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Abstract

Geometric deep learning has well-motivated applications in the context of biology,1

a domain where relational structure in datasets can be meaningfully leveraged.2

Currently, efforts in both geometric deep learning and, more broadly, deep learning3

applied to biomolecular tasks have been hampered by a scarcity of appropriate4

datasets accessible to domain specialists and machine learning researchers5

alike. However, there has been little exploration of how to best to integrate6

and construct geometric representations of these datatypes. To address this, we7

introduce Graphein as a turn-key tool for transforming raw data from widely-used8

bioinformatics databases into machine learning-ready datasets in a high-throughput9

and flexible manner. Graphein is a Python library for constructing graph and10

surface-mesh representations of protein structures and biological interaction11

networks for computational analysis. Graphein provides utilities for data retrieval12

from widely-used bioinformatics databases for structural data, including the13

Protein Data Bank, the recently-released AlphaFold Structure Database, and14

for biomolecular interaction networks from STRINGdb, BioGrid, TRRUST15

and RegNetwork. The library interfaces with popular geometric deep learning16

libraries: DGL, PyTorch Geometric and PyTorch3D though remains framework17

agnostic as it is built on top of the PyData ecosystem to enable inter-operability18

with scientific computing tools and libraries. Graphein is designed to be highly19

flexible, allowing the user to specify each step of the data preparation, scalable20

to facilitate working with large protein complexes and interaction graphs, and21

contains useful pre-processing tools for preparing experimental files. Graphein22

facilitates network-based, graph-theoretic and topological analyses of structural23

and interaction datasets in a high-throughput manner. As example workflows, we24

make available two new protein structure-related datasets, previously unused by25

the geometric deep learning community. We envision that Graphein will facilitate26

developments in computational biology, graph representation learning and drug27

discovery.28

29

Availability and implementation: Graphein is written in Python. Source code,30

example usage and tutorials, datasets, and documentation are made freely available31

under the MIT License at the following URL: graphein.ai32
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Figure 1: Graphein rapidly transforms and integrates raw biological data into actionable machine
learning-ready datasets.

1 Introduction33

Geometric deep learning refers to the application of deep learning methods to data with an underlying34

non-Euclidean structure, such as graphs or manifolds [1]. These methods have already been applied35

to a number of problems within computational biology and computational structural biology [2, 3,36

4, 5, 6, 7, 8], and have shown great promise in the contexts of drug discovery and development [9].37

Geometric deep learning libraries have been developed, providing graph representation functionality38

and in-built datasets - typically with a focus on small molecules [10, 11]. Featurisation schemes39

and computational analysis of small molecular graphs are a mature area of research. However, data40

preparation for geometric deep learning in structural biology and interactomics is yet to receive the41

same attention. Protein function is intricately tied to the underlying molecular structure which is42

significantly more complex than small molecules. Protein graphs can be populated at different levels43

of granularity, from atomic-scale graphs similar to small molecules, to residue-level graphs. The44

relational structure of the data can be captured via spatial relationships or higher-order intramolecular45

interactions which are not present in small molecule graphs. Furthermore, many biological functions46

are mediated by interacting biomolecular entities, often through direct physical contacts governed by47

their 3D structure. As a result, greater control over the data engineering and featurisation process of48

structural data is required. Little attempt has been made to explore the effect of graph representations49

of biological structures and to unify structural data and interaction data in the context of machine50

learning. Graphein is a tool to address these issues by providing flexibility to researchers, decrease51

the time required for data preparation and facilitate reproducible research.52

Proteins form complex three dimensional structures to carry out cellular functions. Decades of53

structural biology research and recent developments in protein folding have resulted in a large pool54

of experimentally-determined and modelled protein structures with massive potential to inform55

future research [12, 13]. However, it is not clear how best to represent these data in machine56

learning experiments. 3D Convolutional Neural Networks (3DCNNs) have been routinely applied57

to grid-structured representations of protein structures and sequence-based methods have proved58

commonplace [14, 15, 16]. Nonetheless, these representations fail to capture relational information59

in the context of intramolecular contacts and the internal chemistry of the biomolecular structures.60

