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 2 

Abstract 27 

When performing a long chain of actions in rapid sequence, future movements need to be planned 28 

concurrently with ongoing action. However, how far ahead we plan, and whether this ability improves 29 

with practice, is currently unknown. Here we designed an experiment in which healthy volunteers were 30 

asked to produce 14-item sequences of finger movements quickly and accurately on a keyboard in 31 

response to numerical stimuli. On every trial, participants were only shown a fixed number of stimuli 32 

ahead of the current keypress. The size of this viewing window varied between 1 (next digit revealed 33 

with the pressing of the current key) and 14 (full view of the sequence). Participants practiced the task 34 

for five days and their performance was continuously assessed on random sequences. Our results 35 

indicate that participants used the available visual information to plan multiple actions into the future, 36 

but that the planning horizon was limited: receiving more information than 3 movements ahead did 37 

not result in faster sequence production. Over the course of practice, we found larger performance 38 

improvements for larger viewing windows. Additionally, we show that improved planning was 39 

accompanied by an expansion of the planning horizon with practice. Together, these findings show that 40 

one important aspect of sequential motor skills is the ability of the motor system to exploit visual 41 

information for planning multiple responses into the future. 42 

 43 

Key words 44 

Motor planning; Sequence production; Practice effects; Hand function.  45 
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 3 

Introduction 46 

Humans exhibit a wide range of behaviors on a daily basis, from whole-body activities like running or 47 

riding a bike, to fine dexterous skills like writing or typing on a keyboard. Many of such skills share one 48 

common feature: they are comprised of a series of separate motor elements that are strung together 49 

in quick succession to form longer and more complex sequences of movements (Lashley, 1951). When 50 

learning a new skill, people usually need many hours of practice to achieve fluidity in performance 51 

(Ericsson et al., 1993). With practice, sequence production becomes quicker, more accurate, and less 52 

effortful (Verwey, 1994; Rhodes et al., 2004; Diedrichsen and Kornysheva, 2015; Krakauer et al., 2019), 53 

leading in the long run to the skillful behaviors typically observed in elite athletes (Yarrow et al., 2009). 54 

Many studies of motor sequence learning have focused on the training of specific movement 55 

sequences (Cohen et al., 1990; Willingham, 1999; Verwey, 2001; Verwey and Abrahamse, 2012; 56 

Kornysheva et al., 2013, 2019; Verwey et al., 2014; Wong et al., 2015b; Mantziara et al., 2020). 57 

However, many sequences we execute in everyday life are not fully predictable. Yet, practice improves 58 

performance even for random or untrained sequential movements (Waters-Metenier et al., 2014; 59 

Wiestler et al., 2014; Ariani et al., 2020). Some of these sequence-general improvements are due to 60 

the fact that participants learn to translate individual visual stimuli into motor responses and to execute 61 

these responses more quickly (Ariani and Diedrichsen, 2019; Hardwick et al., 2019). Such improvements 62 

in single responses benefit the production of all sequences, including random ones. 63 

In the present study, we focus on a second core ability that enables fast execution of 64 

unpredictable sequences: the ability to plan future movements ahead of time. Planning of movements 65 

before their initiation, here referred to as preplanning, has been studied extensively (Rosenbaum, 1980; 66 

Rosenbaum et al., 1987, 2007; Churchland et al., 2010; Cisek and Kalaska, 2010; Kaufman et al., 2014; 67 

Wong et al., 2015a; Haith et al., 2016). However, long or complex movement sequences are unlikely to 68 

be fully preplanned, so planning of the remaining elements must continue throughout sequence 69 

production – a process that we have recently named online planning (Ariani and Diedrichsen, 2019). 70 

Take the example of a basketball player dribbling up the court. The player needs to control a continuous 71 

flow of movements (e.g., to keep the dribbling alive) while scouting the court and planning future 72 

movements depending on the actions of both teammates and opposing defenders. Some evidence for 73 

online planning has been observed for a range of behaviors, such as reading (Rayner, 1998, 2014; 74 

Rayner and Reingold, 2015), sequential reaching (Säfström et al., 2013, 2014) and path tracking 75 

(Bashford et al., 2018). However, to what extent the motor system plans upcoming movements during 76 

sequence production (i.e., the horizon of motor planning) remains poorly understood. 77 

Here we asked 1) how far the benefit of planning ahead extends beyond current execution, and 78 

