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SUMMARY 
Single cell RNA sequencing has enabled quantification of single cells and identification of 
different cell types and subtypes as well as cell functions in different tissues. Single cell RNA 
sequence analyses assume acquired RNAs correspond to cells, however, RNAs from 
contamination within the input data are also captured by these assays. The sequencing of 
background contamination as well as unwanted cells making their way to the final assay 
Potentially confound the correct biological interpretation of single cell transcriptomic data. 
Here we demonstrate two approaches to deal with background contamination as well as 
profiling of unwanted cells in the assays. We use three real-life datasets of whole-cell capture 
and nucleotide single-cell captures generated by Fluidigm and 10x technologies and show 
that these methods reduce the effect of contamination, strengthen clustering of cells and 
improves biological interpretation. 
 

INTRODUCTION 
Single cell technologies have made numerous advancements in understanding cell types and 
behavior. 1-3 Efforts are being made towards generating human cell atlases.4 BRAIN Initiative 
is another example of such efforts with the same goal; identifying different brain cells. However, 
all these efforts are highly dependent on the accuracy, reproducibility, and repeatability of 
experimental and computational workflows of single cell RNA sequencing (scRNA-seq) 
transcriptome experiments.   
A fundamental assumption underlying scRNA-seq data analysis workflow is that data contain 
only mRNA from single cells and single cells belong to only the tissue of interest. However, 
both assumptions may be violated in single cell experiments. For example, doublets and 
triplets, empty droplets, and other cells than the targeted cell may exist in the data. Removing 
contamination both experimentally and computationally are active research areas.    
Here we show that contamination exist in three real-life dataset that we have generated from 
retinal ganglion cells (RGCs). RGCs essentially carry visual signals from the retina to the brain. 
5 6 While all RGCs share a common characteristic of lengthy axons, their physiological roles 
in responding to visual stimuli may differ. Different RGC types transmit different information to 
the brain, such as changes in the intensity of the light (ON/OFF cells) or moving objects in a 
specific direction.7, 8 Traditionally, RGCs have been classified to different types based on their 
morphological and physiological characteristics. 9 10 Identification of RGC types is critical to 
understanding the mechanisms underlying retinal diseases such as glaucoma. Moreover, it 
promotes the reproducibility of conducting experiments at different laboratories provided all 
working on a specific RGC type. However, to date, the identity and number of RGC types is 
unclear. 11-13  

In mice, advancement of the genetic techniques have identified over 30 different subtypes of 
RGCs based on molecular markers. 1-3 A hypothesis (used in other neural systems) is that 
different RGC types express specific sets of transcription factors and as a result drive genes 
that are important for different type-specific features. 14 To identify different RGC subtypes 
using molecular markers, we generated two scRNA-seq and one snRNA-seq datasets and 
realized that all data includes different types of contamination. In this work we focus on non-
RGC contamination and how to mitigate these sources of contaminations using domain 
knowledge and computational approach.     
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.205062doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205062


 

METHODS 
Briefly, our experimental protocol consists of the following steps (Figure 1): (1) removing the 
retinas from 130- to 150-day-old mice, (2) trimming the optic nerve head and pooling retinas, 
(3) dissociating gently and enriching using THY1 antibody-coated micro particles (beads), (4) 
isolating and generating single cell RNA libraries of full length polyA-positive mRNAs, (5) 
sequencing the libraries. The computational workflow included the following steps (Figure 2): 
(1) loading data of single RGCs into R program, (2) quality control and excluding duplicate 
genes, (3) filtering cells and genes, (4) normalizing data and log-transforming, (5) selecting 
highly variable genes, or alternatively, using domain knowledge to select genes that are known 
or candidate markers for RGCs but not known markers for other retinal cell types (e.g., 
Amacrine, Bipolar, Microglia, Rods, Cones and Astrocyte cells), (6) linearly reducing 
dimensions using principal component analysis (PCA), (7) non-linearly reducing dimensions 
using t-distributed stochastic neighbor embedding (tSNE), (8) applying unsupervised 
clustering to identify clusters (this step can be performed after step 6 too), (9) performing 
hierarchical clustering to identify retinal cell families, (10) apply differential gene expression to 
find biological annotations for cluster of cell types. 
 
