condition. On the other hand, the parameter distribution of the 645 
reference point was assumed to be shifted down by the difference of expected earnings between 646 
the two conditions, reflecting participants’ acknowledgement of the scarce number of 647 
opportunities. To be agnostic about differential subjective valuation under different contexts, the 648 
change of participants’ expectation about mean earning was calculated comparing expected values 649 
between conditions. To predict the mean threshold in the K = 2 condition, 23 pairs of parameters 650 
(matching the number of participants in K = 2) were randomly sampled with replacement from the 651 
aforementioned parameter distribution, and the thresholds corresponding to each parameter pair 652 
were computed by applying our model. The procedure was repeated 5,000 times to estimate the 653 
distribution of the mean of 23 thresholds. The 95% confidence interval was computed from the 654 
5,000 means.  655 
 656 
Parameter estimation procedure. We used Bayesian hierarchical analysis to estimate the best-657 
fitting parameters for participants’ choice data (Daw, 2011). The parameters characterizing 658 
individual participants were drawn from the population distributions, each of which follows a 659 
Gaussian distribution. The priors on the means of the population distributions (µ) were set to broad 660 
uniform distributions, and the priors on the SDs (σ) were set to an inverse-Gamma distribution in 661 
each of which, the shape parameter alpha is one and the scale parameter beta is manually selected. 662 
To improve sampling efficiency, we sampled the parameters from a transformed space, and the 663 
hierarchical structure was assumed in the transformed space. Specifically, the reference point and 664 
value sensitivity parameters were sampled without domain restrictions and transformed by a scaled 665 
logistic function g(x) = A/(1+exp(-x)) before applying to the model. In the function g(x), A was 666 
set to 150 for the reference point parameter r, and set to 2 for the values sensitivity parameter ρ. 667 
The decision variability parameters and the group-level hyper-parameters for parameters’ standard 668 
deviation were transformed by exp(.) after sampling. We did not apply a transformation to the 669 
waiting cost parameter. A Markov chain Monte Carlo (MCMC) method (Metropolis-Hastings 670 
algorithm) was used to sample from the posterior density of the parameters conditioned on all of 671 
the participants’ choices. We estimated the most likely set of parameters for each participant from 672 
the resulting chain of samples using a multivariate Gaussian kernel function provided by 673 
MATLAB R2017b.  674 
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 675 
Pupillometry: Preprocessing. Pupil diameter was sampled at 500 Hz from both eyes using an 676 
infrared eye-tracker (Eyelink 1000 Plus; SR Research, Kanata, Canada) and recorded continuously 677 
for the entire session. Blinks and saccades in each eye were identified using the standard criteria 678 
provided by Eyelink, and the identified intervals were linearly interpolated. Particularly for the 679 
blink events, the interpolation was applied to the intervals between 150 ms before and after each 680 
identified blink. Three participants whose pupil data included a large proportion of interpolated 681 
intervals (> 50 %) were excluded from further analyses. The means of the interpolated data from 682 
both eyes were band-pass filtered between 0.02-4 Hz using third-order Butterworth filters. The 683 
long-lasting effects (~ 5 sec) of blinks on pupil diameter were identified by applying least-squares 684 
deconvolution to individual data, and then removed from the data (Knapen et al., 2016). Then, the 685 
resulting data were z-scored for each session (i.e., each participant). Pupil diameter changes in 686 
response to the value stimulus were computed for each opportunity. Each epoch was defined for 687 
pupil responses between -200 and 1,500 msec around the stimulus onset, and corrected for its 688 
baseline by subtracting the mean pupil size around (± 20 msec) the onset. The choice trials that 689 
required a large proportion (> 50%) of interpolation were excluded from the analysis, which 690 
comprised 28% of the entire choice trials.  691 
 692 
Pupillometry: Statistical tests. To examine whether physiological responses reflect cognitive 693 
decision processes, we tested pupil dilations and contractions in response to (i) subsequent choices 694 
to accept or reject, and (ii) decision difficulty. First, pupil diameter changes between 0-1,500 msec 695 
after the stimulus onset were compared between accepted and rejected opportunities. We used t-696 
tests to compare mean differences at each time step and defined statistically significant temporal 697 
clusters (alpha level set to 0.05). To control for the false alarm rate, we used the cluster-based 698 
permutation method (Maris & Oostenveld, 2007) and examined the statistical significance of each 699 
cluster. Particularly in the permutation procedure, the sign of the difference value for each 700 
participant was randomized and the sum of t-values in each cluster was used as its statistic. Second, 701 
the pupil dilation at 1,500 msec after the stimulus onset was used to examine the effect of decision 702 
difficulty—the absolute distance between the corresponding decision threshold and the presented 703 
value—on the pupil dilation. Linear regression was used for the rejected trials (choice = reject, -704 
40 < value - threshold < 5) and accepted trials (choice = accept, -5 < value - threshold < 40) 705 
separately for each participant. The same set of data points was used to test the effect of choice on 706 
pupil dilation after controlling for the decision difficulty. We further investigated individual 707 
differences in the extent to which one responds to stimulus value at the physiological level (i.e., 708 
pupil dilation). Pupil dilation at 1500 msec after the stimulus onset was used. We smoothed each 709 
individual’s pupil dilation data along the threshold centered values from -90 to 60 by applying 710 
local regression using a 2D polynomial model provided by MATLAB R2017b. The estimated 711 
pupil dilation at threshold was used to calculate the Pearson correlation between individuals’ 712 
estimated value sensitivity and their pupil responses.  713 

714 
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