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Abstract
Graphein is a python library for constructing
graph and surface-mesh representations of
protein structures for computational analysis. The
library interfaces with popular geometric deep
learning libraries: DGL, PyTorch Geometric and
PyTorch3D. Geometric deep learning is emerging
as a popular methodology in computational
structural biology. As feature engineering is a
vital step in a machine learning project, the library
is designed to be highly flexible, allowing the user
to parameterise the graph construction, scaleable
to facilitate working with large protein complexes,
and containing useful pre-processing tools for
preparing experimental structure files. Graphein
is also designed to facilitate network-based and
graph-theoretic analyses of protein structures
in a high-throughput manner. As example
workflows, we make available two new protein
structure-related datasets, previously unused by
the geometric deep learning community.

Availability and implementation: Graphein
is written in python. Source code, ex-
ample usage and datasets, and documen-
tation are made freely available under
a MIT License at the following URL:
https://github.com/a-r-j/graphein

Introduction
Geometric deep learning refers to the application of deep
learning methods to data with an underlying non-Euclidean
structure, such as graphs or manifolds (Bronstein et al.,
2016). These methods have already been applied to a num-
ber of problems within computational biology, and indeed
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computational structural biology (Fout et al., 2017; Torng
& Altman, 2019; Gligorijevic et al., 2019; Uhl et al., 2019;
Zamora-Resendiz & Crivelli, 2019; Sanyal et al., 2020;
Gainza et al., 2019). Geometric deep learning libraries have
emerged, providing graph representation functionality and
in-built datasets - typically with a focus on small molecules
(Wang et al., 2019; Fey & Lenssen, 2019). Featurisation
schemes and computational analysis of molecular graphs are
a mature area of research within cheminformatics. However,
data preparation for geometric deep learning in structural bi-
ology is yet to receive the same attention. Protein structures
are significantly more complex than small molecules, and so
greater control over the data engineering and featurisation
process is required.

Proteins form complex three dimensional structures to carry
out cellular functions. Decades of structural biology re-
search, have resulted in a large pool of experimentally-
determined protein structures. However, it is not clear how
best to represent these data in machine learning experiments.
3DCNNs applied to grid-structured representations of pro-
tein structures and sequence-based methods have proved
commonplace (Ragoza et al., 2017; Sato & Ishida, 2019;
Pu et al., 2019). However, these representations fail to
capture relational information in the context of intramolecu-
lar contacts and the internal chemistry of the biomolecular
structures. Furthermore, these methods can suffer from dif-
ficulties in their application to datasets with variable input
sizes and 3DCNNs are computationally inefficient due to
convolving over large regions of empty space, often requir-
ing experimenters to restrict the volume of the protein to
regions of interest, thereby losing global structural informa-
tion. For instance, in the case of protein-ligand interaction
and binding affinity prediction, this often takes the form of
restricting the volume to be centred on a binding pocket,
thereby losing information about allosteric sites on the pro-
tein and possible conformational rearrangements that con-
tribute to the binding process. Furthermore, 3D volumetric
representations are not translationally and rotationally in-
variant, therefore these datasets often require augmentation
to overcome this. In the case of biased datasets, that do not
accurately represent the entirety of protein space, this can
plausibly limit generality. Graphs suffer relatively less from
these problems as they are translationally and rotationally
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invariant. Structural descriptors of position can be leveraged
in the case of molecules with chiral centres. Graph repre-
sentations can enable relatively more efficient computation
than 3DCNN methods.

Proteins can very naturally be represented as graphs, at var-
ious spatial scales. Residue-level graphs represent protein
structures as graphs where the nodes consist of amino-acid
residues and the edges the relations between them - often
based on intramolecular interactions or euclidean distance-
based cutoffs. Atom-level graphs represent the protein struc-
ture in a manner consistent with small-molecule graph rep-
resentations, where nodes represent individual atoms and
edges the relations between them - often chemical bonds
or, again, distance-based cutoffs. The graph structure can
further be elaborated by assigning numerical features to
corresponding nodes and edges. These features can rep-
resent, for instance, chemical properties of the residue or
atom-type, secondary structure assignments or solvent ac-
cessibility metrics of the residue. Edge features can include
bond or interaction types, or distances.

Graph representations of proteins have been successfully
used in machine learning and structural analysis projects
in structural biology (Pires et al., 2011; 2013; Cheng et al.,
2008). Web-servers for computing protein structure graphs
exist, however the lack of public APIs for programmatic
access, limited featurisation schemes and incompatibility
with deep learning libraries motivated the development of
Graphein (Chakrabarty et al., 2019; Vijayabaskar et al.,
2011).

Graphein
Graphein consists of two core classes for making protein
structure graphs and surface meshes respectively. Struc-
ture graphs are compatible with DGL (Wang et al., 2019),
PyTorch Geometric (Fey & Lenssen, 2019) and NetworkX
(Hagberg et al., 2008), and surface meshes are compatible
with PyTorch3D (Ravi et al., 2020). To our knowledge, this
is the first application of PyTorch3D for protein structure
data. Example visualisations of graph and mesh construc-
tion are provided in Figure 1; an overview of mesh and graph
construction, and node and edge featurisation schemes are
given in Figure 2.