Furthermore, these methods are computationally inefficient due to convolving over large regions of61

empty space, and computational constraints often require the volume of the protein considered to62

regions of interest, thereby losing global structural information. For instance, in the case of protein-63

ligand interaction and binding affinity prediction, central tasks in data-driven drug discovery, this often64

takes the form of restricting the volume to be centred on a binding pocket, thereby losing information65

about allosteric sites on the protein and possible conformational rearrangements that contribute66

to molecular recognition. Furthermore, 3D volumetric representations are not translationally and67

rotationally invariant, deficiencies that are often mitigated using costly data augmentation techniques.68

Graphs suffer relatively less from these problems as they are translationally and rotationally invariant.69

Structural descriptors of position can be leveraged and meaningfully exploited by architectures such70

as Equivariant Neural Networks (ENNs), which ensure geometric transformations applied to their71

inputs correspond to well-defined transformations of the outputs.72
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Proteins and biological interaction networks can very naturally be represented as graphs at different73

levels of granularity. Residue-level graphs represent protein structures as graphs where the nodes con-74

sist of amino-acid residues and the edges the relations between them - often based on intramolecular75

interactions or euclidean distance-based cutoffs. Atom-level graphs represent the protein structure in76

a manner consistent with small-molecule graph representations, where nodes represent individual77

atoms and edges the relations between them - often chemical bonds or, again, distance-based cutoffs.78

The graph structure can further be elaborated by assigning numerical features to corresponding nodes79

and edges as well as the whole graph. These features can represent, for instance, chemical properties80

of the residue or atom-type, secondary structure assignments or solvent accessibility metrics of81

the residue. Edge features can include bond or interaction types, or distances. Graph features can82

included functional annotations or sequence-based descriptors. In the context of interaction networks,83

structural data can be overlaid on protein nodes providing a multi-scale view of biological systems84

and function. Graphein provides a bridge for geometric deep learning into structural interactomics.85

Graph representations of proteins have a history of successful applications in machine learning86

and structural analysis projects in structural biology [17, 18, 19]. Web-servers for computing87

protein structure graphs exist [20, 21], however the lack of fine-grained control over the construction88

and featurisation, public APIs for high-throughput programmatic access, ease of integrating data89

modalities, and incompatibility with deep learning libraries motivated the development of Graphein.90

2 Related Work91

Geometric deep learning methods have demonstrated their suitability for tasks across domains. In92

part, this has been fuelled by the development of libraries that provide easy access to non-Euclidean93

data objects and models from the literature. Deep Graph Library (DGL) [10] and PyTorch Geometric94

[11] are the main open-source frameworks built for PyTorch [22]. Other, less established, tools95

include: Graph Nets [23] for Sonnet [24]/Tensorflow [25] and Jraph [26] for JAX [27].96

In-built dataset support is a common feature of geometric deep learning frameworks. More specialised97

libraries, such as DGL-LifeSci, DeepChem and TorchDrug, provide datasets, featurisation, neural98

network layers and pre-trained models for tasks involving small molecules in the life sciences,99

computational chemistry and drug development [28, 29, 30]. TorchDrug and DeepChem provide100

reinforcement learning environments to fine tune generative models for physicochemical properties101

such as drug-likeness (QED) and lipophilicity (LogP). Therapeutics Data Commons provides ML-102

ready datasets for small molecule and biologics tasks but with no protein structural datasets [31].103

Biomolecular tasks are included in many graph representation learning benchmarks. The Open104

Graph Benchmark (OGB) includes graph property prediction tasks on small molecules, link pre-105

diction tasks (ogbl-ppa) based on protein-protein interaction prediction and a biomedical knowl-106

edge graph (ogbl-biokg), and a node classification task based on prediction of protein function107

(ogbn-proteins) [32]. The TUDataset contains three biologically-motivated benchmark datasets108

for graph classification, (PROTEINS, ENZYMES and DD) relevant to applications in structural biology109

