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Modern electrophysiological recordings simultaneously capture single-unit spiking activities of20

hundreds of neurons spread across large cortical distances. Yet this massively parallel activity21

is often confined to relatively low-dimensional manifolds. This implies strong coordination also22

among neurons that are most likely not even connected. Here, we combine in vivo recordings23

with network models and theory to characterize the nature of mesoscopic coordination patterns24

in macaque motor cortex and to expose their origin: We find that heterogeneity in local connec-25

tivity supports network states with complex long-range cooperation between neurons that arises26

from multi-synaptic, short-range connections. Our theory explains the experimentally observed27

spatial organization of covariances in resting state recordings as well as the behaviorally related28

modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity29

in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt30

neuronal coordination to momentary demands.31

Introduction32

Complex brain functions require coordination between large numbers of neurons. Unraveling mechanisms of neu-33

ronal coordination is therefore a core ingredient towards answering the long-standing question of how neuronal34

activity represents information. Population coding is one classical paradigm (1) in which entire populations of35

neurons behave coherently, thus leading to positive correlations among their members. The emergence and dy-36

namical control of such population-averaged correlations has been studied intensely (2, 3, 4, 5). More recently,37

evidence accumulated that neuronal activity evolves within manifolds, which implies even more involved ways of38
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neuronal activity coordination (6,7,8): A small number of population-wide activity patterns, the neural modes, are39

thought to explain most variability of neuronal activity. In this case, individual neurons do not necessarily follow a40

stereotypical activity pattern that is identical across all neurons contributing to a representation. Instead the coor-41

dination among the members is determined by more complex relations. Simulations of recurrent network models42

indeed indicate that networks trained to perform a realistic task exhibit activity organized in manifolds (9). The43

dimensionality of such manifolds is determined by the structure of correlations (10, 11) and tightly linked to the44

complexity of the task the network has to perform (12) as well as to the dimensionality of the stimulus (13). Recent45

work has started to decipher how neural modes and the dimensionality of activity are shaped by features of network46

connectivity, such as heterogeneity of connections (14), block structure (15,16), and low-rank perturbations (17) of47

connectivity matrices, as well as connectivity motifs (18,19). Yet, these works neglected the spatial organization of48

network connectivity (20) that becomes more and more important with current experimental techniques that allow49

the simultaneous recording of ever more neurons. How distant neurons that are likely not connected can still be50

strongly coordinated to participate in the same neural mode is a widely open question.51

To answer this question, we combine analysis of massively parallel spiking data from macaque motor cortex52

with the analytical investigation of a spatially organized neuronal network model. We here quantify coordina-53

tion by pairwise covariances, which measure how temporal departures of the neurons’ activities away from their54

mean firing rate are correlated. We show that, even with only unstructured and short-range connections, strong55

covariances across distances of several millimeters emerge naturally in balanced networks if their dynamical state56

is close to an instability within a “critical regime”. While mean covariances are readily accessible by mean-field57

techniques and have been shown to be small in balanced networks (3,21), explaining covariances on the level of in-58

dividual pairs requires methods from statistical physics of disordered systems. With such a theory, here derived for59

spatially organized excitatory-inhibitory networks, we show that large individual covariances arise at all distances60

if the network is close to the critical point. These predictions are confirmed by recordings of macaque motor cortex61

activity. The long-range coordination found in this study is not merely determined by the anatomical connectivity,62

but depends substantially on the network state, which is characterized by the individual neurons’ mean firing rates.63

This allows the network to adjust the neuronal coordination pattern in a dynamic fashion, which we demonstrate64

through simulations and by comparing two behavioral epochs of a reach-to-grasp experiment.65

66

Results67

Macaque motor cortex shows long-range coordination patterns68

We first analyze data from motor cortex of macaques during rest, recorded with 4 × 4 mm2, 100-electrode Utah69

arrays with 400µm inter-electrode distance (Figure 1A). The resting condition of motor cortex in monkeys is70

ideal to assess intrinsic coordination between neurons during ongoing activity. In particular, our analyses focus71

on true resting state data, devoid of movement-related transients in neuronal firing (see Methods). Massively-72

parallel single-unit spiking activity of ≈ 130 neurons per recording session, sorted into putative excitatory and73

inhibitory cells, shows strong spike-count covariances across the entire Utah array, well beyond the typical scale74

of the underlying short-range connectivity profiles (Figure 1B,D). Positive and negative covariances form patterns75

in space that are furthermore seemingly unrelated to the neuron types. All populations show a large dispersion76

of both positive and negative covariance values (Figure 1C). Given the classical view on pairwise covariances in77

balanced networks (2, 22, 23, 21, 4), this result comes unexpected: A common finding is that covariances averaged78

across many pairs of cells are small if the network dynamics is stabilized by an excess of inhibitory feedback;79

dynamics known as the ’balanced state’ arise (24, 25, 26): Negative feedback counteracts any coherent increase80

or decrease of the population-averaged activity, preventing the neurons from fluctuating in unison (21). Breaking81

this balance in different ways leads to large covariances (5, 27, 28). Can the observation of significant covariances82

between individual cells across large distances be reconciled with the balanced state? In the following, we provide83