Protein Structure Graphs

NODE REPRESENTATIONS

Graphs can be constructed for all chains contained within
a polypeptide structure, or for a user-defined selection of
chains. This is useful in the contexts where regions of
interest on a protein may be localised to a single chain. For
residue-level graphs, users can choose between an atom-
based residue representation (e.g. α-carbon or β-carbon), or

sidechain centroid. Sidechain centroids are calculated as the
centre of gravity of the deprotonated residue. Functionality
for featurising nodes is provided in Graphein. Features
for a DGL graph are stored as a dictionary of PyTorch
tensors attached to each node. Residue-level graph nodes
can be featurised using low-dimensional embeddings of
amino acid physico-chemical properties from Kidera et al.
(Kidera et al., 1985) and Meiler et al (Meiler et al., 2001)
or a one-hot encoding of amino acid type. In addition,
functionality for including a one-hot encoded representation
of eight state secondary structure and solvent accessibility
metrics (ASA, RSA, SSA) calculations from DSSP (Kabsch
& Sander, 1983) are provided. XYZ positions are also
added as node features. Functionality for user-defined node
or edge features is also provided.

EDGE REPRESENTATIONS

Functionality for computing intramolecular graph edges is
provided through GetContacts (GetContacts). Euclidean
distance-based edges can be computed with a user-defined
threshold. Functionality for constructing k-nearest neigh-
bour graphs, where two vertices are connected by an edge
if they are among the k nearest neighbours by Euclidean
distance is included. Graph edges can also be added on
the basis of Delaunay triangulation. Delaunay triangles
correspond to joining points that share a face in the 3D
Voronoi diagram of the protein structures. Edge featurisa-
tion for atom-level graphs is provided through the featuri-
sation schemes available in DGL.Chem, which depend on
RDKit (Landrum et al., 2020). All of these edge types can be
included in the same multirelational graph; as these different
edge representations capture varying aspects of structural
information, this could be usable in a setting where different
components of a model operate on each of these graphs.
A Long Interaction Network (LIN) parameter controls the
minimum required separation in the amino acid sequence
for edge creation. This can be useful in reducing the number
of noisy edges under distance-based edge creation schemes.

Protein Structure Meshes

The protein structure mesh class consists of a wrapper for
PyMOL and Pytorch3D (Schrödinger, LLC, 2015). PyMol
is used to produce a .Obj file from either a PDB accession
code or a provided .PDB file. The .Obj file is passed to
Pytorch3D to produce a tensor-based representation of the
protein surface as vertices and faces. The user can specify a
number of parameters controlling the surface calculation to
PyMol, and thus the final mesh. These parameters include
specifying solvent inclusion, solvent probe radius, surface
mode ({traingles, dots}), surface quality (resolution of
mesh).
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Figure 1. Example outputs from Graphein. A Example protein surface (3eiy). B Example node feature matrix for the residue-level graphs
outlined. Features include low-dimensional amino acid embeddings, secondary structure assignments, solvent accessibility and x,y,z
positions of nodes. C Graphs computed from α-carbons in the example protein under a variety of edge construction schemes. Node sizes
correspond to degree. D Deformation of an icosphere to the example protein mesh construted by Graphein in PyTorch3D

Datasets
As examples, we make available two graph-based protein
structure datasets. The first, based on the collections
outlined in (Zeng et al., 2019), consists of 420 proteins,
with node labels indicating whether a residue is involved in
a protein-protein interaction. The interaction status data and
structure originate from structures of the complexes in the
RCSB PDB. The authors make available a set of additional
node features based on Position-Specific Scoring Matrices
(PSSMs), providing evolutionary context as protein-protein
interaction sites are typically conserved, which can be
incorporated with the structural node features calculated by
Graphein.

The second dataset, based on Protein Structural Change
Database (PSCDB) (Amemiya et al., 2011), consists of 904
paired examples of bound and unbound protein structures
that undergo 7 classes of conformational rearrangement mo-
tion. Two tasks can be formulated with this dataset. The

first is the graph classification task of predicting the type of
motion a protein undergoes upon ligand binding, the second
is an edge prediction task between the paired bound and un-
bound protein structure graphs. These tasks provide utility
in improving understanding of protein structural dynamics
in drug development, where molecules are typically docked
into largely rigid structures with limited flexibility in the
binding pockets in high-throughput in silico screens.

Usage
Example usage and workflows are provided
in the documentation at this HTTPS URL:
https://wwww.github.com/a-r-j/graphein.

Conclusion
Geometric deep learning has shown promise in computa-
tional biology and structural biology. However, the avail-
ability of processed datasets is poor. Graphein is a python

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.15.204701doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204701
http://creativecommons.org/licenses/by/4.0/


Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Protein Structures

Figure 2. Overview of graph and mesh construction and featurisation schemes. Graph construction graphs can be constructed using
residue-level or atom-level node representations. Edges can be constructed based on atomic bonding schemes, intramolecular interactions
and distance-based metrics. Nodes can be featurised using residue-level structural descriptors, residue properties or atom-type properties.
Edges can be featurised using encodings of bond types, interaction types or distances. Paths through the graphs in the figure show
compatible construction schemes i.e. a residue-level graph can contain distance-based and intramolecular interaction edges with separate
featurisation schemes, and nodes featurised by both low-dimensional embeddings of physicochemical properties and DSSP computed
structural descriptors. Mesh construction parameters specifying the surface computation in PyMol can be specified by the user or left to
default settings.

library designed to facilitate construction of datasets for
geometric deep learning on proteins. In addition, we make
available two datasets for protein-protein interaction site
prediction (node classification) and protein conformational
rearrangement prediction (graph classification). We hope
that graphein serves to further interest in the field and reduce
friction in processing protein structure data for geometric
deep learning. The library also provides utility in preparing
protein structure graphs for graph-theoretic analyses.
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