2) whether this planning horizon can be improved with practice. To answer these questions, we used a 79 
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 4 

discrete sequence production (DSP) task, in which participants performed random sequences of 14 80 

keypresses with their right hand in response to numerical cues. We manipulated how many digits 81 

participants could see ahead of the current keypress. Viewing window size ranged from 1 (only the next 82 

movement is cued, as in the serial reaction time task, SRTT) to 14 (the entire sequence shown at once, 83 

as in the DSP task). Participants practiced producing varying sequences over 5 days. This design allowed 84 

us to examine both the horizon of motor planning in sequence production and the influence of practice 85 

on the planning horizon.  86 
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 5 

Methods 87 

Participants 88 

Seventeen right-handed neurologically healthy volunteers (8 women, 9 men; age 18–36 years, mean 89 

25.81 years, SD 5.09 years) were recruited for this study. Handedness was assessed with the Edinburgh 90 

Handedness Inventory (mean 82.81, SD 18.07). Individuals participated in 5 sessions of practice (2 hours 91 

each, on 5 separate days). All participants provided written informed consent and were naive to the 92 

purposes of the study. Experimental methods were approved by the Research Ethics Board at Western 93 

University. Two participants abandoned the study after the first session of practice. One participant 94 

had an unusually high error rate (> 30%, while every other participant managed to keep the error rate 95 

< 20%, as per instructions). These 3 participants were excluded from successive analyses (final N = 14). 96 

For one of the remaining 14 participants, age and handedness data was missing. 97 

 98 

Apparatus 99 

Participants placed their right hand on a custom-made keyboard (Fig. 1A), with a force transducer 100 

(Honeywell FS series) mounted underneath each key. The keys were immobile and measured isometric 101 

finger force production. The dynamic range of the force transducers was 0-16 N and the resolution 0.02 102 

N. A finger press/release was detected when the force crossed a threshold of 1 N. The forces measured 103 

from the keyboard were low pass filtered, amplified, and sent to PC for online task control and data 104 

recording. Numerical stimuli were shown in white against a black background, horizontally aligned in a 105 

single line, and spanned ~36° of visual angle for an entire sequence. 106 

 107 

Procedure 108 

In each of the five practice sessions, participants sat in front of a computer screen with their right hand 109 

on the keyboard. The task required participants to produce sequences of keypresses in response to 110 

numerical cues appearing on the screen (numbers 1 to 5, corresponding to fingers of their right hand, 111 

thumb to little finger, respectively) as quickly and accurately as possible (Fig. 1A). On every trial, only a 112 

fixed number of digits ahead of the current press position (viewing window size, w) were revealed to 113 

the participants, while the rest were masked with asterisks (Fig. 1B). The masked digits were revealed 114 

to the participant as they proceeded, from left to right, with the presses in each sequence. The window 115 

size varied within the domain of w = {1, 2, 3, 4, 5, 6, 7, 8, 14}, and was randomized across trials within 116 

every block. As an attentional pre-cue, during the inter-trial interval (ITI, 1.5 seconds) participants were 117 

presented with a fixation cross on the location of the first digit in the sequence. With every press, 118 

subjects received feedback about the correctness of their action: the white numbers turned either 119 
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 6 

green or red and were accompanied by a corresponding sound for correct and incorrect presses, 120 

respectively. 121 

 122 

 123 

 124 
Figure 1 | Varying viewing window in a discrete sequence production (DSP) task. A. Example 125 
trial in a DSP task with viewing 2 items ahead of the current keypress, while the remaining 126 
items are masked by asterisks. B. Viewing window size (w) manipulation, from w = 1 127 
(equivalent to a simple reaction time task), to w = 14 (display of the entire sequence at once). 128 
The arrow indicates the from-left-to-right direction of response order. Participants could start 129 
each sequence whenever they felt ready and were rewarded on the basis of their movement 130 
time (MT, the time from the first keypress to the release of the last key in the sequence). 131 

 132 

 133 

To motivate participants to improve in the task, they were rewarded with points based on their 134 

performance after each trial. Points were awarded on the basis of sequence movement time (MT) and 135 

execution accuracy. MT corresponded to the time interval between making the first press in the 136 

sequence to releasing the last press in the sequence. Accuracy was calculated as 1 – error rate 137 

(proportion of error trials in a block) in percentage. Specifically, a trial was considered an error if it 138 

contained one or more incorrect presses, for which participants received 0 points. Correct sequences 139 

were rewarded with at least 1 point. Finally, participants were awarded 3 points if 1) a sequence was 140 

correct and 2) MT 5% or more faster than a specific time threshold. This time threshold was designed 141 

to get increasingly difficult adjusting to every subject’s speed throughout training. It would decrease by 142 

