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ABSTRACT 

Background: One of the most important recent discoveries in brain glioma biology has been the 

identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as 

markers for therapy and prognosis.  1p/19q co-deletion is the defining genomic marker for 

oligodendrogliomas and confers a better prognosis and treatment response than gliomas without 

it.  Our group has previously developed a highly accurate deep-learning network for determining 

IDH mutation status using T2-weighted MRI only. The purpose of this study was to develop a 

similar 1p/19q deep-learning classification network. 

Methods: Multi-parametric brain MRI and corresponding genomic information were obtained 

for 368 subjects from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas 

(TCGA). 1p/19 co-deletions were present in 130 subjects. 238 subjects were non co-deleted. A 

T2w image only network (1p/19q-net) was developed to perform 1p/19q co-deletion status 

classification and simultaneous single-label tumor segmentation using 3D-Dense-UNets. Three-

fold cross-validation was performed to generalize the network performance.  ROC analysis was 

also performed.  Dice-scores were computed to determine tumor segmentation accuracy.   

Results: 1p/19q-net demonstrated a mean cross validation accuracy of 93.46% across the 3 folds 

(93.4%, 94.35%, and 92.62%, standard dev=0.8) in predicting 1p/19q co-deletion status with a 

sensitivity and specificity of 0.90 ±0.003 and 0.95 ±0.01, respectively and a mean AUC of 0.95 

±0.01. The whole tumor segmentation mean Dice-score was 0.80 ± 0.007.  

Conclusion: We demonstrate high 1p/19q co-deletion classification accuracy using only T2-

weighted MR images. This represents an important milestone toward using MRI to predict 

glioma histology, prognosis, and response to treatment. 
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Keypoints – 1. 1p/19 co-deletion status is an important genetic marker for gliomas. 2. We 

developed a non-invasive, MRI based, highly accurate deep-learning method for the 

determination of 1p/19q co-deletion status that only utilizes T2 weighted MR images 
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IMPORTANCE OF THE STUDY 

One of the most important recent discoveries in brain glioma biology has been the 

identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as 

markers for therapy and prognosis.  1p/19q co-deletion is the defining genomic marker for 

oligodendrogliomas and confers a better prognosis and treatment response than gliomas without 

it.  Currently, the only reliable way to determine 1p/19q mutation status requires analysis of 

glioma tissue obtained either via an invasive brain biopsy or following open surgical resection.  

The ability to non-invasively determine 1p/19q co-deletion status has significant implications in 

determining therapy and predicting prognosis. We developed a highly accurate, deep learning 

network that utilizes only T2-weighted MR images and outperforms previously published image-

based methods. The high classification accuracy of our T2w image only network (1p/19q-net) in 

predicting 1p/19q co-deletion status marks an important step towards image-based stratification 

of brain gliomas. Imminent clinical translation is feasible because T2-weighted MR imaging is 

widely available and routinely performed in the assessment of gliomas.  
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INTRODUCTION 

 Genetic profiling and molecular subtyping of glial neoplasms has revolutionized our 

ability to optimize therapeutic strategies and enhance prognostic accuracy. Perhaps the most 

compelling evidence supporting this paradigm is the 2016 revision of the World Health 

Organization’s (WHO) classification of gliomas which now includes genetic analysis. The 

impact of glioma reclassification based on molecular profiling has subsequently been studied and 

three genetic alterations have been extensively validated: O-6-methylguanine-DNA 

methyltransferase (MGMT), Isocitrate dehydrogenase (IDH), and 1p/19q co-deletion status.1 

 

MGMT is a DNA repair enzyme that protects normal and glioma cells from alkylating 

chemotherapeutic agents. Mutations that result in methylation of the MGMT promoter result in 

loss of function of the enzyme and its protective effect. Mutations of IDH alter the function of 

the enzyme to produce D-2-hydroxyglutarate instead of α-ketoglutarate. This altered function 

results in increased sensitivity of the glioma to radiation and chemotherapy. Gliomas that are 

IDH mutated can be further divided into gliomas with or without a 1p/19q co-deletion. The 

1p/19q co-deletion is defined as the combined loss of the short arm of chromosome 1 (1p) and 

the long arm of chromosome 19 (19q). According to the 2016 WHO classification of gliomas, an 

IDH mutated glioma with a 1p/19q co-deletion is classified as an oligodendroglioma, whereas an 

IDH mutated glioma without a 1p/19q co-deletion is classified as a diffuse astrocytoma. 