a mechanistic explanation.84
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Figure 1: Salt-and-pepper structure of covariances in motor cortex. (A) Sketch of 10×10 Utah electrode array
recording in motor cortex of macaque monkey during rest. (B) Spikes are sorted into putative excitatory (blue trian-
gles) and inhibitory (red circles) single units according to widths of spike waveforms (see supplement). Resulting
spike trains are binned in 1 s bins to obtain spike counts. (C) Population-resolved distribution of pairwise spike-
count covariances in session E2 (E-E: excitatory-excitatory, E-I: excitatory-inhibitory, I-I: inhibitory-inhibitory).
(D) Pairwise spike-count covariances with respect to the neuron marked by black triangle in one recording (session
E2, see Methods). Grid indicates electrodes of a Utah array, triangles and circles correspond to putative excitatory
and inhibitory neurons, respectively. Size as well as color of markers represent covariance. Neurons within the
same square were recorded on the same electrode.
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Figure 2: Covariances from direct and indirect connections. (A) Positive covariance (green neuron i) follows
from direct excitatory connection (top) or shared input (middle). (B) Negative covariance (magenta) between two
excitatory neurons cannot be explained by direct connections: Neuronal interactions are not only mediated via
direct connections (n = 1; sign uniquely determined by presynaptic neuron type) but also via indirect paths of
different length n > 1. The latter may have any sign (positive: green; negative: purple) due to intermediate
neurons of arbitrary type (triangle: excitatory, circle: inhibitory).

Multi-synaptic connections determine covariances85

Connections mediate interactions between neurons. Many studies therefore directly relate connectivity and co-86

variances (22, 23, 29, 30, 31). From direct connectivity, one would expect positive covariances between excitatory87

neurons and negative covariances between inhibitory neurons and a mix of negative and positive covariances only88

for excitatory-inhibitory pairs. Likewise, a shared input from inside or outside the network only imposes positive89

covariances between any two neurons (Figure 2A). The observations that excitatory neurons may have negative co-90

variances (Figure 1D), as well as the broad distribution of covariances covering both positive and negative values91

(Figure 1C), are not compatible with this view. In fact, the sign of covariances appears to be independent of the92

neuron types. So how do negative covariances between excitatory neurons arise?93

The view that equates connectivity with correlation implicitly assumes that the effect of a single synapse on94

the receiving neuron is weak. This view, however, regards each synapse in isolation. Could there be states in the95

network where, collectively, many weak synapses cooperate, as perhaps required to form neuronal manifolds? In96

such a state, interactions may not only be mediated via direct connections but also via indirect paths through the97

network (Figure 2B). Such effective multi-synaptic connections may explain our observation that far apart neurons98

that are basically unconnected display considerable correlation of arbitrary sign.99

Let us here illustrate the ideas first and corroborate them in subsequent sections. Direct connections yield100

covariances of a predefined sign, leading to covariance distributions with multiple peaks, e.g. a positive peak101

for excitatory neurons that are connected and a peak at zero for neurons that are not connected. Multi-synaptic102

paths, however, involve both excitatory and inhibitory intermediate neurons, which contribute to the interaction103

with different signs (Figure 2B). Hence, a single indirect path can contribute to the total interaction with arbitrary104

sign (22). If indirect paths dominate the interaction between two neurons, the sign of the resulting covariance105

becomes independent of their type. Given that the connecting paths in the network are different for any two106

neurons, the resulting covariances can fall in a wide range of both positive and negative values, giving rise to the107

broad distributions for all combinations of neuron types in Figure 1C. This provides a hypothesis why there may be108

no qualitative difference between the distribution of covariances for excitatory and inhibitory neurons. In fact, their109

widths are similar and their mean is close to zero (see Methods for exact values); the latter being the hallmark of110

the negative feedback that characterizes the balanced state. The subsequent model-based analysis will substantiate111
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this idea and show that it also holds for networks with spatially organized heterogeneous connectivity.112

To play this hypothesis further, an important consequence of the dominance of multi-synaptic connections113

could be that covariances are not restricted to the spatial range of direct connectivity. Through interactions via114

indirect paths the reach of a single neuron could effectively be increased. But the details of the spatial profile of the115

covariances in principle could be highly complex as it depends on the interplay of two antagonistic effects: On the116

one hand, signal propagation becomes weaker with distance, as the signal has to pass several synaptic connections.117

Along these paths mean firing rates of neurons are typically diverse, and so are their signal transmission properties118

(32). On the other hand, the number of contributing indirect paths between any pair of neurons proliferates with119

their distance. With single neurons typically projecting to thousands of other neurons in cortex, this leads to120

involved combinatorics; intuition here ceases to provide a sensible hypothesis on what is the effective spatial121

profile and range of coordination between neurons. Also it is unclear which parameters these coordination patterns122

depend on. The model-driven and analytical approach of the next section will provide such a hypothesis.123

Networks close to instability show shallow exponential decay of covariances124

To gain an understanding of the spatial features of intrinsically generated covariances in balanced critical networks,125

we model a network of excitatory and inhibitory neurons on a two-dimensional sheet (Figure 3A, for details see126

Methods). The probability of two neurons being connected decays with distance on a characteristic length scale127

d. Previous studies have used linear response theory in combination with methods from statistical physics and128

field theory to gain analytic insights into both mean covariances (2, 33, 22, 21) and the width of the distribution of129

covariances (14). Field-theoretic approaches thereby were, however, restricted to purely random networks devoid130

of any network structure and thus not suitable to study spatial features of covariances. To analytically quantify the131

relation between the spatial ranges of covariances and connections, we therefore here develop a theory for spatially132

organized random networks with multiple populations. The model captures the predominant type of heterogeneity133

in cortical networks, namely the sparseness of connections.134

A distance-resolved histogram of the covariances in the spatially organized E-I network shows that the mean135

covariance is close to zero but the width or variance of the covariance distribution stays large, even for large136

distances (Figure 3C). Analytically, we derive that, despite the complexity of the various indirect interactions, both137

the mean and the variance of covariances follow simple exponential laws in the long-distance limit (see supplement138