5% from one block to the next if two performance criteria were met: median MT in the current block 143 
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 7 

faster than best median MT recorded hitherto, and mean error rate in the last block ≤ 15%. If either 144 

one of these criteria was not met, the thresholds remained unchanged. At the end of each block, 145 

participants received feedback on their error rate, median sequence MT, total points obtained during 146 

the block, and total points obtained during the session. Subjects were asked to try to maintain an error 147 

rate below 15%. 148 

In the original design, we intended to compare also how the ability to plan ahead might affect 149 

partially familiar (structured) sequences. Therefore, each one of the 5 practice sessions consisted of 8 150 

blocks (27 trials each) of 14-item sequences and 3 blocks (60 trials each) of specific short 3-/4-item 151 

segments that composed the structured sequences. One-third of the trials in the sequence blocks were 152 

randomly generated by random shuffles of the digits 1 to 5. The remaining two-thirds of the trials were 153 

structured sequences. As the results from the structured sequences turned out to be hard to interpret, 154 

the present paper will only focus on the completely unfamiliar, random sequences. The examination of 155 

partially familiar sequences is intended for discussion in future publications. 156 

 157 

Data analysis 158 

Data were analyzed with custom code written in Matlab (The MathWorks, Inc., Natick, MA). To evaluate 159 

the speed of sequence production, we inspected the time intervals between different keypresses. 160 

Reaction times (RT) were defined as the time from stimulus onset to first press (i.e., the first crossing 161 

of the 1 N force threshold). Note that participants were not instructed to react particularly fast. Instead, 162 

they could take as much time as they wanted until they felt ready to start. MTs were defined as the 163 

time between the first press and the release of the last press in the sequence (i.e., the time between 164 

the first and the last crossing of the force threshold). Finally, we calculated inter-press intervals (IPI) 165 

between subsequent pairs of presses in the sequence (i.e., the time interval between every two 166 

consecutive crossings of the force threshold). Unless otherwise noted, we used within-subject repeated 167 

measures ANOVAs and 2-sided paired samples t-tests for statistical inference in assessing the effects 168 

of viewing window or practice on RT, MT, and IPI. Error trials were excluded from data analysis. To 169 

provide meaningful error bars for within-subject comparison, the standard error for each condition was 170 

calculated on the residuals after subtracting the mean across conditions for each participant. This way, 171 

the error bars visualized the size of the relevant error term in a repeated-measures ANOVA. 172 

To describe the relationship between MT and the viewing window size, we used the following 173 

exponential model: 174 

 175 

𝑀𝑇′ = 𝑎 ∗ exp*−𝑏 ∗ (𝑤 − 1)1 + 𝑐, 176 

 177 
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 8 

where MT’ is the predicted MT for a given viewing window size w. Note that for w = 1, the function 178 

reduces to the initial value of the exponential, MT’ = a + c. The asymptote is given by c and the slope 179 

by b. This model was then fit to the MT data of each participant using Matlab's nlinfit() function, 180 

which implements the Levenberg-Marquardt nonlinear least-squares algorithm. We determined the 181 

effective planning horizon (w*), by finding the window size for which the predicted MT of the 182 

participant had dropped 99% of the difference between w = 1 and the asymptote, i.e., by solving the 183 

equation for w: 184 

 185 

𝑤∗ = − log(0.01)/𝑏 + 1, 186 

 187 

where the 0.01 arises from the criterion of the 99% drop (i.e., 1% above the MT’ asymptote). The 188 

improvement in effective planning horizon with practice was then assessed by fitting the model to the 189 

data of each participant on each day and comparing w* between day 1 and day 5 with a within-subject 190 

2-sided paired samples t-test. While the use of a 99% criterion is somewhat arbitrary, changes in this 191 

criterion only scale the effect planning horizon by a specific value but do not change the outcome of 192 

the statistical analysis. 193 

194 
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 9 

Results 195 

Preplanning of future movements speeds up sequence production 196 

First, we assessed the benefit of being able to plan future finger movements on sequence production. 197 

To determine this, we varied the amount of available information and tested how this window size 198 

affected the speed of performance. On average, across all days of practice, larger window sizes 199 

produced shorter MTs (Fig. 2A), as confirmed by the highly significant main effect of window size on 200 

MT in a repeated measures ANOVA (F8,104 = 176.980, p < 10e-10). This suggests that the availability of 201 

visual information allows for preplanning of sequential actions into the future, which in turn reduces 202 

MT. Interestingly, this benefit appeared to plateau around a window size of 3 or 4. Indeed, when we 203 

compared the MT of each viewing window to the average MT for larger window sizes, we found a 204 

significant difference for w = 3 vs. w > 3 (t13 = 4.644, p = 4.591e-04), but not for w = 4 vs .w > 4 (t13 = 205 