Oligodendrogliomas have a better prognosis when compared to diffuse astrocytomas. 

Additionally, even patients with an IDH-mutated anaplastic oligodendroglioma (WHO grade III) 

have a longer median overall survival than IDH-wild type, 1p/19q non co-deleted, WHO grade II 

astrocytomas and are more responsive to chemotherapy.2 Therefore, determination of 1p/19q 
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status in IDH mutated gliomas is critical for guiding therapy and predicting prognosis.  

Currently, the only reliable way to determine 1p/19q mutation status requires analysis of glioma 

tissue obtained either via an invasive brain biopsy or following open surgical resection. These 

diagnostic procedures carry the burden of implicit risk. Therefore, considerable attention has 

been dedicated to developing non-invasive, image-based diagnostic methods.   

 

Recent advances in deep-learning have led to a significant interest in advancing 

techniques for non-invasive, image-based molecular profiling of gliomas. Our group has 

previously demonstrated a highly-accurate, MRI-based, voxel-wise deep-learning IDH-

classification network using only T2-weighted (T2w) MR images.3 T2w images facilitate clinical 

translation because they are routinely acquired, they can be obtained within 2 minutes, and high 

quality T2w images can even be obtained in the presence of active patient motion. Because the 

current standard of care for IDH mutated gliomas is heavily influenced by 1p/19q co-deletion 

status, the purpose of this study was to develop a highly accurate, fully automated deep-learning 

3D network for 1p/19 co-deletion classification using T2-weighted images only.  

  

MATERIAL & METHODS 

Data and Pre-processing 

Multi-parametric brain MRI data of glioma patients were obtained from the Cancer 

Imaging Archive (TCIA) database.4,5 Genomic information was provided from both the TCIA 

and TCGA (the cancer genome atlas) databases.4-6 Only pre-operative studies were used.  Studies 

were screened for the availability of 1p/19q status and T2w image series. The final dataset of 368 

subjects included 268 low grade glioma (LGG, 130 co-deleted, 138 non co-deleted) and 100 high 
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grade glioma (HGG, all non co-deleted) subjects. TCGA subject IDs, 1p/19q co-deletion status, 

and tumor grade are listed in Table 1 of the supplementary data.  

 

Tumor masks for 209 subjects were available through previous expert segmentation. 3,7,8 

Tumor masks for the remaining 159 subjects were generated by the 3D-IDH network3 and 

validated by in-house neuro-radiologists. The tumor masks were used as ground truth for tumor 

segmentation in the training step. Ground truth whole tumor masks for 1p/19q co-deleted type 

were labelled with 1s and the ground truth tumor masks for 1p/19q non co-deleted type were 

labelled with 2s (Figure 1).  Data preprocessing steps included (a) co-registering the T2w image 

to SR124 T2 template9 using ANTs affine registration10, (b) skull stripping using Brain 

Extraction Tool (BET)11 from FSL11-14, (c) N4BiasCorrection to remove RF inhomogeneity15, 

and (d) intensity normalization to zero-mean and unit variance. The pre-processing took less than 

Fig. 1. Ground truth whole tumor masks. 
Red voxels represent 1p/19q co-deletion status (values of 1) and green voxels represent 1p/19q non 

co-deletion status (values of 2). The ground truth labels have the same co-deletion status for all 
voxels in each tumor. 
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5 minutes per dataset.  

Network Details 

Transfer learning was performed with the previously trained 3D-IDH network for 1p/19q 

classification.3 The decoder part of the network was fine-tuned for a voxel-wise dual-class 

segmentation of the whole tumor with Classes 1 and 2 representing 1p/19q co-deleted and 

1p/19q non co-deleted type respectively. The schematics for the network architecture are shown 

in Figure 2B. A detailed description of the network is given in the supplemental material section. 