[33]. For PROTEINS and DD the goal is to predict whether or not a protein is an enzyme and these are110

derived from the same data under differing graph construction schemes [34, 35]. ENZYMES provides111

a task based on assigning Enzyme Commission (EC) numbers to graph representations of enzyme112

structures derived from the BRENDA database [36]. More recently, ATOM3D provides a collection113

of benchmark datasets for structurally-motivated tasks on biomolecules and show leveraging struc-114

tural information consistently improves performance, and that the choice of architecture significantly115

impacts performance depending on the context of the task [37].116

Whilst tools exist for converting protein structures into graphs, they typically focus on visualisation117

and leave much to be desired for deep learning practioners. GraProStr is a web-server that enables118

users to submit structures for conversion into a graph which can be downloaded as textfiles [38].119

This provides users with limited control over the construction process, low-throughput and limited120

featurisation support. Furthermore GraProStr provides no utilities for machine learning or unifying121

structural and interactomic data o. Mayavi, and GSP4PDB & LIGPLOT provides utilities for122

visualising protein structures and protein-ligand interaction as graphs, respectively. [39, 40, 41].123

Bionoi is a library for representing protein-ligand interactions as voronoi diagram images specifically124

for applications in machine learning [42],125
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The protein structure prediction model AlphaFold2 is perhaps the most promising example of126

geometric deep learning applied to structural biology. Highly-accurate protein structure prediction127

using AlphaFold2 has been applied at the proteome scale to humans and 20 key model organisms128

[13, 43]. As a result of these developments, we anticipate a significant amount of growth in the129

availability of protein structural and interaction data in the coming years. In particular, we identify130

structural interactomics as an emerging area for geometric deep learning as sparse structural coverage131

of the interactome can be infilled with modelled structures. The question of how to best leverage132

and integrate these data with other modalities remains. A recent review of biomedical knowledge133

graph datasets identifies graph composition, feature and metadata incorporation and reproducibility134

as key challenges [44]. We have developed Graphein to address these issues and ensure these data are135

accessible to computational scientists.136

3 Graphein137

Graphein provides utilities for constructing geometric representations of protein and RNA structures,138

protein-protein interaction networks, and gene regulatory networks. The library is designed for both139

novice and expert users through the use of a high or low-level API. The high-level API takes standard140

biological identifiers and a configuration object as input to yield basic geometric representations of the141

input data. The low-level API offers a detailed customisation of the graph selection from the input data,142

allowing users to define their own data preparation, graph construction and featurisation functions in143

a consistent manner. Graphein is built on the PyData Stack to allow for easy inter-operability with144

standard scientific computing tools and deep learning framework agnosticism. Graphein is organised145

into submodules for each of the modalities it supports (Figure 2).146
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Figure 2: Overview of graph and mesh construction and featurisation schemes for data modalities sup-
ported by Graphein. Modules are inter-operable allowing protein or RNA structure graph construction
to be applied to nodes in regulatory networks.
3.1 Protein Structure Graphs147

Graphein interfaces with the PDB and the AlphaFold Structure Database to create geometric rep-148

resentations of protein structures. Furthermore, users can supply their own .pdb files, enabling149

pre-processing with standard bioinformatics tools and pipelines. An overview of featurisation150

schemes is provided in Supplementary Information A.151
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Figure 3: Example protein structure outputs from Graphein. (A) Example protein surface (3eiy). (B)
Example node feature matrix for a residue-level graph. Features include low-dimensional amino acid
embeddings, secondary structure assignments, solvent accessibility and x, y, z positions of nodes.
(C) Graphs computed from α-carbons in the example protein under a variety of edge construction
schemes. Node sizes correspond to degree. (D) Deformation of an icosphere to the example protein
mesh constructed by Graphein in PyTorch3D

3.1.1 Node Representations152

Graphs can be constructed for all chains contained within a polypeptide structure, or for a user-153

defined selection of chains. This is useful in contexts where regions of interest on a protein may be154

localised to a single chain. For residue-level graphs, users can choose between atom-based positional155

information, or sidechain centroid. Sidechain centroids are calculated as the centre of gravity of the156

deprotonated residue. Residue-level graph nodes can be featurised with a one-hot encoding of amino157

acid type, physicochemical and biochemical properties retrieved from the ExPaSY ProtScale [45]158

which includes 61 descriptors such as iso-electric points, mutability and transmembrane tendencies.159