2.083, p = 0.058). To obtain an individual measure of the planning horizon, we fit an exponential model 206 

to the MT curve of each participant (Fig. 2B, see Methods). 207 

 208 

 209 

 210 
Figure 2 | The benefit of planning ahead on sequential performance. A. 211 
Average movement time as a function of viewing window, across the 5 days of 212 
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 10 

practice. B. Method used to estimate the effective planning horizon. Example 213 
data from one participant (gray) is fit to an exponential model (magenta). The 214 
intersection between performance at 99% of asymptote and the exponential fit 215 
was chosen as criterion to determine the effective planning horizon. Box plots 216 
show the median and whole range of individual data points (one per 217 
participant). Shaded areas reflect standard error of the mean. 218 

 219 

 220 

Next, we decided on an arbitrary criterion on the exponential (99% of the MT drop to the asymptote) 221 

to establish the individual effective horizon of each participant. This analysis revealed a mean effective 222 

planning horizon of 3.58 ± 0.28 items ahead of the current item, confirming that, on average, 223 

participants were able to plan at least 3 keypresses into the future. 224 

 225 

Practice expands the planning horizon 226 

We then asked whether practicing sequences would affect the ability to plan future movements by 227 

comparing performance at the beginning (day 1) and at the end (day 5) of practice (Fig. 3A). We 228 

observed that MT improved across all window sizes (main effect of day: F1,13 = 18.004, p = 0.001). 229 

Significant improvements were found even for a window size of 1 (MT difference day 1 vs. day 5: 586 230 

± 262 ms; t13 = 2.234, p = 0.022). This condition was, in essence, a serial reaction time task, where each 231 

cue was only presented after the preceding key was pressed. Therefore, participants were forced to 232 

serially cycle through the planning and execution of every press, with no possibility for planning ahead. 233 

Thus, MT improvements for a window size of 1 must be a consequence of 1) better stimulus 234 

identification, 2) better stimulus-response (S-R) mapping, or 3) better execution (i.e., motor 235 

implementation) of single responses. 236 

Importantly, if learning was restricted to improvement in any of these three processes, we 237 

would predict equal MT improvement across all window sizes, given that stimulus identification, S-R 238 

mapping, and execution are necessary steps across all viewing windows. Contrary to prediction, 239 

however, we found a significant interaction between window size and stage of practice (day 1 vs. day 240 

5; F8,104 = 3.220, p = 0.003). Furthermore, when we directly inspected the MT improvement (percentage 241 

change relative to average MT for each horizon, Fig. 3B), we found significantly larger gains for larger 242 

viewing windows (w = 2 vs. w = 1: t13 = 3.338, p = 0.005; w = 3 vs. w = 2: t13 = 2.722, p = 0.017), until 243 

again the gains plateau for w = 4 or larger (w = 4 vs. w = 3: t13 = 0.113, p = 0.912). Thus, although 244 

responses to single items improved with practice, this improvement cannot explain why performance 245 

benefits were more pronounced for larger window sizes. Instead, the additional performance benefit 246 

must be due to the fact that participants became more efficient at using the advance information 247 

provided by larger viewing windows. In addition to the evidence for more efficient planning of future 248 

elements, we also found evidence that participants planned further into the future. When we 249 
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 11 

determined the effective planning horizon for each participant and day (Fig. 2B) using an exponential 250 

fit (see Methods), we found that the planning horizon expanded from 3.20 to 3.88 digits ahead of 251 

current action between day 1 and day 5 (paired-samples t-test, t13 = 2.840, p = 0.014, Fig. 3C). Thus, 252 

participants not only became more efficient in planning but planned sequential actions further into the 253 

future. 254 

 255 

 256 

 257 
Figure 3 | The effective planning horizon increases with practice. A. Average 258 
movement time (MT) as a function of viewing window (w), separately for early 259 
(day 1, red) and late (day 5, blue) stages of sequence practice. B. Difference in 260 
performance (sequence MT) between early and late practice (data in A), 261 
normalized by average MT, as a function of w. C. Mean effective planning 262 
horizon (estimated as shown in Fig. 2B) for each day of practice. Box plots show 263 
the median and whole range of individual data points (one per participant). 264 
Shaded areas (or error bars) reflect standard error of the mean. *p < 0.05, two-265 
tailed paired-samples t-tests. 266 