Samples generated by Fluidigm technology  
Four to six DBA/2j or D2.Cg-Tg (thyl-CFP)23 Jrs/Sj mice in an age range of 130-150 days old 
were anesthetized and the retina were removed in one piece (Fig. 1). The optic nerve was 
trimmed away, and the harvested retina are split between two tubes. The two tubes of pooled 
retina were given a short spin to collect the tissue to the bottom of the tubes. The tissue was 
then mechanically dissociated by pipetting tubes up and down. Each cell strainer was pre-
wetted and given a short spin to collect the contents and the cell suspension all less than 70 
µm. The cell suspension is added to a 10 µm Plurifilter allowing all cells less than 10uM to 
filter through with those greater than 10 µm to remain on the filter. Another 30 µm Plurifilter 
was added, to wash the cells greater than 30 µm. Then RGCs were enriched using THY1 

 
Figure 1. Experimental workflow for generating single retinal ganglion cell (RGC) RNA sequencing from 
retinas of glaucoma mice using Fluidigm technology. 
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antibody-coated beads. Fluidigm HT microfluidics plates were used to isolate and generate 
single cell RNA libraries of full length polyA-positive mRNAs using SMART-Seq v4.  
While we expect only a single cell in each Fluidigm array, in practice, doublets, triplets, or 
debris enter the array. Figure 2 shows three sample images from cells in our Fluidigm array 
captured by Nikon Eclipse Ti2 microscope. 

 

   
Figure 2. Images from single cells in Fluidigm arrays. Left is an example of a perfect cell, middle represents two 
cells and right panel shows three cells that entered the Fluidigm array.  
 
Whole single samples generated by 10x technology 
Briefly, 11 DBA/2J mice, age range 130-159 days old were selected for 10x whole cell Isolation. 
Intact retina was removed, and dissociation of retina was accomplished using the Neural 
Dissociation Kit (P) (Miltenyi Biotec). The two tubes of pooled retina were given a short spin 
to collect the tissue to the bottom of the tube and the media was completely removed. The 
10uM Pluri-filter was inverted onto a pre-wetted 30uM Pluri-filter, inserted in a new 50 ml tube 
and 5mls of cold HBSS W/O was added (1ml at a time) to wash the cells greater than 10uM 
onto the 30uM Pluri-filter below to allow the cells less than 30uM to flow thru into the 50 ml 
conical tube while the cells greater than 30uM remain on the filter. Cells with beads attached 
remain in the column and the flow-thru should contain non-THY1/CD90.s+ cells and debris 
were discarded. CD90.2 labeled cells flushed thru the column with a plunger after the addition 
of 1.5mls MACS Buffer. This tube containing THY1/CD90.2+ whole cells was filtered thru a 
30uM filter then washed one time with HBSS and the pellet re-suspended. An aliquot of the 
CD90.2+ whole cells were counted on the Countess II (Life Technologies) using Trypan Blue 
exclusion dye and the cells diluted to a target concentration. Figure 2 shows the overall 10x 
workflow for generating single RGCs.  A total of 5,820 whole RGCs with a mean of 142,609 
reads per cell and a median of 3,523 genes per cell were generated. Over 99.9% of the UMIs 
were reported as valid by cell ranger.   
 