Fig. 2. (A) 1p/19q-net overview. 
Voxel-wise classification of 1p/19q co-deletion status is performed to create 2 volumes 

(1p/19q co-deleted and 1p/19q non co-deleted). Volumes are combined using dual 
volume fusion to eliminate false positives and generate a tumor segmentation volume. 

Majority voting across voxels is used to determine the overall 1p/19q co-deletion status. 
Fig. 2. (B) Network architecture for 1p/19q-net. 

3D-Dense-UNets were employed with 7 dense blocks, 3 transition down blocks, and 3 
transition up blocks. 
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Network Implementation and Cross-validation  

To generalize the reliability of the networks, a 3-fold cross-validation was performed on 

the 368 subjects by randomly shuffling the dataset and distributing it into 3 groups 

(approximately 122 subjects for each group).  During each fold of the cross-validation procedure, 

the 3 groups were alternated between training, in-training validation and held-out testing.  Group 

1 had 122 subjects (43 co-deleted, 79 non co-deleted), Group 2 had 124 subjects (44 co-deleted, 

80 non co-deleted), and Group 3 had 122 subjects (43 co-deleted, 79 non co-deleted). An in-

training validation dataset helps the network improve its performance during training. Each fold 

of the cross-validation is a new training phase based on a unique combination of the 3 groups. 

However, network performance is only reported on the held-out testing group for each fold as it 

is never seen by the network.  The group membership for each cross-validation fold is listed in 

Table 1 of the supplementary data.  

 

Seventy-five percent overlapping patches were extracted from the training and in-training 

validation subjects. No patch from the same subject was mixed with the training, in-training 

validation or testing datasets in order to avoid the data leakage problem.16,17 The Data 

augmentation steps included vertical flipping, horizontal flipping, translation rotation, random 

rotation, addition of Gaussian noise, addition of salt & pepper noise and projective 

transformation. Additionally, all images were down-sampled by 50% and 25% (reducing the 

voxel resolution to 2mm x 2mm x 2mm & 4mm x 4mm x 4mm) and added to the training and 

validation sets. Data augmentation provided a total of approximately 300,000 patches for training 

and 300,000 patches for in-training validation for each fold. Networks were implemented using 

Keras18 and Tensorflow19 with an Adaptive Moment Estimation optimizer (Adam).20 The initial 
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learning rate was set to 10-5 with a batch size of 15 and maximal iterations of 100. Initial 

parameters were chosen based on previous work with Dense-UNets using brain imaging data and 

semantic segmentation. 3,21,22 

 

1p/19q-net yields two segmentation volumes. Volume 1 provides the voxel-wise 

prediction of 1p/19q co-deleted tumor and Volume 2 identifies the predicted 1p/19q non co-

deleted tumor voxels. A single tumor segmentation map is obtained by fusing the two volumes 

and obtaining the largest connected component using a 3D connected component algorithm in 

MATLAB(R). Majority voting over the voxel-wise classes of co-deleted type or non co-deleted 

type provided a single 1p/19q classification for each subject. Networks were implemented on 

Tesla V100s, P100, P40 and K80 NVIDIA-GPUs. The 1p/19q classification process developed is 

fully automated, and a tumor segmentation map is a natural output of the voxel-wise 

classification approach. 

 

Statistical Analysis  

MATLAB(R) and R were used for statistical analysis of the network’s performance. 

Majority voting (i.e. voxel-wise cutoff of 50%) was used to evaluate the accuracy of the network. 

The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV) of the model for each fold of the cross-validation procedure were calculated using 

this threshold. A Receiver Operating Characteristic (ROC) curve was also generated for each 

fold.    A Dice-score was used to evaluate the performance of the networks for tumor 

segmentation. The Dice-score calculates the amount of spatial overlap between the ground truth 

segmentation and the network segmentation.  
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RESULTS  

The network achieved a mean cross-validation testing accuracy of 93.46% across the 3 

folds (93.4%, 94.35%, and 92.62%, standard dev=0.8).  Mean cross-validation sensitivity, 

specificity, PPV, NPV and AUC for 1p/19q-net was 0.90 ±0.003, 0.95 ±0.01, 0.91 ±0.02, 0.95 

±0.0003 and 0.95 ±0.01 respectively. The mean cross-validation Dice-score for tumor 

segmentation was 0.80 ± 0.007. The network misclassified 8, 7 and 9 cases for each fold 

respectively (24 total out of 368 subjects).  Twelve subjects were misclassified as non co-deleted, 

and 12 as co-deleted.    