 267 

 268 

Note that faster MTs for larger window sizes did not occur at the expense of reduced accuracy in 269 

performance. On average, the percent accuracy of presses remained roughly constant around 85-90% 270 
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 12 

across all viewing window conditions. We found no significant main effect of window size (F8,104 = 1.182, 271 

p = 0.317), practice stage (F1,13 = 0.325, p = 0.578), or interaction between the two factors (F8,104 = 0.548, 272 

p = 0.818). 273 

Taken together, these results show that participants became faster in sequence production by 274 

getting better at 1) making single responses (involving stimulus identification, S-R mapping, or 275 

execution) and 2) exploiting available information to plan more upcoming movements in advance. 276 

 277 

Reaction times increase with the amount of preplanning 278 

If participants invested time in preplanning the first few elements of each sequence, then we would 279 

expect this to be reflected in the reaction times: namely, participants should start a sequence earlier 280 

when presented with a smaller window size, and later for larger window sizes, since they would be 281 

preparing more of the upcoming keypresses. Even though fast RTs were not required by the task, 282 

participants likely tried to balance the benefit of getting more points with the benefit of finishing the 283 

experiment more quickly. On average across all days (Fig. 4A), larger viewing windows resulted in slower 284 

RTs. A repeated-measures ANOVA substantiated this effect (F8,104 = 4.563, p = 8.726e-05). 285 

 286 

 287 
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 13 

Figure 4 | Longer reaction times for larger viewing windows. A. Average 289 
reaction time as a function of viewing window. B. Subset of data in A, 290 
separating between early (day 1, red) and late (day 5, blue) stages of practice. 291 
Box plots show the median and whole range of individual data points (one per 292 
participant). Shaded areas reflect standard error of the mean. 293 

 294 

 295 

However, as observed for MTs, RTs appeared to plateau for window sizes larger than 3. Thus, even 296 

though participants could see more than 3 elements on the screen and had virtually unlimited time to 297 

preplan, they initiated the sequence in approximately 700-800 ms from cue onset. 298 

Did this dependence of RTs on the amount of available information change with practice? 299 

When we compared RTs across early and late stages of practice (Fig. 4B) we found no indication that, 300 

late in practice, participants waited longer to initiate a sequence (F1,13 = 0.012, p = 0.913), or that their 301 

strategy changed over time (no interaction between practice stage and window size: F8,104 = 1.187, p = 302 

0.314). Thus, even though over time participants did not spend more time preplanning, the MT results 303 

indicate that motor planning improved, as participants could make use of more visual information in 304 

roughly the same amount of preparation time (i.e., with comparable RTs). 305 

 306 

Planning ahead continues during sequence production 307 

So far, our results have indicated that participants improve their ability to perform random sequences 308 

of finger movements by becoming more efficient in using the information provided by larger window 309 

sizes. However, it remains unclear whether participants got better at planning movements before 310 

sequence production (preplanning), during sequence production (online planning), or both. To 311 

distinguish the contributions of preplanning and online planning to performance improvements, we 312 

examined the intervals between individual presses in a sequence (i.e., the IPIs). The rationale behind 313 

this analysis is that short IPIs reflect an increased readiness to press (i.e., better planning) than long 314 

IPIs. If all keypresses were equally well prepared (e.g., as in the case of w = 1, which does not allow 315 

participants to plan ahead), then all IPIs within a sequence should roughly have the same duration 316 

depending on the serial RT (null hypothesis, Fig. 5A). Alternatively, if only early presses in a sequence 317 

can be fully preplanned, while later presses can only be minimally planned, or are completely 318 

unplanned, then early IPIs should be significantly shorter than later IPIs, which will revert to serial RT 319 

speed (Fig. 5B). Finally, if online planning continues in parallel with execution, we should expect an 320 

effect of window size also on mid to late IPIs (Fig. 5C). 321 

In light of these predictions, we first inspected the IPIs averaging across practice stages (Fig. 322 

5D). For a window size of 1, all IPIs had approximately the same duration (~500 ms), reinforcing the 323 

idea that for W = 1, each keypress is selected, planned, and executed independently. In contrast, for 324 
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window sizes larger than 1, we found a clear effect of IPI placement (i.e., finger transition number within 325 

the sequence) on IPI duration (F12,156 = 33.111, p < 10e-10). Specifically, the first and last IPIs were 326 

consistently performed much faster than the middle IPIs, regardless of the size of the viewing window 327 