Nuclei single samples generated by 10x technology 
Characterization of phenotypic diversity is an active yet challenging field of scRNA-seq. 
Patterns of gene expression are typically used to explore single cell heterogeneity. However, 
patterns of gene expression are subject to a different source of variation and noise such as 
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batch effect and cell cycle. One approach to cope with these sources of variations is to use 
single nucleotide rather than single cells data.  
To that end, we generated single nucleotide cells to explore RGC subtypes. All steps above 
were followed to isolate CD90.2+ whole cells and once whole cells were isolated, a Nuclei 
wash, and re-suspension buffer were prepared to isolate nuclei. Suspension was pipetted up 
and down 5 times with a wide bore 1000ul pipette tip. Cells were centrifuged and the 
supernatant was removed without disturbing the nuclear pellet. The nuclei were re-suspended 
in Nuclear Wash and Re-suspension Buffer, centrifuged again. This nuclear wash step was 
repeated, and nuclei were re-suspended in Nuclear Re-Suspension buffer. The isolated nuclei 
were passed thru a FlowmiTM Tip Strainer and counted on the Countess II. Nuclei number 
was adjusted to 1000 nuclei/ul and held until the 10x Genomics run. Figure 3 shows the overall 
workflow for capturing single nuclei RGC nuclei. A total of 10,000 nuclei with 222,603 Mean 
Reads per Cell and a median of 1,613 genes were generated. Over 99.9% of the UMIs were 
reported as valid by cell ranger.   

 
Data preprocessing and quality control 
In Fluidigm, we sequenced 9,600 cells (the libraries were collected in 12 different plates 
(batches), each plate included 800 cells) using HiSeq 3000, 150 nucleotide pair-end reads. 
We de-multiplexed barcode rows using R1 reads and timed and aligned R2 reads to reference 
genome to generate gene expressions. Data was loaded into R software. All plates were 
merged based on unique gene names. We excluded two plates due to technical issues. We 
generated a big transcriptome data of size [43,320 transcript models * 9,600 cells]. We first 
performed preprocessing and applied quality control. Two plates had technical issues and 
were removed from the analysis. To exclude duplicated genes from data, we selected genes 
with greater number of non-zero expression across remaining cells. In another word, we 
selected a gene that was expressed more frequently across cells regardless of the expression 
level. This step generated 25,394 unique genes. We then selected cells that expressed at 
least 900 genes and selected genes that had been expressed in at least five cells. A total of 
16,622 genes and 6,222 cells were selected for the downstream analysis. This step reduces 
the change of including fragments in the analysis.  
 
Normalization and linear transformation 
We then normalized the data; for each cell across all genes, we normalized the Fragments Per 
Kilobase Million (FPKM) values to the total expression using functions in the Seural package.15, 

16 We transformed the data to the log2 scale. We first applied principal component analysis 
(PCA) in order to ensure robust identification of the primary structures in the expected single 
cell data. PCA uses a linear and orthogonal transformation to convert the observations of 

 
Figure 3. Experimental workflow for generating single retinal ganglion cell (RGC) RNA sequencing from 
retinas of glaucoma mice using 10x chromium technology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Protocol for generating single retinal ganglion cells (RGCs) from glaucoma mice. 
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highly correlated transcriptomes into a set of new eigen-genes (principal components) which 
are linearly uncorrelated to each other. In another word, each new eigen-gene is a weighted 
combination of all initial transcriptomes while the eigen-genes do not carry correlation 
anymore.  
PCA transformation allowed us to linearly reduce the number of dimensions of the original 
dataset. While the number of identified eigen-genes is equal to the number of input genes, 
only a small fraction of eigen-gens can explain a significant portion of the variance in the data. 
We used JackStraw method, which is a randomization approach by creating a null distribution 
of the eigen-genes identified by applying PCA to 1,000 new realizations of the input data in 
which we randomly scrambled 2% of the genes. We then selected eigen-genes from the 
original dataset in which their scores were significantly different from the respective scores 
derived from the null distributions (p<0.01, Bonferroni corrected). 17, 18 We then subjectively 
verified PCA-based markers for distinct retinal cell subtypes from the absolute value of the 
eigen-gene scores. We note that these scores leverage information from genes in the PCA, 
and therefore are more relevant to retinal cell subtypes as well as more robust to technical 
noise than the original data of all gene expressions. We used the selected eigen-genes for the 
downstream analysis.  
 
Excluding PCs (eigen-genes) with strong correlation with known markers of unwanted 
cells to reduce the impact of contamination 
This is an intermediate solution to decrease the effect of unwanted contamination 
computationally by excluding PCs with significant scores of markers from other unwanted cell 
types; non-RGC markers in our case. For instance, if major scores of a PC is composed on 
marker genes of photoreceptors in retina, we will exclude that PC from the downstream 
analysis to reduce the effect of those unwanted cells as one source of contamination in the 
dataset.   
 