S3- S11). These laws are universal in that they do not depend on details of the spatial profile of connections. Our139

theory shows that the associated length scales are strikingly different for means and variances of covariances.140

They each depend on the reach of direct connections and on specific eigenvalues of the effective connectivity141

matrix. These eigenvalues summarize various aspects of network connectivity and signal transmission into a142

single number: Each eigenvalue belongs to a “mode”, a combination of neurons that act collaboratively, rather143

than independently, coordinating neuronal activity within a one-dimensional subspace. To start with, there are as144

many such subspaces as there are neurons. But if the spectral bound in Figure 3B is close to one, only a relatively145

small fraction of them, namely those close to the spectral bound, dominate the dynamics; the dynamics is then146

effectively low-dimensional and multi-synaptic connections may become effective.147

To quantify this idea, for the mean covariance c̄ we find that the dominant behavior is an exponential decay148

c ∼ exp(−x/d) on a length scale d that is determined by the population eigenvalue (Figure 3B). Its position149

depends on the ratio between excitation and inhibition in the network and becomes more negative in more strongly150

inhibition-dominated networks. We show in supplement S8.4 that this leads to a steep decay of mean covariances151

with distance. The variance of covariances, however, predominantly decays exponentially on a length scale deff152

that is determined by the spectral boundR, the largest real part among all eigenvalues (Figure 3B,D). In inhibition-153

dominated networks, R is determined by the heterogeneity of connections. For R . 1 we obtain the effective154

length scale155

deff

d
∼
√

R2

1−R2
+ const.� 1 . (1)

What this means is that precisely at the point where R is close to one, when the low-dimensional manifold forms,156
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dd

Figure 3: Spatially organized E-I network model. (A) Network model: space is divided into cells with four
excitatory (triangles) and one inhibitory (circle) neuron each. Distance-dependent connection probabilities (shaded
areas) are defined with respect to cell locations. (B) Eigenvalues λ of effective connectivity matrix for network
in dynamically balanced critical state. Each dot shows the real part Re(λ) and imaginary part Im(λ) of one
complex eigenvalue. The spectral bound (dashed vertical line) denotes the right-most edge of the eigenvalue
spectrum. (C) Simulation: covariances of excitatory neurons over distance x between cells (blue dots: individual
pairs; cyan: mean; orange: standard deviation; sample of 150 covariances at each of 200 chosen distances). (D)
Theory: Variance of covariance distribution as a function of distance x for different spectral bounds of the effective
connectivity matrix. Inset: effective decay constant of variances diverges as the spectral bound approaches one.
(E) For large spectral bounds, the variances of EE, EI, and II covariances decay on a similar length scale. Spectral
bound R = 0.95. Other parameters see Table T2 in supplement.
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Figure 4: Long-range covariances in macaque motor cortex. Variance of covariances as a function of distance.
(A) Population-specific exponential fits (lines) to variances of covariances (dots) in session E2, with fitted decay
constants indicated in the legend (I-I: putative inhibitory neuron pairs, I-E: inhibitory-excitatory, E-E: excitatory
pairs). Dots show the empirical estimate of the variance of the covariance distribution for each distance. Size of the
dots represents relative count of pairs per distance and was used as weighting factor for the fits to compensate for
uncertainty at large distances, where variance estimates are based on fewer samples. Mean squared error 2.918. (B)
Population-specific exponential fits (lines) analogous to (A), with slopes constrained to be identical. This procedure
yields a single fitted decay constant indicated in the legend. Mean squared error 2.934. (C) Table listing decay
constants fitted as in (B) for all recording sessions and the ratios between mean squared errors of the fits obtained
in procedures B and A.

the length scale deff on which covariances decay exceeds the reach of direct connections by a large factor (Fig-157

ure 3D). As the network approaches instability, which corresponds to the spectral bound R going to one, the158

effective decay constant diverges (Figure 3D inset) and so does the range of covariances.159

Our population-resolved theoretical analysis, furthermore, shows that the larger the spectral bound the more160

similar the decay constants between different populations, with only marginal differences for R . 1 (Figure 3E).161

This holds strictly if connection weights only depend on the type of the presynaptic neuron but not on the type162

of the postsynaptic neuron. Moreover, we find a relation between the squared effective decay constants and the163

squared anatomical decay constants of the form164

d2
eff,E − d2

eff,I = const. ·
(
d2
E − d2

I

)
. (2)

This relation is independent of the eigenvalues of the effective connectivity matrix, as the constant of order O(1)165

does only depend on the choice of the connectivity profile. For R ' 1, this means that even though the absolute166

value of both effective length scales on the left hand side is large, their relative difference is small because it equals167

the small difference of anatomical length scales on the right hand side.168

Pairwise covariances in motor cortex decay on a millimeter scale169

To check if these predictions are confirmed by the data from macaque motor cortex, we first observe that, indeed,170

covariances in the resting state show a large dispersion over almost all distances on the Utah array (Figure 4).171