Table 1. Cross-validation results. 

Fold 

Description 

 
1p/19q-net 

Fold Number % Accuracy AUC Dice-score 

Fold 1 93.4  0.9571 0.8151 

Fold 2 94.35 0.9688 0.8057 

Fold 3 92.62 0.9351 0.8000 

AVERAGE 93.46 +/- 0.86 0.953 +/- 0.01 0.801 +/- 0.007 

 

ROC analysis  

The ROC curves for each cross-validation fold for the network is provided in Figure 3.  

The network demonstrated very good performance curves with high sensitivities and 

specificities.  
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Voxel-wise classification 

Since the network is a voxel-wise classifier, it performs a simultaneous tumor 

segmentation.  Figures 4A and 4B show examples of the voxel-wise classification for a co-

deleted type, and non co-deleted type respectively using the network. The volume fusion 

procedure was effective in removing false positives to increase accuracy. This procedure 

improved the dice-scores by approximately 4% for the network.  We also computed the voxel-

wise accuracy for the network.  The mean voxel-wise accuracies were 85.86% ±0.01 for non co-

deleted type and 80.51% ±0.01 for co-deleted type.  

 

Fig. 3.  ROC analysis for 1p/19q-net. 
Separate curves are plotted for each cross-validation fold along with corresponding AUC value. 
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Training and segmentation times  

It took approximately 1 week to fine-tune the decoder portion of the network. The trained 

network took approximately three minutes to segment the whole tumor, and predict the 

1p/19qco-deletion status for each subject. 

 

DISCUSSION 

We developed a fully-automated, highly accurate, deep-learning network that 

outperforms previously reported 1p/19q co-deletion status classification algorithms.23-26 When 

comparing our T2-network with previous work, our results suggest that algorithm accuracy can 

Fig. 4. Example voxel-wise segmentation from 1p/19q-net. 
(A) Example for a 1p/19q co-deleted tumor. Native T2 image (a). Ground truth segmentation (b). 
Network output after DVF (c). Red voxels correspond to 1p/19q co-deleted class and green voxels 

correspond to 1p/19q non co-deleted class. 
(B) Example for a 1p/19q non co-deleted tumor. The sharp borders visible between co-deleted and non 

co-deleted type result from the patch-wise classification approach. 
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be improved by using T2-weighted images only. Clinical translation becomes much simpler 

using only T2 weighted images because these images are routinely acquired and are robust to 

motion.  When compared to previously published algorithms, our methodology is fully-

automated. The time required for 1p/19q-net to segment the whole tumor and predict the 1p/19q 

co-deletion status for one subject is approximately 3 minutes on a K80, P40, P100 or V100s 

NVIDA-GPU.      

  

The higher performance achieved by our network when compared to previous work is 

likely due to several factors. Similar to our IDH classification network we employed 3D 

networks whereas prior attempts at 1p/19q co-deletion status classification have relied on 2D 

networks.23 The dense connections in a 3D network architecture are advantageous because they 

carry information from all the previous layers to the following layers.21 Additionally, 3D 

networks are easier to train and can reduce over-fitting.27 As we previously reported, the Dual 