High-density based clustering to reduce the impact of contamination 
After excluding potential eigen-genes with strong scores, another approach to reduce the 
contamination is identification of clusters of unwanted cells using manifold learning. We used 
t-distributed stochastic neighbor embedding (tSNE)19 to group cells with similar eigen-genes 
together. Eigen-genes were used as the input for tSNE. This process mapped cells with similar 
local gene expressions, and therefore similar eigen-genes, localized in the tSNE space while 
nonlinearly reducing the dimension of the eigen-genes to two-dimensional embedding of 
single cells, and hence distinct cell types formed two-dimensional clusters. Moreover, tSNE 
provided a well-suited visualization of high-dimensional transcriptome data with outcome in 2-
dimensional tSNE space.  
To identify cell types in the tSNE space (putative RGC subtypes here), we employed a density-
based clustering to identify cells with similar gene expression patterns, and hence similar 
eigen-genes and tSNE scores, and to group cells into non-overlapping clusters objectively. 20 
In fact, density-based clustering groups those cells in the tSNE space that that are closely 
packed together and have many neighbors around them while cells that lie alone (in low-
density areas) and are too far away will be marked as outlies and non-members of the clusters. 
We initially set the reachability distance parameter (eps) to 1.6 to over-partition the cells in the 
tSNE space provided us 35 clusters. This process allowed us to identify and subsequently 
exclude clusters retaining fewer than 30 cells (~0.5% of the initial 6,222 cells). Clusters 
retaining small number of cells were excluded from the analysis. These small clusters typically 
located along the interfaces of larger clusters. We then repeated the procedure with a larger 
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eps value to identify only well-separated dense clusters of cells. This pruning approach 
enabled us to exclude outlier cells while avoiding over-partitioning of the cells. We next 
investigated the partitions objectively to ensure that our identified clusters represented distinct 
groups of cells, as opposed to merely over-partitioning groups.  
We will then perform post-hoc analyses to interpret and assign biological attributes to the 
identified clusters quantitatively using known markers for unwanted cells. For instance, from 
literature, we identify known markers for retinal cell types such as Microglia, Rods, Cones, and 
Astrocytes and try to identify cluster of cells belonging to these groups. We will then exclude 
those clusters from downstream analysis.  
The final step after exclusion of potential clusters of unwanted cells, we identified the 
differentially expressed genes between every pair of clusters by simultaneously testing 
the difference in frequency and expression level of genes using likelihood-ratio test21 
and iteratively merged highly related pairs with the lowest number of differentially 
expressed genes. None of the clusters met the criterion of less than two differentially 
expressed genes for merging.  

We used R software to develop the above-mentioned workflow. We used tools that 
were used in previous landmark articles 22-24 along with some of the functions and 
tools provided in the R library of Seurat package. 16 

Results 
Fluidigm whole single cell capture 
We included 9,600 putative RGC cells generated from 12 sequencing runs of Fluidigm 
technology and generated a single matrix of size (9,600* 43,320). After exclusion of runs with 
major technical issue in the workflow process, 7,195 cells entered the analysis. The data was 
normalized by dividing to the total FPKM per cell. All analysis was conducted in the log2 space. 
In average 2,934 genes were expressed per cell (Fig. 4). To enhance the power of 
unsupervised clustering for discovering RGC subtypes, we filtered cells expressing fewer than 
900 genes and genes expressed in fewer than five cells. A total of 6,222 cells expressing 
16,622 genes were included for the downstream analysis. Figure 4 shows the histogram of 
the number of genes expressed in cells. In average, 2,934 genes were expressed in cells. 
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Figure 4. Number of genes expressed in putative retinal ganglion cells (RGCs) whole cell capture by Fluidigm 
technology.  
 
We then scaled and centered the data along each gene then selected highly variable genes 
by computing average expression and dispersion of each gene. We identified 2,048 highly 
variable genes based on average expression and dispersion (Fig. 5). Reducing the number of 
genes reduces the computational complexity and improves the ability to identify selective 
genes of different RGC types.  
 