Additional numerical features can be retrieved from AAIndex [46]. Low-dimensional embeddings160

of amino acid physicochemical properties are provided from Kidera et al. [47] and Meiler et al161

[48]. In addition to fixed embeddings, sequence embeddings can be retrieved from large pre-trained162

language models, such as the ESM-1b Transformer model [49] and BioVec [50]. Secondary structural163

information can be included via a one-hot encoded representation of eight state secondary structure164

and solvent accessibility metrics (ASA, RSA, SSA) computed by DSSP [51]. x, y, z positions are165

added as node features. Functionality for user-defined node or edge features is also provided with166

useful utilities allowing for computation or aggregation of features over constituent chains. Figure167

2 illustrates an overview of the mesh and graph construction methods as well as the node and edge168

featurisation schemes; Figure 3 shows example visualisations of graph and meshes produced by169

Graphein.170

3.1.2 Edge Representations171

Graphein provides utilities in the high-level API for a number of edge-construction schemes. The172

low-level API provides a simple and intuitive way for users to define novel edge construction schemes.173

Edge construction methods are organised into distance-based, intramolecular interaction-based, and174

atomic structure-based submodules. Each of these edge construction methods are composable to175
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produce multirelational graphs. This is particularly useful for models that operate on different levels to176

capture varying aspects of the underlying network. As a motivating example, a multi-track approach177

has been successfully applied to the protein folding problem [52].178

Functionality for computing intramolecular graph edges is provided through distance-based heuristics179

as well as through an optional dependency, GetContacts [53]. Euclidean distance-based edges can be180

computed with a user-defined threshold. Functionality for constructing k-nearest neighbour graphs,181

where two vertices are connected by an edge if they are among the k nearest neighbours by Euclidean182

distance is included. Graph edges can also be added on the basis of the Delaunay triangulation.183

Delaunay triangles correspond to joining points that share a face in the 3D Voronoi diagram of the184

protein structures. For distance-based edges, a Long Interaction Network (LIN) parameter controls185

the minimum required separation in the amino acid sequence for edge creation. This can be useful in186

reducing the number of noisy edges under distance-based edge creation schemes. Edge featurisation187

for atom-level graphs is provided by annotations of bond type and ring status.188

3.2 Protein Structure Meshes189

Geometric deep learning applied to surface representations of protein structures have demonstrated190

promise on a variety of tasks in the context of structural biology and structural interactomics [8, 54].191

The protein structure mesh module consists of a wrapper for PyMOL, a commonplace molecular192

informatics visualisation tool, and Pytorch3D [55]. PyMol is used to produce a .Obj file from either a193

PDB accession code or a provided .PDB file, enabling the use of pre-processed structures. Pytorch3D194

is used to produce a tensor-based representation of the protein surface as vertices and faces. Users195

can pass any desired parameters or commands controlling the surface calculation to PyMol via a196

configuration object. These parameters include specifying solvent inclusion, solvent probe radius,197

surface mode ({triangles, dots}), surface quality (resolution of mesh). We provide sane defaults for198

first-time users. To our knowledge, this is the first application of PyTorch3D for protein structure199

data.200

3.3 RNA Structures201

Ribonucleic Acid (RNA) is a nucleotide biopolymer capable of forming higher-order structural ar-202

rangements through self-association mediated by complementary base pairing interactions. Graphein203

provides utilities for constructing secondary structure graphs of RNA structures, taking as input an204

RNA sequence and an associated string representation of the secondary structure in dotbracket nota-205

tion [56]. Graphs can be constructed using two types of bonding between nucleotides: phosphodiester206

bonds between adjacent bases, and base-pairing interactions between complementary bases specified207

by the dotbracket string (Figure 4). Graphein also supports addition of pseudoknots - structural motifs208

composed of interactions between intercalated hairpin loops specified in the dotbracket structure209

notation.210

G G U G C G C A U A A C C A C C U C A G U G C G A G C
[ [ [ . { ( ( . . . . ( ( ] ] ] . . . ) . ) . } . ) )

Figure 4: Example RNA Secondary Structure Graph. RNA Secondary structures can be represented
as dotbracket strings and multi-relational graphs. Blue edges indicate phosphodiester backbone
linkages, red edges indicate base-pairing interactions and green edges indicate pseudoknot pairings.