(W > 1). For W = 2, the first IPI (first 2 finger presses) was faster than subsequent IPIs; for W = 3, the 328 

first two IPIs (first 3 finger presses) were faster than subsequent IPIs. For W > 3, this preplanning 329 

advantage appeared to be spread over the first 3 finger transitions. This pattern of results clearly 330 

indicates that the initial speed up reflects the fact the visible digits can be preplanned during the 331 

reaction time, and hence are executed faster. 332 

 333 

 334 

 335 
Figure 5 | Predictions and analysis of inter-press intervals (IPIs). Average inter-336 
press interval (IPI) as a function of transition number within each sequence, 337 
separately for viewing window size (w, different shades of gray). 4+ indicates 338 
w ≥ 4. A. Prediction 1 (null hypothesis): no effect of w, all IPIs roughly in the 339 
same range. B. Prediction 2: Fast early IPIs reflect the benefit of preplanning, 340 
but for unplanned keypresses the benefit of viewing ahead is minimal. C. 341 
Prediction 3: even mid to late IPIs benefit from larger w, indicating that both 342 
pre- and online planning are contributing to fast sequence production. D. 343 
Actual group data of mean IPIs for each keypress transition, separately for each 344 
viewing window. 345 
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 347 

Consistent with RT and MT data, preplanning does not seem to improve further beyond a window size 348 

of 3 or larger. Again, this reinforces the idea that participants preplanned at least the first three 349 

movements of each finger sequence. Once all preplanned keypresses are executed, planning must 350 

continue online, slowing down later IPIs. Thus, the slower IPIs in the middle of the sequence mostly 351 

reflect limits in the speed of online planning. When we restricted our analysis to these middle IPIs 352 

(transitions 5 to 12), the differences between w = 1 and w = 2 (t13 = 19.557, p = 5.037e-11), between w 353 

= 2 and w = 3 (t13 = 5.013, p = 2.374e-04), and between w = 3 and w = 4 remained significant (t13 = 354 

2.182, p = 0.048). This indicates that, just like preplanning, online planning benefits from having visual 355 

information about up to 3 presses into the future, thus highlighting clear parallels between the two 356 

processes. 357 

We also observed that, consistently across all window sizes greater than 1, the last IPI was 358 

executed much more quickly than preceding IPIs. Currently, we can only speculate about the reasons 359 

for this result. One idea is that participants tend to select and plan the last 2 presses as a unit. These 360 

presses can then be executed very quickly, as no more movements need to be planned after those two 361 

(which frees up planning capacity). Alternatively, participants could optimize the last two presses from 362 

an execution biomechanics perspective. Given that no subsequent movements are needed, 363 

participants do not have to maintain a specific hand posture that would be required for fast execution 364 

of successive movements. Instead, they are free to optimize their hand posture for comfort and speed 365 

only in regard to making the last two presses. 366 

 367 

Both pre- and online planning improve with practice 368 

Finally, we asked whether practice effects on MT are more likely related to improvements in 369 

preplanning, online planning, or both. From day 1 to day 5 (Fig. 6A), we observed significant main 370 

effects of practice stage on IPI duration on both early (IPI 1-3: F1,13 = 17.623, p = 0.001) and middle IPIs 371 

(IPI 5-12: F1,13 = 15.988, p = 0.002). To quantify the relative contributions of preplanning and online 372 

planning, we carried a separate analysis (Fig. 6B) averaging across IPIs that were more likely preplanned 373 

(IPI 1 for w = 2, IPI 1-2 for w = 3, and IPI 1-3 for w ≥ 4), or not (the remaining IPIs for each viewing 374 

window condition, which had to be planned online). For w = 1, only the first press, but not the first IPI, 375 

can be preplanned. Therefore, we cannot attribute any of the observed improvements to either 376 

sequence preplanning or online planning. Instead, eventual improvements need to arise from improved 377 

visual identification, S-R mapping, or execution. We computed the IPI difference between day 1 and 378 

day 5 for these three categories, normalized it by the average IPI duration across days (separately for 379 

each category), and plotted it against viewing window size (Fig. 6B). This analysis confirmed that IPIs 380 
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got faster with practice even for w = 1 (one-sample t-test vs zero difference: t13 = 2.305, p = 0.038). 381 

Additionally, we found clear further improvements in IPI duration for w > 1: compared to w = 1, these 382 

effects were present both for the IPIs that were likely preplanned (t13 = 4.028, p = 0.001), and for those 383 

that relied on online planning (t13 = 6.009, p = 4.379e-05). There was no significant difference between 384 

preplanning and online planning in terms of learning improvements (F1,13 = 1.141, p = 0.305), nor was 385 

there an interaction between planning process and viewing window (F2,26 = 1.000, p = 0.382). Thus, 386 

preplanning and online planning appear to have similar capacity limits and to benefit similarly from 387 

practice in sequence production. 388 

 389 

 390 

 391 
Figure 6 | Improvements in pre- and online planning with practice. A. Mean IPI 392 
as a function of transition number, separately for practice stage (day 1, red; 393 
day 5, blue) and viewing window size (w = 1, 2, 3, 4+ in separate plots). B. 394 
Average IPI difference between day 1 and day 5, normalized by average IPI for 395 
each day, separately for each w and planning process (S-R mapping, purple; 396 
Preplanning, green; Online planning, orange). Box plots show the median and 397 
whole range of individual data points (one per participant). Shaded areas 398 
reflect standard error of the mean. *p < 0.05, two-tailed paired-samples t-tests; 399 
°p < 0.05, two-tailed one sample t-test. 400 
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Discussion 402 