 

 
Figure 5. Average expression versus dispersion of genes in our dataset. Genes that having an average 
expression and dispersion of greater than a threshold are selected (represented in black). Names of some of the 
highly variable genes are provided. 

 
We then applied PCA on the subset of 2,048 highly variable genes in order to capturing the 
primary structures and patterns in the transcriptome data. This process generates 2,048 
principal components, however, only a small number of these components capture the 
variance exist in the data. We used the elbow plot followed by JackStraw7, 18 method and 
selected 28 significant PCs for the downstream analyses. Figure 6 demonstrates the data in 
the principal component spaces. These 28 principal components are more robust to technical 
noise than individual gene expression values. We computed the scores of genes in these 28 
PCs.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.205062doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205062


 
Figure 6. Principal components. Each panel represents data in two of the principal components.  

 
To identify PCs representing non-RGC markers, we found 68 genes (e.g., Gpr37, Gldc, and 
Epas1) from literature that are known markers for major non-RGC retinal cell types including 
Muller, Fibroblast, Astrocyte, Amacrine, Endothelium, Horizontal, Photoreceptor, and 
Microglia cells. We then computed the pairwise correlation between any of these 68 markers 
and any of 40 PCs. We then excluded those PCs that showed a significant correlation 
(Pearson) with known non-RGC markers. Second PC had the highest correlation of 0.35 with 
a few non-RGC markers and was excluded from the downstream analysis. This step requires 
domain expertise and essentially integrates biological knowledge into the computational 
workflow but could be skipped if appropriate domain knowledge is lacking.   
   
We then performed graph-based clustering that starts with a K-nearest neighbor (KNN) graph, 
with edges drawn between cells with similar gene expression patterns, and then partitioned 
this graph into highly interconnected quasi-cliques or communities, as outlined in previous 
publications.25 26 We then applied modularity optimization techniques proposed in Louvain 
algorithm or SLM 27, to iteratively group cells together, with the goal of optimizing the standard 
modularity function. We visualized the clusters using tSNE subsequently. 19 We set the 
effective number of neighbors in tSNE represented by “perplexity” parameter to 30. In fact, 
cells with similar gene expression patterns will fall closely, and hence distinct cell types should 
form clusters in the 2-dimensional tSNE space. Figure 7 shows the tSNE plots of the cells we 
identified. Left panel show mapping of genes onto tSNE space. In the right panel, cells are 
color-coded by their plate. We propagated the cluster labels identified by SLM unsupervised 
learning and color coded and numbered the clusters, as shown in Figure 8. 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.205062doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205062


 
Figure 7. Cell mapped on 2-D tSNE space. Cells with similar transcriptome patterns have been grouped together. 
Left panel shows all cells and right panel shows cells color coded by the corresponding plate (batch) in the 
experimental workflow.  
 
To identify cluster of non-RGC cells in the tSNE space, we identified marker genes 
differentially expressed in each cluster by comparing genes expressed in each cluster with 
genes expressed in the remaining clusters. 
More specifically, we required a gene in each cluster to be detected at a minimum percentage 
and a minimum expression level compared to genes in the rest of clusters. This was 
investigated using likelihood-ratio test for single cell gene expression.21, 28 We explored other 
techniques including negative binomial generalized linear model, and negative binomial 
distribution implemented in the DESeq2 algorithm29 to assure repeatability. We then 
performed supplementary post hoc qualitative analysis to identify biological attribute of 
clusters, particularly those with significant expression of non-RGC markers. Specifically, we 
identified clusters of cells that co-express known non-RGC markers indicated before. This is 
a classical approach and has been used in the latest studies aiming at identifying different cell 
types. 
 
We identified that 14 out of 33 genes differentially expressed in cluster number 14 were known 
photoreceptor markers. Therefore, we suspect cells in this clusters were mostly photoreceptor 
cells or cells carrying fractions of photoreceptors RNA thus excluded all cells in this cluster 
from the analysis. This process, coupled with domain knowledge, can be performed iteratively 
to exclude other potential non-RGC cells from the analysis.  
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Figure 8. Final clustering to identify cluster of contaminating non-RGC cells. 
 