3.4 Interaction Networks211

Interactomics presents a clear application of geometric deep learning as these data are fundamentally212

relational in structure. Biomolecular entities can be represented as nodes, and their associated func-213
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tional relationships and physical interactions can be represented as edges with associated metadata,214

such as the direction and nature of regulation. For a full discussion of applications, datasets and mod-215

elling techniques we refer readers to the reviews by [44] and [9]. Graphein implements interaction216

graph construction from protein-protein interaction and gene regulatory network databases. Interac-217

tion graphs integrate networks from several sources and can be constructed in a highly customisable218

way (see Supplementary Information B, C for a summary of user-definable parameters).219

3.4.1 Protein-Protein Interaction Networks220

Many of the functional roles of proteins are carried out by larger assemblies of protein complexes221

and many biological processes are regulated through interactions mediated by physical contacts.222

Understanding these functions is central to characterising healthy and diseased states of biological223

systems. Graphein interfaces with widely-used databases of biomolecular interaction data for easy224

retrieval and construction of graph-based representations of protein-protein interactions.225

STRING is a database of more than 20 billion known and predicted functional and direct physical226

protein-protein interactions between 67.6 million proteins across 14,094 organisms [57]. Predicted227

interactions in STRING are derived from genomic context, high-throughput experimental procedures,228

conservation of co-expression, text-mining of the literature and aggregation from other databases.229

STRING is made freely available by the original authors under a Creative Commons BY 4.0 license.230

BioGRID is a database of 2,127,726 protein and genetic interactions curated from 77,696 publications231

[58]. BioGRID is made available for academic and commercial use by the original authors under the232

MIT License.233

3.4.2 Gene Regulatory Networks234

SPTY2D1 H3

UEVLD

H4

Interactome
Graph

Protein Structure
Graph

Heteromeric Protein
Complex Graph

Figure 5: Graphein can facilitate
the integration of structural and
biomolecular interaction data to en-
able geometric deep learning re-
search in structural interactomics.
3D visualisations of graphs are gen-
erated using Graphein.

Gene regulatory networks (GRNs) consist of collections of235

genes, transcription factors (TFs) and other regulatory elements,236

and their associated regulatory interactions. Reconstructing237

transcriptional regulatory networks is a long-standing problem238

in computational biology in its own right due to its relevance239

to characterising healthy and diseased states of cells, and these240

data can provide meaningful signal in other contexts such as241

multi-modal modelling of biological systems and phenomena.242

Graphein supports GRN graph construction from two widely-243

used databases, allowing users to easily unify datasets and244

construct graph representations of these networks.245

TRRUST is a database of regulatory interactions for human and246

mouse interactomes curated from the literature via a sentence-247

based text-mining approach [59]. The current release contains248

8,427 / 6,490 regulatory interactions with associated regulatory249

directions (activation/repression) over 795 / 827 transcription250

factors and 2,067 / 1,629 non-transcription factor genes for hu-251

mans and mice, respectively. TRRUST is made freely available252

by the original authors for non-commercial research under a253

Creative Commons Attribution-ShareAlike 4.0 International254

License.255

RegNetwork is a database of transcription-factor and miRNA mediated regulatory interactions for256

humans and mice [60]. RegNetwork is an aggregation of 25 source databases from which the257

regulatory network is populated and annotated. The latest release contains 14,981 / 94,876 TF-gene,258

361 / 129 TF-TF, 21,744 / 25,574 TF-miRNA, 171,477 / 176,512 miRNA-gene and 25,854 / 26,545259

miRNA-TF interactions over 1,456 / 1,328 transcription factors, 1,904 / 1,290 miRNAs and 19,719260

/ 18,120 genes for humans and mice, respectively. The dataset is made publicly available by the261

original authors.262
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4 Data263

4.1 Database Interfaces264

Graphein interfaces with a number of standard biological data repositories to retrieve data for each265

modality it supports (summarised in Table 1).266

Table 1: Graphein database interfaces for data retrieval.