The ability to plan ahead for future actions while executing current ones is a fundamental yet 403 

underappreciated faculty of the human brain. In this study, we manipulated the amount of visual 404 

information available for motor planning while performing a discrete sequence production task. Our 405 

results provide evidence that participants planned multiple sequential actions (at least 3) into the future 406 

(Fig. 2-4). Furthermore, we show larger practice-induced benefits in speed for larger window sizes (MT 407 

difference, Fig. 3), as well as increases in the horizon of sequence planning (based on the exponential 408 

fit, Fig. 3). In-depth analysis of the inter-press intervals (Fig. 5-6) revealed that the enhanced planning 409 

of future actions was present both before (preplanning) and during (online planning) sequence 410 

production. 411 

 412 

Fast sequence production depends on the speed of online planning 413 

Before a voluntary movement can be performed, it needs to be planned (Keele, 1968; Keele and 414 

Summers, 1976; Kerr, 1978; Rosenbaum, 1980; Bock and Arnold, 1992; Crammond and Kalaska, 1994, 415 

2000; Cisek and Kalaska, 2002, 2004), at least to some degree (Cisek and Kalaska, 2010; Ames et al., 416 

2014). However, many real-life motor skills require quick sequences of movements that are not always 417 

predictable. Proficiency in such skills depends on our ability to select and plan future movements both 418 

before sequence onset and during sequence production. To shed light on this ability, we used a viewing 419 

window paradigm that varied the amount of information available for planning the next finger 420 

movements. We replicate previous work showing evidence for anticipatory planning in the context of 421 

movement sequences (Rosenbaum et al., 1987; Rhodes et al., 2004; Herbort and Butz, 2009), and 422 

longer reaction times when more elements are available for planning ahead (Henry and Rogers, 1960). 423 

Furthermore, we show that, once preplanning reaches capacity, the execution of later elements in the 424 

sequence slows down, which we interpret as evidence that successive movements need to be planned 425 

online. In a previous paper (Ariani and Diedrichsen, 2019), we have reported that this is the case even 426 

when participants execute relatively short (e.g., 5-item) and well-known (e.g., trained) sequences. By 427 

varying the time available for preplanning a sequence, we could show that only the first 3 sequence 428 

elements were planned prior to execution. Further evidence for online planning across a range of 429 

activities comes from studies investigating how visual information is used for motor planning. For 430 

example, it has been shown that participants move their eyes to future targets in reading (Rayner, 431 

1978), sequential reaching (Säfström et al., 2014), and object manipulation (Johansson et al., 2001). 432 

More directly, a recent unpublished study revealed the horizon of online planning by restricting the 433 

viewing window in a continuous manual tracking task (Bashford et al., 2018). Together, these studies 434 

support our view that the ability of the motor system to deal with a stream of incoming stimuli while 435 
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producing motor responses (i.e., the speed of online planning) enables skillful performance for 436 

unpredictable movement sequences. 437 

 438 

Motor planning has a limited capacity 439 

Despite its importance, our ability to plan future movements is somewhat limited. We found the span 440 

of the planning horizon (~3-4 movements) to be smaller than the typical amount of information that 441 

can be stored in short-term memory (Miller, 1956; Cowan, 2010). However, according to a more recent 442 

theory, short-term memory capacity is not dictated by a fixed number of items, but rather should be 443 

viewed as a finite resource that can be allocated flexibly across multiple items via selective attention 444 

(Luck and Vogel, 1997; Bays and Husain, 2008). Similarly, characterizing the planning horizon as having 445 

a hard, discrete limit (i.e., a specific number of movements) may not be the best description. A more 446 

realistic model may be that planning capacity has a soft horizon that depends on the amount of 447 

cognitive resources available for planning. In accordance with the competitive queueing hypothesis 448 