We also performed histological validation. Briefly, eyes from DBA2/J mice were fixed and 
subsequently dehydrated, cleared, and infiltrated. Then 8 mm sections were cut, and sections 
were deparaffinized, heated, washed, and subsequently blocked in. Primary antibodies were 
applied, and slides were washed free of primary antibody to stain the nuclei and incubated 
subsequently. Slides were then washed and mounted then were imaged using a Zeiss 710 
LSM at 200X magnification. Figure 9 shows the plots of major genes expressed in ganglion 
cell layer (GCL) of the retina verified by histological validation.     
 

 
Figure 9. Histological validation of RGC markers. RBPMS and TECR genes were expressed selectively in the 
ganglion cell complex layer of retina reflecting agreement with our computational analysis.  
 
 
10x chromium whole single cell capture  
We purified RGCs from the left and right eyes of 11 DBA/2J mice of age range 130-159 days 
old by C1 system of Fluidigm technology utilizing microfluidic and CD90.2 magnetic 
microbeads for RGC surface markers. Microfluidic technology consumes smaller volumes of 
reagents compared to successors and can automate downstream RNA processing reactions 
for sequencing. After purification, we immediately processed RGCs using 10x Genomics 
Chromium platform (Figure 3). 30 Each cell was sequenced to the depth of ~142,000 with an 
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average of 3,216 genes expressed per cell. Over 99.9% of the reads had valid UMIs. Figure 
10 shows the histogram of the number of genes expressed in cells.  
To enhance the power of analysis, we filtered cells expressing fewer than 200 genes and 
genes expressed in fewer than five cells. A total of 5,813 cells expressing 17,997 genes were 
included for the downstream analysis.  
 

 
Figure 10. Number of genes expressed in putative retinal ganglion cells (RGCs) using whole cell capture by 10x 
technology.  

 
We then scaled and centered the data along each gene then selected highly variable genes 
by computing average expression and dispersion of each gene. We identified 5,396 highly 
variable genes based on average expression and dispersion (Fig. 11).  
 
 

 
Figure 11. Average expression versus dispersion of genes in the whole cell capture generated by 10x 
technology. Genes that having an average expression and dispersion of greater than a threshold are selected 
(highlighted in black).  
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We then applied PCA on the subset of 5,396 highly variable genes and generates 5,396 
principal components. JackStraw7, 18 identified 40 significant PCs. We then computed the 
scores of genes in these 40 PCs. To identify PCs representing non-RGC markers, we 
found 68 genes (e.g., Gpr37, Gldc, and Epas1) from literature that are known markers 
for major non-RGC retinal cell types including Muller, Fibroblast, Astrocyte, Amacrine, 
Endothelium, Horizontal, Photoreceptor, and Microglia cells. We then computed the pairwise 
correlation between any of these 68 markers and any of 40 PCs. We then excluded those PCs 
that showed a significant correlation (Pearson) with known non-RGC markers. Second PC 
had the highest correlation of 0.72 with a few non-RGC markers and was excluded from the 
downstream analysis.   
Graph-based clustering2526 with SLM modularity optimization27 identified 32 clusters visualized 
using tSNE.19Figure 12 shows the tSNE plot of the identified clusters color-coded and 
numbered by labels from SLM unsupervised learning.   

 
Figure 12. Final clustering identified 32 clusters of cells. Contaminating clusters of non-RGC cells will be identified 
and excluded. 
 
To identify non-RGC cells in the tSNE space, we first identified marker genes differentially 
expressed in each cluster by comparing genes expressed in each cluster with genes 
expressed in the remaining clusters using likelihood-ratio.21,28 Post hoc analysis to qualitatively 
and quantitively identifying biological attribute of clusters, particularly those with significant 
expression of non-RGC markers, identified a few closers of non-RGC cells. 
Figure 13 shows the heatmap of genes that were differentially expressed in 32 clusters in a 
single snapshot and figure 14 presents sample genes that were highly selective in terms of 
expression in different clusters. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.205062doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205062


 
Figure 13. Heatmap plot of genes expressed in different clusters. Cells are sorted based on cluster identity as 
shown on top of the plot. Genes that were differentially expressed are presented on the y axis. Yellow color shows 
high expression.  
 