Volume Fusion (DVF) post-processing step helps in effectively eliminating false positives while 

improving the segmentation accuracy by excluding extraneous voxels not connected to the 

tumor. DVF improved the dice-scores by approximately 4% for the network. The 3D networks 

interpolate between slices to maintain inter-slice information more accurately. The network does 

not require extraction of pre-engineered features from the images or histopathological data.28 Our 

approach also uses voxel-wise classifiers and provides a classification for each voxel in the 

image. This provides a simultaneous single-label tumor segmentation. Another factor that may 

explain the higher performance achieved by our network is that previous approaches required 

multi-contrast input which can be compromised due to patient motion from lengthier 

examination times, and the need for gadolinium contrast.  High quality T2-weighted images are 
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almost universally acquired during clinical brain tumor diagnostic evaluation. Clinically, T2w 

images are typically acquired within 2 minutes at the beginning of the exam and are relatively 

resistant to the effects of patient motion. Several of the previous 1p/19q deep learning studies 

were trained and tested on only low-grade gliomas achieving accuracies ranging from 65.9% - 

87.7%.23-25  Our algorithm was trained and evaluated on a mix of high grade and low grade 

gliomas, which is a better representative of real-world performance and potential clinical 

utilization. 

 

In the clinical setting, histologic evaluation remains the gold standard for genetic 

profiling of gliomas. Several different methods to detect 1p/19q co-deletion have been 

employed: fluorescence in-situ hybridization (FISH), array comparative genomic hybridization, 

multiplex ligation dependent probe amplification, and PCR-based loss of heterozygosity 

analysis.29 FISH is the most routinely performed method.30 FISH relies on fluorescent labeled 

DNA probes to directly detect chromosomal abnormalities on a tissue slide in interphase 

nuclei.31 The fraction of nuclei that demonstrate a deletion or relative deletion (in cases with 

polysomy) are summed and a percentage is calculated.32 When the percentage of “deleted” nuclei 

exceeds a pre-determined cut-off, the tumor is classified as 1p/19q co-deleted.32 A drawback of 

FISH is that it lacks standardized criteria for analysis of 1p/19qco-deletion status.30 For example, 

there is no consensus on what cut-off level to use when classifying co-deletion status. As a result, 

variability in institutional-based cut-off values can span from 20% to 70% and can affect 

accurate diagnosis.32 This limitation affects the sensitivity, specificity, PPV, and NPV of 1p/19q 

detection by FISH based on the cut-off value selected.32  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204933doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204933
http://creativecommons.org/licenses/by/4.0/


 

 

16 
 

There are interesting parallel considerations when studying our deep-learning method of 

1p/19q determination. Our network is a voxel-wise classifier and as a result some portions within 

each glioma are classified as 1p/19 co-deleted while other areas are 1p/19q non co-deleted. The 

overall determination of 1p/19q co-deletion status is based on the majority of voxels in the 

tumor. Given the variability in the cut-off values for FISH detection of 1p/19q co-deletion, we 

performed a Youden’s statistical index analysis to determine if the optimal cut-off for our deep 

learning algorithm was different than majority voting (>50%). The analysis demonstrated that 

maximum accuracy, sensitivity, specificity, PPV, and NPV were obtained at an optimal cut-off 

of 50%, the same as majority voting.  

 

The algorithm misclassified 24 cases: 12 subjects were misclassified as non co-deleted 

and 12 as co-deleted. Despite these misclassifications, our network achieved a mean cross-

validation testing accuracy of 93.46% which is similar to what is reported for FISH.32 However, 

our sensitivity, specificity, PPV, and NPV were significantly better than when compared to 

FISH.30 While FISH requires tissue to be obtained from an invasive procedure and subsequent 

tissue processing for at least 48 hours, our deep learning algorithm can segment the entire glioma 

and provide a 1p/19q co-deletion status in 3 minutes. The deep learning algorithm can also be 

fine-tuned to variations in institutional MRI scanners, while FISH analysis currently lacks 

standardization as mentioned above.  

 

The limitations of our study are that deep learning studies require large amounts of data 

and the relative number of subjects with 1p/19q co-deletions is small. Additionally, acquisition 

parameters and imaging vendor platforms vary across imaging centers that contribute data. 
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Despite these caveats our algorithm demonstrated high 1p/19q co-deletion classification 

accuracy.  

 

 

CONCLUSION 

 We demonstrate high 1p/19q co-deletion classification accuracy using only T2-weighted 

MR images. This represents an important milestone toward using MRI to predict glioma 

histology, prognosis, and response to treatment. 
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