(Averbeck et al., 2002, 2006; Rhodes et al., 2004; Kornysheva et al., 2019; Mantziara et al., 2020), this 449 

idea predicts that more planning resources are allocated to the immediately upcoming actions, and 450 

decreasing amount of attention is paid to future actions. Eventually, subjects run out of resources and 451 

start executing responses. Completing preceding movements frees up new resources that can be 452 

allocated to plan successive movements online. Thus, the discrepancy between the short-term memory 453 

span and planning horizon may reflect the fact that planning a movement takes up more central 454 

resources than remembering a digit. 455 

 456 

The horizon of motor planning can be expanded with practice 457 

Conceptualizing the capacity of motor planning as a limited resource makes it interesting to ask 458 

whether the planning horizon can be improved with practice. Indeed, in agreement with a previous, 459 

unpublished study (Bashford et al., 2018), we found that practice had expanded the span of the 460 

planning horizon. Our conclusion was based on two key observations: 1) the benefit of seeing further 461 

ahead was greater late than early in practice (significant interaction between w and day on MT); 2) the 462 

influence of window size on MT can be described with an exponential function whose decay rate 463 

decreased with practice (change in the slope of the exponential). Speed improvements that are 464 

independent of the amount of available information can be attributed to improved stimulus 465 

identification, S-R mapping, or implementation of single responses (Haith et al., 2016; Ariani and 466 

Diedrichsen, 2019; Hardwick et al., 2019). As participants become more fluent at translating numbers 467 

on the screen into finger movements, each individual press is executed more quickly, thus contributing 468 

to faster sequence production across all window sizes. The greater performance benefits for larger 469 
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window sizes, together with the expansion of the effective planning horizon, however, clearly indicate 470 

that participants improved their ability to make use of advance information. Importantly, we show that 471 

these improvements occur not only for preplanning (i.e., before movement onset) but also for online 472 

planning (i.e., after movement onset). Unlike previous studies that examined sequence-specific effects 473 

in sequence production (Verwey, 2001; Verwey and Wright, 2004; Wiestler and Diedrichsen, 2013; 474 

Ariani and Diedrichsen, 2019; Berlot et al., 2020), here we focused on random sequences. Note that, 475 

because of this, the observed practice effects cannot be explained by the formation of specific chunking 476 

structures previously proposed as a way to deal with the complexity of planning long movement 477 

sequences (Ramkumar et al., 2016; Popp et al., 2020). Instead, we found that even when people have 478 

no prior experience with a sequence, they can over time improve in the motor planning processes that 479 

underlie sequence production. In other words, practice effects are not only about learning what 480 

sequence to produce, but also about learning how to coordinate execution and planning efficiently. 481 

 482 

Do pre- and online planning rely on the same neural process? 483 

Our results revealed notable similarities between preplanning and online planning. Both processes 484 

contributed to faster sequential performance when participants had a chance to see at least 3 485 

upcoming sequence elements, with diminishing gains for larger window sizes. Moreover, practice-486 

related improvements on the relevant IPIs (early IPIs for preplanning, late IPIs for online planning) were 487 

comparable between the two processes. These similarities suggest that preplanning and online 488 

planning may rely on the same process, i.e., motor planning, either happening in isolation before 489 

movement initiation, or in parallel, simultaneous with execution. This raises questions about the 490 

neuronal implementation of pre- and online planning. Previous research has shown that movement 491 

planning is also reflected in brain structures responsible for movement execution, such as the primary 492 

motor cortex (M1), and the dorsal premotor cortex (PMd, Crammond and Kalaska, 2000; Ames et al., 493 

2014, 2019; Elsayed et al., 2016; Ariani et al., 2018; Lara et al., 2018). A recent study (Ames et al., 2019) 494 

also shows that re-planning of an ongoing movement engages similar neuronal population dynamics as 495 

preplanning it. The authors recorded M1 and PMd activity in two monkeys performing a delayed 496 

reaching task with occasional target jumps (20% of trials) that could occur during the RT (before 497 

movement onset) and would require mid-reach corrections. They found that neuronal population 498 

activity related to the target jump played out in both the neural state-spaces defined by preparatory 499 

and movement activity recorded on non-jump trials. However, it remains unclear which neuronal 500 

populations are engaged when online planning is not related to the ongoing movement, but rather to 501 

future and possibly different movements. Since the neuronal state of the main sensorimotor regions is 502 

likely occupied by execution processes related to the ongoing movement, do online planning processes 503 
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shift to other structures? Or do they engage separate state-space dimensions within the same region? 504 

Our study lays the behavioral foundation for this investigation, showing that humans are able to plan 505 

multiple movements into the future while simultaneously controlling an ongoing movement. This ability 506 

of online planning improves with practice and is a key determinant of any skilled sequence production. 507 

  508 
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