Name Description

Protein Structure
Protein Data Bank (PDB) Experimentally-determined biomolecular structures

AlphaFold Protein Structure Database Protein structures modelled modelled by AlphaFold2

Protein-Protein Interaction
BioGrid Protein-protein interactions
STRING Protein-protein interactions

Gene Regulatory Network
RegNetwork TF & miRNA mediated regulatory interactions in humans and mice

TRRUST Regulatory interactions in humans and mice.

4.2 Example Datasets267

As example workflows, we make available two graph-based protein structure datasets focussed on268

tasks where relational inductive biases appear intuitively useful and demonstrate how Graphein can269

help formulate different tasks from the same underlying dataset.270

PPISP - Protein Protein Interaction Site Prediction The first, based on the collections outlined271

in [61], consists of 420 protein structures, with node labels indicating whether a residue is involved272

in a protein-protein interaction - a task central to structural interactomics [62]. The data originate273

from co-crystallised structures of the complexes in the RCSB PDB. The authors make available274

a set of additional node features based on Position-Specific Scoring Matrices (PSSMs), providing275

evolutionary context as to which protein-protein interaction sites are typically conserved, which can276

be incorporated with the structural node features calculated by Graphein. This dataset was used in277

[63] in conjunction with Graphein to compute the protein structure graph inputs to a Message-Passing278

Neural Process model which achieved state-of-the-art performance.279

PSCDB - Protein Structural Change Database The second dataset, based on Protein Structural280

Change Database (PSCDB) [64], consists of 904 paired examples of bound and unbound protein struc-281

tures that undergo 7 classes of conformational rearrangement motion. Prediction of conformational282

rearrangement upon ligand binding is a longstanding problem in computational structural biology283

and has significant implications for drug discovery and development. Two tasks can be formulated284

with this dataset. The first is the graph classification task of predicting the type of motion a protein285

undergoes upon ligand binding, the second is framing prediction of the rearrangement itself as an286

edge prediction task between the paired bound and unbound protein structure graphs. These tasks287

provide utility in improving understanding of protein structural dynamics in drug development, where288

molecules are typically docked into largely rigid structures with limited flexibility in the binding289

pockets in high-throughput in silico screens. PSCDB is made publicly available by the original290

authors and we provide a processed version in our repository.291

ccPDB We derive four datasets, each with a graph and a node classification task from the ccPDB292

[65]. The ccPDB provides collections of protein structures and annotations of interactions with293

various molecular species. The proteins are high-quality, non-redundant sets (25% sequence identity)294

with maximum resolution of 3 Å, minimum sequence length of 80 residues. Node-level annotations295

of interaction are provided in each case with the cutoff set at 4 Å. ccPDB is made freely available296

online.297

• PROTEINS_METAL contains protein structures that bind 7 types of metal ions (Fe, Mg, Ca,298

Mn, Zn, Co, Ni; n = 215 / 1,908 / 1,402 / 521 / 1,660 / 201 / 355).299
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• PROTEINS_NUCLEOTIDES contains protein structures that bind 8 species of nucleotides300

(ATP, ADP, GTP, GDP, NAD, FAD, FMN, UDP; n = 313 / 353 / 83 / 120 / 140 / 172 / 117 /301

68)302

• PROTEINS_NUCLEIC contains protein structures that bind DNA or RNA polymers (n = 560303

/ 415).304

• PROTEINS_LIGAND contains protein structures that bind 7 species of ligands (SO4, PO4,305