Moreover, the variance of covariances agrees well with the predicted exponential law: Performing an exponential172

fit reveals length constants above one millimeter. These large length constants have to be compared to the spatial173

reach of direct connections, which is about an order of magnitude shorter, in the range of 100 − 400µm (20), so174

below the 400µm inter-electrode distance of the Utah array. The shallow decay of the variance of covariances is,175

next to the broad distribution of covariances, a second indication that the network is in the dynamically balanced176

critical regime, in line with the prediction by Equation (1).177
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The population-resolved fits to the data show a larger length constant for excitatory covariances than for in-178

hibitory ones (Figure 4A). This is qualitatively in line with the prediction of Equation (2) given the typically longer179

reach of excitatory connections compared to inhibitory ones (34, 35). In the dynamically balanced critical regime,180

however, the predicted difference in slope for all three fits is practically negligible. Therefore, we performed a181

second fit where the slope of the three exponentials is constrained to be identical (Figure 4B). The error of this182

fit is only marginally larger than the ones of fitting individual slopes (Figure 4C). This shows that differences in183

slopes are hardly detectable given the empirical evidence, thus confirming the predictions of the theory given by184

Equation (1) and Equation (2).185

Firing rates alter connectivity-dependent covariance patterns186

Since covariances measure the coordination of temporal fluctuations around the individual neurons’ mean firing187

rates, they are determined by how strong a neuron transmits such fluctuations from input to output (36). To leading188

order this is explained by linear response theory (2, 33, 22, 21): How strongly a neuron reacts to a small change in189

its input depends on its dynamical state, foremost the mean and variance of its total input, called “working point”190

in the following. If a neuron receives almost no input, a small perturbation in the input will not be able to make191

the neuron fire. If the neuron receives a large input, a small perturbation will not change the firing rate either,192

as the neuron is already saturated. Only in the intermediate regime the neuron is susceptible to small deviations193

of the input. Mathematically, this behavior is described by the gain of the neuron, which is the derivative of the194

input-output relation (36). Due to the non-linearity of the input-output relation, the gain is vanishing for very small195

and very large inputs and non-zero in the intermediate regime. How strongly a perturbation in the input to one196

neuron affects one of the subsequent neurons therefore not only depends on the synaptic weight J but also on the197

gain S and thereby the working point. This relation is captured by the effective connectivity W = S · J . What is198

the consequence of the dynamical interaction among neurons depending on the working point? Can it be used to199

reshape the low-dimensional manifold, the collective coordination between neurons?200

The first part of this study finds that long-range coordination can be achieved in a network with short-range201

random connections if effective connections are sufficiently strong. Alteration of the working point, for example202

by a different external input, can affect the covariance structure: The pattern of coordination between individual203

neurons can change, even though the anatomical connectivity remains the same. In this way, routing of information204

through the network can be adapted dynamically on a mesoscopic scale. This is a crucial difference of such205

coordination as opposed to coordination imprinted by complex but static connection patterns.206

We first illustrate this concept by simulations of a network of nonlinear rate model neurons. For independent207

and stationary external inputs covariances between neurons are solely generated inside the network via the recurrent208

connectivity. External inputs only have an indirect impact on the covariance structure by setting the working point209

of the neurons.210

We create two networks with identical structural connectivity and identical external input fluctuations (Fig-211

ure 5A). Small differences in mean external inputs between corresponding neurons in the two networks create212

slightly different gains and firing rates and thereby differences in effective connectivity and covariances. Since213

mean external inputs are drawn from the same distribution in both networks (Figure 5B), the overall distributions214

of firing rates and covariances across all neurons are very similar (Figure 5E1,F2). But individual neurons’ fir-215

ing rates do differ (Figure 5E2). The resulting change of the neurons’ working points substantially affects the216

covariance patterns (Figure 5F2): Differences in firing rates and covariances between the two networks are sig-217

nificantly larger than the differences within the same network across two different time periods (Figure 5C). The218

larger the spectral bound, the more sensitive are the intrinsically generated covariances to the changes in firing219

rates (Figure 5D). Thus, a small offset of individual firing rates is an effective parameter to control network-wide220

coordination among neurons. As the input to the local network can be changed momentarily, we predict that in the221

dynamically balanced critical regime coordination patterns should be highly dynamic.222
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Figure 5: Changes in effective connectivity modify coordination patterns. (A) Two sparse random networks
with identical structural connectivity (left network sketch) but different inputs (depicted by insets), which results in
different firing rates (grayscale in right network sketches) and therefore different effective connectivities (thickness
of connections). Parameters can be found in table T3 in the supplement. (B1) Histogram of input currents across
neurons for the two networks (s1 and s2). (B2) Scatter plot of inputs to subset of 1500 corresponding neurons in
the first and the second network. (C) Correlation coefficients of rates and of covariances between the networks (b,
black) and within the same network (w, gray; simulation was split into two halves). (D) Correlation coefficient
of rates (gray) and covariances (black) between the two networks as a function of the spectral bound R. (E1)
Distribution of rates in the two networks (excluding silent neurons with |rate| < 10−3). (E2) Scatter plot of
rates in the first compared to the second network. (F1) Distribution of covariances in the two networks (excluding
silent neurons). (F2) Scatter plot of sample of 5000 covariances in first compared to the second network. Other
parameters: number of neurons N = 2000, connection probability p = 0.1, spectral bound for panels B, C, E, F is
R = 0.8.
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Figure 6: Behavioral condition reshapes mesoscopic neuronal coordination. (A) Trial structure of the reach-to-
grasp experiment (37). Blue segments above the time axis indicate data pieces at trial start (dark blue: S1, S2) and
during the preparatory period (light blue: P1, P2). (B) Salt-and-pepper structure of covariance during two different
epochs (S1 and P1) of one recording session of monkey N (151 trials, 106 single units, cf. Figure 1 for recording
setup). For some neurons the covariance completely reverses, while in the others it does not change. Inhibitory
reference neuron indicated by black circle. (C1) Distributions of firing rates during S1 and P1. (C2) Scatter plot
comparing firing rates in S1 and P1 (Pearson correlation coefficient ρ = 0.69). (D1/D2) Same as panels C1/C2,
but for covariances (Pearson correlation coefficient ρ = 0.40). (E) Correlation coefficient of firing rates across
neurons in different epochs of a trial for eight recorded sessions. Correlations between sub-periods of the same
epoch (S1-S2, P1-P2; within-epoch, gray) and between sub-periods of different epochs (Sx-Py; between-epochs,
black). Box plots to the right of the black dashed line show distributions obtained after pooling across all analyzed
recording sessions per monkey. The line in the center of each box represents the median, box’s area represents the
interquartile range, and the whiskers indicate minimum and maximum of the distribution (outliers excluded). Those
distributions differ significantly (Student t-test, two-sided, p� 0.001). (F) Correlation coefficient of covariances,
analogous to panel e. The distributions of values pooled across sessions also differ significantly (Student t-test,
two-sided, p � 0.001). For details of the statistical tests, see Methods. Details on number of trials and units in
each recording session are provided in supplement S2.
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Coordination patterns in motor cortex depend on behavioral context223

