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Figure 1. Example outputs from Graphein. A Example protein surface (3eiy). B Example node feature matrix for the residue-level graphs
outlined. Features include low-dimensional amino acid embeddings, secondary structure assignments, solvent accessibility and x,y,z
positions of nodes. C Graphs computed from -carbons in the example protein under a variety of edge construction schemes. Node sizes
correspond to degree. D Deformation of an icosphere to the example protein mesh construted by Graphein in PyTorch3D

Datasets

As examples, we make available two graph-based protein
structure datasets. The first, based on the collections
outlined in (Zeng et al., 2019), consists of 420 proteins,
with node labels indicating whether a residue is involved in
a protein-protein interaction. The interaction status data and
structure originate from structures of the complexes in the
RCSB PDB. The authors make available a set of additional
node features based on Position-Specific Scoring Matrices
(PSSMs), providing evolutionary context as protein-protein
interaction sites are typically conserved, which can be
incorporated with the structural node features calculated by
Graphein.

The second dataset, based on Protein Structural Change
Database (PSCDB) (Amemiya et al., 2011), consists of 904
paired examples of bound and unbound protein structures
that undergo 7 classes of conformational rearrangement mo-
tion. Two tasks can be formulated with this dataset. The

first is the graph classification task of predicting the type of
motion a protein undergoes upon ligand binding, the second
is an edge prediction task between the paired bound and un-
bound protein structure graphs. These tasks provide utility
in improving understanding of protein structural dynamics
in drug development, where molecules are typically docked
into largely rigid structures with limited flexibility in the
binding pockets in high-throughput in silico screens.

Usage
Example wusage and workflows are provided
in the documentation at this HTTPS URL:

https://wwww.github.com/a-r-j/graphein.

Conclusion

Geometric deep learning has shown promise in computa-
tional biology and structural biology. However, the avail-
ability of processed datasets is poor. Graphein is a python
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Figure 2. Overview of graph and mesh construction and featurisation schemes. Graph construction graphs can be constructed using
residue-level or atom-level node representations. Edges can be constructed based on atomic bonding schemes, intramolecular interactions
and distance-based metrics. Nodes can be featurised using residue-level structural descriptors, residue properties or atom-type properties.
Edges can be featurised using encodings of bond types, interaction types or distances. Paths through the graphs in the figure show
compatible construction schemes i.e. a residue-level graph can contain distance-based and intramolecular interaction edges with separate
featurisation schemes, and nodes featurised by both low-dimensional embeddings of physicochemical properties and DSSP computed
structural descriptors. Mesh construction parameters specifying the surface computation in PyMol can be specified by the user or left to

default settings.

library designed to facilitate construction of datasets for
geometric deep learning on proteins. In addition, we make
available two datasets for protein-protein interaction site
prediction (node classification) and protein conformational
rearrangement prediction (graph classification). We hope
that graphein serves to further interest in the field and reduce
friction in processing protein structure data for geometric
deep learning. The library also provides utility in preparing
protein structure graphs for graph-theoretic analyses.
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