   

 
Figure 14. Differentially expressed genes. Six sample differentially expressed marker genes for several clusters 
computed suing likelihood-ration.  
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After posthoc analysis, we identified that 27 out of 60 genes differentially expressed in cluster 
number 7 were known photoreceptor markers. Therefore, cells in this cluster were excluded 
from the analysis. This process, coupled with domain knowledge, can be performed iteratively 
to exclude other potential non-RGC cells from the analysis.  
 
10x chromium single nuclei capture  
We purified RGCs from the left and right eyes of 11 DBA/2J mice of age range 130-159 days 
old by C1 Fluidigm system utilizing microfluidic and CD90.2 magnetic microbeads for RGC 
surface markers. Microfluidic technology consumes smaller volumes of reagents compared to 
successors and can automate downstream RNA processing reactions for sequencing. Once 
whole cells were isolated, we isolated nuclei by removing the supernatant without disturbing 
the nuclear pellet. The isolated nuclei were passed thru a strainer and counted on the 
Countess II software. Nuclei number was adjusted to 1000 nuclei/ul. We then immediately 
processed RGCs using 10x Genomics Chromium platform (Figure 3).30 Each nuclei was 
sequenced to a depth of ~220,000 with an average of 1,728 genes per cell.  
 
To enhance the power of analysis, we filtered cells expressing fewer than 1,200 genes and 
genes expressed in fewer than five cells. A total of 9,442 cells expressing 16,577 genes were 
included for the downstream analysis. We then scaled and centered the data along each gene 
then selected highly variable genes by computing average expression and dispersion of each 
gene. We identified 3,792 highly variable genes based on average expression and dispersion 
(Fig. 15).  
 
 

 
Figure 15. Average expression versus dispersion of genes in the nuclei cell capture generated by 10x Chromium 
technology. Genes that having an average expression and dispersion of greater than a threshold are selected 
(highlighted in black).  

 
We then applied PCA on the subset of 3,792 highly variable genes and used JackStraw7, 18 to 
identify significant PCs. We identified 32 significant PCs. To identify PCs representing non-
RGC markers, we found 68 genes (e.g., Gpr37, Gldc, and Epas1) from literature that are 
known markers for major non-RGC retinal cell types including Muller, Fibroblast, Astrocyte, 
Amacrine, Endothelium, Horizontal, Photoreceptor, and Microglia cells. We then computed 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.205062doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.205062


the pairwise correlation between any of these 68 markers and any of 32 PCs. We then 
excluded those PCs that showed a significant correlation (Pearson) with known non-RGC 
markers. The first PC had the highest correlation of 0.58 with several non-RGC markers and 
was excluded from the downstream analysis.   
Graph-based clustering2526 with SLM modularity optimization27 identified 24 clusters visualized 
using tSNE.19Figure 16 shows the tSNE plot of the identified clusters of cells color coded and 
numbered based on the labels identified by SLM algorithm.  

 
Figure 16. Final clustering identified 24 clusters of cells. Contaminating clusters of non-RGC cells will be identified 
and excluded. 
 
To identify potential non-RGC cells in the tSNE space, we first identified marker genes 
differentially expressed in each cluster by comparing genes expressed in each cluster with 
genes expressed in the remaining clusters using likelihood-ratio.21,28 Post hoc analysis to 
qualitatively and quantitively identifying biological attribute of clusters, particularly those with 
significant expression of non-RGC markers, identified a few closers of non-RGC cells. 
Figure 17 shows the heatmap of genes that were differentially expressed in 24 clusters in a 
single snapshot and figure 18 presents sample genes that were highly selective in terms of 
expression in different clusters. 
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Figure 17. Heatmap plot of genes expressed in different clusters. Cells are sorted based on cluster identity as 
shown on top of the plot. Genes that were differentially expressed are presented on the y axis. Yellow color shows 
high expression.  