In order to test the model prediction in experimental data, we analyze massively-parallel spiking activity from224

macaque motor cortex, recorded during a reach-to-grasp experiment (37,38). In contrast to the resting state, where225

the animal was in an idling state, here the animal is involved in a complex task with periods of different cognitive226

and behavioral conditions (Figure 6A). We compare two epochs in which the animal is requested to wait and is227

sitting still but which differ in cognitive conditions. The first epoch is a starting period (S), where the monkey has228

self-initiated the behavioral trial and is attentive because it is expecting a cue. The second epoch is a preparatory229

period (P), where the animal has just received partial information about the upcoming trial and is waiting for230

the missing information and the GO signal to initiate the movement. In both epochs the neuronal firing rates231

are stationary, likely due to the absence of arm movement (see supplement S2). The overall distributions of the232

firing rates in the different epochs are comparable (Figure 6C) but are distributed differently across the individual233

neurons. By comparing the firing rates across neurons between disjoint sub-periods of any epoch (e.g. S1-S2 or234

S1-P2), we observe that the firing rate compositions across neurons change more strongly across the two epochs235

(Sx-Py) than within each of them (Figure 6E). This holds for data from five/eight different recording sessions from236

different recording days for monkey E/N. Similarly, the covariance values change, though here the changes are237

even more pronounced (Figure 6F). This is in line with our prediction for a network whose effective connectivity238

has a large spectral bound, in the critically balanced state. In particular, the theory predicts different coordination239

patterns between neurons on the mesoscopic scale (range of a Utah array), which is indeed observed in the two240

states S and P (Figure 6B). The coordination between neurons is thus considerably reshaped by the behavioral241

condition.242

Discussion243

In this study, we investigate coordination patterns of many neurons across mesoscopic distances in macaque mo-244

tor cortex. We show that these patterns have a salt-and-pepper structure, which can be explained by a network245

model with a spatially dependent random connectivity operating in a dynamically balanced critical state. In this246

state, cross-covariances are shaped by a large number of parallel, multi-synaptic pathways, leading to interactions247

reaching far beyond the range of direct connections. Strikingly, this coordination on the millimeter scale is only248

visible if covariances are resolved on the level of individual neurons; the population mean of covariances quickly249

decays with distance and is overall very small. In contrast, the variance of covariances is large and predominantly250

decreases exponentially on length scales of up to several millimeters, even though direct connections typically only251

reach a few hundred micrometers.252

Since the observed coordination patterns are determined by the effective connectivity of the network, they are253

dynamically controllable by the network state; for example, due to modulations of neuronal firing rates. Massively254

parallel recordings in macaque motor cortex during resting state and in different epochs of a reach-to-grasp task255

confirm this prediction. Simulations indeed exhibit a high sensitivity of coordination patterns to weak modulations256

of the individual neurons’ firing rates, providing a plausible mechanism for these dynamic changes.257

Models of balanced networks have been investigated before (24,39,3,21) and experimental evidence for cortical258

networks operating in the balanced state is overwhelming (40,41,42). Excess of inhibition in such networks yields259

stable and balanced population-averaged activities as well as low average covariances (21). Recently the notion260

of balance has been combined with criticality in the dynamically balanced critical state that results from large261

heterogeneity in the network connectivity (14). Here we focus on another ubiquitous property of cortical networks,262

their spatial organization, and study the interplay between balance, criticality, and spatial connectivity in networks263

of excitatory and inhibitory neurons. We show that in such networks, heterogeneity generates disperse covariance264

structures between individual neurons on large length-scales with a salt-and-pepper structure.265

Spatially organized balanced network models have been investigated before in the limit of infinite network266

size, as well as under strong and potentially correlated external drive (5, 28). In this limit, intrinsically generated267

covariances can be neglected and population-averaged covariances fulfill a linear equation, called the “balance268
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condition”, that predicts a non-monotonous change of population-averaged covariances with distance (43). In269

contrast, we here consider covariances on the level of individual cells in finite-size networks with weak inputs or270

in resting state conditions. In such a scenario, covariances have been shown to be predominantly generated locally271

rather than from external inputs (4, 14). Analyses on the single-neuron level go beyond the balance condition and272

require the use of field-theoretical techniques to capture the heterogeneity in the network (14).273