NAG, HEM, BME, EDO, PLP; n = 3312 / 1299 / 727 / 176 / 191 / 1507 / 65).306

5 Benchmarks307

To demonstrate the ease-of-use of Graphein we apply a selection of geometric deep learning models308

to protein structure graphs generated by Graphein to these datasets. In particular, we consider309

two graph construction schemes from the same dataset: one based on hydrogen and peptide bonds310

(Bond), and another based on K-Nearest Neighbours clustering of the residues (KNN). Full details311

of our experimental procedure are provided in Supplementary Information D. We consider a graph312

classification task on PSCDB, classifying structures on the basis of the type of structural rearrangement313

they undergo upon ligand binding. Our results show strong differences in performance between the314

two schemes and that these differences are architecture-dependent (Table 2). We suggest that this315

motivates further exploration of the role of graph construction in the context of structural biological316

data.317

Table 2: Baseline results for PSCDB. The task is graph classification to predict the class of structural
rearrangement a given protein undergoes upon ligand binding.

Edge Type Bond KNN

Model Multi-ACC Macro-F1 Multi-ACC Macro-F1

GCN 0.221±0.009 0.110±0.062 0.261±0.111 0.154±0.084

GraphSAGE 0.170±0.091 0.078±0.046 0.247±0.133 0.136±0.090

GAT 0.241±0.066 0.145±0.037 0.258±0.136 0.154±0.105

6 Machine Learning Utilities318

Conversion Convenience utilities for converting between NetworkX [66] graph objects and319

commonly-used geometric deep learning library data objects are provided for DGL and PyTorch320

Geometric. Underlying graph objects are based on NetworkX, enabling conversion to other formats.321

Adjacency Tensors & Diffusion Matrices Graphein provides utilities for computation of diffusion322

matrices (and related adjacency matrices) to (1) facilitate exploration of biological data with models323

that leverage these representations, and (2) aid in the construction of diffusion matrices for graph324

neural networks.325

Visualisation Built-in tools are provided for each of the modalities supported to allow inspection of326

data in pre and post-processing. Interactive visualisation tools are provided for protein structures.327

7 Usage328

Example usage and workflows are provided in the documentation at: www.graphein.ai. Examples329

and tutorials are provided as runnable notebooks detailing use of the high and low-level APIs for the330

data modalities currently supported by Graphein, and the ease of ingesting novel structural datasets331

into a suite of geometric deep learning benchmarks (see section 5). Source code is made available via332

GitHub: www.github.com/a-r-j/graphein.333

8 Conclusion334

Geometric deep learning has shown promise in computational biology and structural biology. How-335

ever, the availability of processed datasets is a research bottleneck. Graphein is a Python library336
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designed to facilitate construction of datasets for geometric deep learning applied to biomolecular337

structures and interactions. By providing tools for these modalities, we hope to facilitate research in338

data-driven structural interactomics. In addition, we make available two datasets for protein-protein339

interaction site prediction (node classification) and protein conformational rearrangement prediction340

(graph classification and edge prediction).341

A current limitation of the library is the lack of support for some informative features based on342

evolutionary information. For example, the PPISP dataset provides PSSMs and the protein folding343

model, AlphaFold2 is heavily reliant on Multiple Sequence Alignments presenting clear utility for344

the addition of these features. Whilst graphs are a natural representation of biological interaction data,345

hypergraphs may provide a higher-fidelity representation of the underlying biological relationships.346

Many interactions are contextual, which can be represented by hyperedges between several entities347

required for a functional or structural relationship. We are also interested in addressing representations348

of dynamics, both in structural data and in interactions as these are central biological components that349

are beyond the scope of the initial release. These features will be included in subsequent releases and350

the API design of Graphein makes it simple for users to write and contribute their own workflows.351

Graphein implements a high-level and low-level API to enable rapid and fine-grained control of data352

preparation. Graphein is provided as Free Open Source Software under a permissive MIT License353

which we hope will encourage the community to contribute customised workflows to the library. We354

hope that Graphein serves to further progress in the field and reduce friction in processing structural355

and interaction data for geometric deep learning. The library also provides utility in preparing protein356

structure and interactomics graphs for graph-theoretic and topological data analyses.357
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