The analysis performed here requires a theory for disordered systems with spatially non-homogeneous coupling274

to analyze excitatory-inhibitory random networks on a two-dimensional sheet with spatially decaying connection275

probabilities. This new theory allows us to derive expressions for the spatial decay of the variance of covariances.276

We primarily evaluate these expressions in the long-range limit, which agrees well with simulations for distances277

x > 2d ∼ O(1 mm), which is fulfilled for most distances on the Utah array (cf. Figure 3, figure S4). For these278

distances we find that the decay of covariances is dominated by a simple exponential law. Unexpectedly, its decay279

constant is essentially determined by only two measures, the spectral bound of the effective connectivity, and the280

length scale of direct connections. The length scale of covariances diverges when approaching the breakdown of281

linear stability. In this regime, differences in covariances induced by differences in length scales of excitatory282

and inhibitory connections become negligible. The predicted emergence of a single length scale of covariances is283

consistent with our data.284

This study focuses on local and isotropic connection profiles to show that long-range coordination does not285

rely on specific connection patterns but can result from the network state alone. Alternative explanations for long-286

range coordination are based on specifically imprinted network structures. Anisotropic local connection profiles287

have been studied and shown to create spatio-temporal sequences (44) and long-range covariance patterns that288

provide the seed for tuning maps in the visual cortex (45). Likewise, embedded excitatory feed-forward motifs and289

cell assemblies via long-range patchy connections can create positive covariances at long distances (46,47). These290

structures are, however, imprinted in the connectivity: A change in gain of the neurons will either strengthen or291

weaken the specific activity propagation, but it will not lead to new pathways of propagation within the network292

and therefore not cause significantly different coordination patterns that we see in our data. The static impact of293

these connectivity structures on covariances could in principle be included in the presented formalism. But, we294

here show that heterogeneity through sparsity is enough to generate the dynamically balanced critical state, which295

naturally provides a simple explanation for the broad distribution of covariances, the salt-and-pepper structure of296

coordination, its long spatial range, and its sensitive dependence on the network state.297

What are possible functional implications of the coordination on mesoscopic scales? Recent work demon-298

strated activity in motor cortex to be organized in low-dimensional manifolds (6, 7, 8). Dimensionality reduction299

techniques, such as PCA or GPFA (48), employ covariances to expose a dynamical repertoire of motor cortex300

that is comprised of neuronal modes. Previous work started to analyze the relation between the dimensionality of301

activity and connectivity (15,16,17,14,18,19), but only in spatially unstructured networks, where each neuron can302

potentially be connected to any other neuron. The majority of connections within cortical areas, however, stems303

from local axonal arborizations (20). Here we add this biological constraint and demonstrate that these networks,304

too, support a dynamically balanced critical state. This state in particular exhibits neural modes which are spanned305

by neurons spread across the experimentally observed large distances. In this state a small subset of modes that are306

close to the point of instability dominates the variability of the network activity and thus spans a low-dimensional307

neuronal manifold. As opposed to specifically designed connectivity spectra via plasticity mechanisms (49) or308

low-rank structures embedded into the connectivity (17), the dynamically balanced critical state is a mechanism309

that only relies on the heterogeneity which is inherent to sparse connectivity and abundant across all brain areas.310

While we here focus on covariance patterns in stationary activity periods, the majority of recent works studied311

transient activity during motor behavior (6). How are stationary and transient activities related? During stationary312

ongoing activity states, covariances are predominantly generated intrinsically (4). Changes in covariance patterns313

therefore arise from changes in the effective connectivity via changes in neuronal gains, as demonstrated here in the314

two periods of the reach-to-grasp experiment and in our simulations for networks close to criticality (Figure 5D).315

During transient activity, on top of gain changes, correlated external inputs may directly drive specific neural modes316

to create different motor outputs, thereby restricting the dynamics to certain subspaces of the manifold. In fact,317
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(50) reported that the covariance structures during movement preparation and movement execution are unrelated318

and corresponding to orthogonal spaces within a larger manifold. Also (51) studied auditory and somatosensory319

cortices of awake and anesthetized rats during spontaneous and stimulus-evoked conditions and found that neural320

modes of stimulus-evoked activity lie in subspaces of the neural manifold spanned by the spontaneous activity.321

Similarly, visual areas V1 and V2 seem to exploit distinct subspaces for processing and communication (52),322

and motor cortex uses orthogonal subspaces capturing communication with somatosensory cortex or behavior-323

generating dynamics (53). (7) further showed that manifolds are not identical, but to a large extent preserved324

across different motor tasks due to a number of task-independent modes. This leads to the hypothesis that the325

here described mechanism for long-range cooperation in the dynamically balanced critical state provides the basis326

for low-dimensional activity by creating such spatially extended neural modes, whereas transient correlated inputs327

lead to their differential activation for the respective target outputs. The spatial spread of the neural modes thereby328

leads to a distributed representation of information that may be beneficial to integrate information into different329

computations that take place in parallel at various locations. Further investigation of these hypotheses is an exciting330

endeavor for the years to come.331

Methods332

Experimental Design and Statistical Analysis333

Two adult macaque monkeys (monkey E - female, and monkey N - male) are recorded in behavioral experiments334

of two types: resting state and reach-to-grasp. The recordings of neuronal activity in motor and pre-motor cortex335

(hand/arm region) are performed with a chronically implanted 4x4 mm2 Utah array (Blackrock Microsystems).336

Details on surgery, recordings, spike sorting and classification of behavioral states can be found in (38, 54, 37, 55).337

All animal procedures were approved by the local ethical committee (C2EA 71; authorization A1/10/12) and338

conformed to the European and French government regulations.339

Resting state data340

During the resting state experiment, the monkey is seated in a primate chair without any task or stimulation.341

Registration of electrophysiological activity is synchronized with a video recording of the monkey’s behavior.342

Based on this, periods of “true resting state” (RS), defined as no movements and eyes open, are chosen for the343

analysis. Eye movements and minor head movements are included. Each monkey is recorded twice, with a session344

lasting approximately 15 and 20 min for monkeys E (sessions E1 and E2) and N (sessions N1 and N2), respectively,345

and the behavior is classified by visual inspection with single second precision, resulting in 643 and 652 s of RS346

data for monkey E and 493 and 502 s of RS data for monkey N.347

Reach-to-grasp data348

In the reach-to-grasp experiment, the monkeys are trained to perform an instructed delayed reach-to-grasp task349

to obtain a reward. Trials are initiated by a monkey closing a switch (TS, trial start). After 400 ms a diode350

is illuminated (WS, warning signal), followed by a cue after another 400 ms(CUE-ON), which provides partial351

information about the upcoming trial. The cue lasts 300 ms and its removal (CUE-OFF) initiates a 1 s preparatory352

period, followed by a second cue, which also serves as GO signal. Two epochs, divided into 200 ms sub-periods,353

within such defined trials are chosen for analysis: the first 400 ms after TS (starting period, S1 and S2), and the354

400 ms directly following CUE-OFF (preparatory period, P1 and P2) (cf. Figure 6a). Five selected sessions for355

monkey E and eight for monkey N provide a total of 510 and 1111 correct trials, respectively. For detailed numbers356

of trials and single units per recording session see supplement S2.357
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Separation of putative excitatory and inhibitory neurons358

Offline spike-sorted single units (SUs) are separated into putative excitatory (broad-spiking) and putative inhibitory359

(narrow-spiking) based on their spike waveform width (56, 57, 58, 59, 60). The width is defined as the time (num-360

ber of data samples) between the trough and peak of the waveform. Widths of all average waveforms from all361

selected sessions (both resting state and reach-to-grasp) per monkey are collected. Thresholds for “broadness”362

and “narrowness” are chosen based on the monkey-specific distribution of widths, such that intermediate values363

stay unclassified. For monkey E the thresholds are 0.33 ms and 0.34 ms, and for monkey N 0.40 ms and 0.41 ms.364

Next, a two step classification is performed session by session. Firstly, the thresholds are applied to average SU365

waveforms. Secondly, the thresholds are applied to SU single waveforms and a percentage of single waveforms366

pre-classified as the same type as the average waveform is calculated. SU for which this percentage is high enough367

are marked classified. All remaining SUs are grouped as unclassified. We verify the robustness of our results with368

respect to changes in the spike sorting procedure in supplement S1.369

Synchrofacts, i.e., spike-like synchronous events across multiple electrodes at the sampling resolution of the370

recording system (1/30 ms) (61), are removed. In addition, only SUs with a signal-to-noise ratio (62) of at least371

2.5 and a minimal average firing rate of 1 Hz are considered for the analysis, to ensure enough and clean data for372

valid statistics.373

Statistical analysis374

All RS periods per resting state recording are concatenated and binned into 1 s bins. Next, pairwise covariances of375

all pairs of SUs are calculated according to the following formula:376

COV(i, j) =
〈bi − µi, bj − µj〉

l − 1
, (3)

with bi, bj - binned spike trains, µi, µj being their mean values, l the number of bins, and 〈x, y〉 the scalar product377

of vectors x and y. Obtained values are broadly distributed, but low on average in every recorded session: in378

session E1 E-E pairs: 0.19± 1.10 (M±SD), E-I: 0.24± 2.31, I-I: 0.90± 4.19, in session E2 E-E: 0.060± 1.332,379

E-I 0.30 ± 2.35, I-I 1.0 ± 4.5, in session N1 E-E 0.24 ± 1.13, E-I 0.66 ± 2.26, I-I 2.4 ± 4.9, in session N2 E-E380

0.41± 1.47, E-I 1.0± 3.1, I-I 3.9± 7.3.381

To explore the dependence of covariance on the distance between the considered neurons, the obtained values382

are grouped according to distances between electrodes on which the neurons are recorded. For each distance the383

average and variance of the obtained distribution of cross-covariances is calculated. The variance is additionally384

corrected for bias due to a finite number of measurements (14). In most of cases, the correction does not exceed385

0.01%.386

In the following step, exponential functions y = a e−
x
d are fitted to the obtained distance-resolved variances387

of cross-covariances (y corresponding to the variance and x to distance between neurons), which yields a pair388

of values (a, d). The least squares method implemented in the Python scipy.optimize module (SciPy v.1.4.1) is389

used. Firstly, three independent fits are performed to the data for excitatory-excitatory, excitatory-inhibitory, and390

inhibitory-inhibitory pairs. Secondly, analogous fits are performed, with the constraint that the decay constant d391

should be the same for all three curves.392

Covariances in the reach-to-grasp data are calculated analogously but with different time resolution. For each
chosen sub-period of a trial, data are concatenated and binned into 200 ms bins, meaning that the number of spikes
in a single bin corresponds to a single trial. The mean of these counts normalized to the bin width gives the average
firing rate per SU and sub-period. The pairwise covariances are calculated according to Equation (3). To assess
the similarity of neuronal activity in different periods of a trial, Pearson product-moment correlation coefficients
are calculated on vectors of SU-resolved rates and pair-resolved covariances. Correlation coefficients from all
recording sessions per monkey are separated into two groups: using sub-periods of the same epoch (within-epoch),
and using sub-periods of different epochs of a trial (between-epochs). These groups are tested for differences with
significance level α = 0.05. Firstly, to check if the assumptions for parametric tests are met, the normality of each
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obtained distribution is assessed with a Shapiro-Wilk test, and the equality of variances with an F-test. Secondly,
a t-test is applied to compare within- and between-epochs correlations of rates or covariances. Since there are
two within and four between correlation values per recording session, the number of degrees of freedom equals:
df = (Nsessions · 2 − 1) + (Nsessions · 4 − 1), which is 28 for monkey E and 46 for monkey N. To estimate the
confidence intervals for obtained differences, the mean difference between groups m and their pooled standard
deviation s are calculated for each comparison

m = mwithin −mbetween ,

s =

√
(Nwithin − 1)s2

within + (Nbetween − 1)s2
between

Nwithin +Nbetween − 2
,

with mwithin and mbetween being the mean, swithin and sbetween the standard deviation and Nwithin and Nbetween393

the number of within- and between-epoch correlation coefficient values, respectively.394

This results in 95% confidence intervalsm± t(df) ·s of 0.192±0.093 for rates and 0.32±0.14 for covariances395

in monkey E and 0.19± 0.14 for rates and 0.26± 0.17 for covariances in monkey N.396

For both monkeys the within-epoch rate-correlations distribution does not fulfill the normality assumption of397

the t-test. We therefore perform an additional non-parametric Kolmogorov-Smirnov test for the rate comparison.398

The differences are again significant; for monkey E D = 1.00, p = 6.66 · 10−8; for monkey N D = 1.00, p =399

8.87 · 10−13.400

For all tests we use the implementations from the Python scipy.stats module (SciPy v.1.4.1).401

Mean and Variance of Covariances for a Two-Dimensional Network Model with Excita-402

tory and Inhibitory Populations403

The mean and variance of covariances are calculated for a two-dimensional network consisting of one excitatory404

and one inhibitory population of neurons. The connectivity profile p(x), describing the probability of a neuron405

having a connection to another neuron at distance x, decays with distance. We assume periodic boundary condi-406

tions and place the neurons on a regular grid (Figure 3A), which imposes translation and permutation symmetries407

that enable the derivation of closed-form solutions for the distance-dependent mean and variance of the covariance408

distribution. These simplifying assumptions are common practice and simulations show that they do not alter the409

results qualitatively.410

Our aim is to find an expression for the mean and variance of covariances as functions of distance between two
neurons. While the theory in (14) is restricted to homogeneous connections, understanding the spatial structure
of covariances here requires us to take into account the spatial structure of connectivity. Field-theoretic methods
allow us to obtain expressions for the mean covariance c and variance of covariance δc2

c = [1−M ]−1 D

1−R2
[1−M ]−T, (4)

δc2 = [1− S]−1

(
D

1−R2

)2

[1− S]−T,

with identity matrix 1, mean M and variance S of connectivity matrix W , input noise strength D, and spectral411

bound R. Since M and S have a similar structure, the mean and variance can be derived in the same way, which412

is why we only consider variances in the following.413

To simplify Equation (4), we need to find a basis in which S, and therefore also A = 1− S, is diagonal. Due414

to invariance under translation, the translation operators T and the matrix S have common eigenvectors, which415

can be derived using that translation operators satisfy TN = 1, where N is the number of lattice sites in x- or416

y-direction (see supplement). Projecting onto a basis of these eigenvectors shows that the eigenvalues sk of S are417

given by a discrete two-dimensional Fourier transform of the connectivity profile418

sk ∝
∑
x

p(x)e−ikx .
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Expressing A−1 in the eigenvector basis yields A−1(x) = 1 + B(x), where B(x) is a discrete inverse Fourier419

transform of the kernel sk/(1− sk). Assuming a large network with respect to the connectivity profiles allows us420

to take the continuum limit421

B(x) =
1

(2π)2

∫
d2k

s(k)

1− s(k)
eikx .

As we are only interested in the long-range behavior, which corresponds to |x| → ∞, or |k| → 0, respectively,422

we can approximate the Fourier kernel around |k| ≈ 0 by a rational function, quadratic in the denominator, using423

a Padé approximation. This allows us to calculate the integral which yields424

B(x) ∝ K0(−|x|/deff) ,

where K0(x) denotes the modified Bessel function of second kind and zeroth order (63), and the effective decay425

constant deff is given by Equation (1). In the long-range limit the modified Bessel function behaves like426

B(x)
|x|→∞
∝ exp(−|x|/deff)√

|x|
.

Writing Equation (4) in terms of B(x) gives427

δc2(x) =

(
D

1−R2

)2

[δ(|x|) +B(x) + (B ∗ ∗B)(x)] ,

with the double asterisk denoting a two-dimensional convolution. (B ∗ ∗B)(x) is a function proportional to the428

modified Bessel function of second kind and first order (63), which has the long-range limit429

(B ∗ ∗B)(x)
|x|→∞
∝

√
|x| exp(−|x|/deff) .

Hence, the effective decay constant of the variances is given by deff . Note that further details of the above derivation430

can be found in the supplement S3-S11.431
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