   
Figure 18. Differentially expressed genes. Six sample differentially expressed marker genes for several clusters 
computed suing likelihood-ration.  
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After posthoc analysis, we identified that 5 out of 14 genes differentially expressed in cluster 
number 5 were known photoreceptor markers. Therefore, cells in this cluster were excluded 
from the analysis. This process, coupled with domain knowledge, can be performed iteratively 
to exclude other potential non-RGC cells from the analysis.  
 
 
Single ventral midbrain cells 
Eight DBA/2J or DBA/2J-Gpnmb mice in an age range of 7-8 days old were anesthetized and 
ventral midbrain tissues were removed and dissociated gently. Fluidigm C1-HT microfluidics 
plates were used to isolate and generate scRNA-seq libraries of full-length mRNAs using 
SMART-Seq v4. Three libraries each one including 400 cells were sequenced using 
HiSeq3000, PE151. Following alignment using STAR, expression was normalized to 
log2(FPKM+1) across ~25,000 unique transcript models. Each cell was sequenced to a depth 
of ~490,000 with an average of 1,778 genes per cell.  
 
To enhance the power of unsupervised clustering for discovering RGC subtypes, we filtered 
cells expressing fewer than 200 genes and genes expressed in fewer than five cells. A total 
of 1,149 cells expressing 14,147 genes were included for the downstream analysis. Figure 19 
shows the histogram of the number of genes expressed in cells. In average, 1,778 genes were 
expressed in cells. 

 

 
Figure 19. Number of genes expressed in ventral midbrain cells. Left panel shows the histogram of number of 
genes expressed in all cells. Middle panel shows the violin plot of number of genes expressed in three plates, 
each plate with 400 ventral midbrain cells and the right panel represents the number fragments per kilobase 
million (FPKM) in three plates each with 400 ventral midbrain cells.  
 
We then scaled and centered the data along each gene then selected highly variable genes 
by computing average expression and dispersion of each gene. We identified 5,516 highly 
variable genes based on average expression and dispersion (Fig. 20). Reducing the number 
of genes reduces the computational complexity and improves the ability to identify selective 
genes of different midbrain cell types.  
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Figure 20. Average expression versus dispersion of genes in our dataset. Genes that having an average 
expression and dispersion of greater than a threshold are selected (represented in black). Names of some of the 
highly variable genes are provided. 

 
We then applied PCA on the subset of 5,516 highly variable genes in order to capturing the 
primary structures and patterns in the transcriptome data. This process generates 5,516 
principal components, however, only a small number of these components capture the 
variance exist in the data. We used JackStraw7, 18 method and identified 34 significant PCs. 
 
We then performed graph-based clustering that starts with a K-nearest neighbor (KNN) graph, 
with edges drawn between cells with similar gene expression patterns, and then partitioned 
this graph into highly interconnected quasi-cliques or communities, as outlined in previous 
publications.25 26 We then applied modularity optimization techniques proposed in Louvain 
algorithm or SLM 27, to iteratively group cells together, with the goal of optimizing the standard 
modularity function. We then visualized the clusters using tSNE. 19 We set the effective 
number of neighbors in tSNE represented by “perplexity” parameter to 30. In fact, cells with 
similar gene expression patterns will fall closely, and hence distinct cell types should form 
clusters in the 2-dimensional tSNE space. Figure 6 shows the tSNE plots of the cells we 
identified. We identified 13 different clusters of cells (Fig. 20). 
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Figure 21. Cell mapped on 2-D tSNE space. Cells with similar transcriptome patterns have been grouped together. 
Left panel shows all cells and right panel shows cells color coded by the corresponding plate (batch) in the 
experimental workflow.  
 
We identified marker genes differentially expressed in each cluster by comparing genes 
expressed in each cluster with genes expressed in the remaining clusters. More specifically, 
we required a gene in each cluster to be detected at a minimum percentage and a minimum 
expression level compared to genes in the rest of clusters. This was investigated using 
likelihood-ratio test for single cell gene expression.21, 28 We explored other techniques 
including negative binomial generalized linear model, and negative binomial distribution 
implemented in the DESeq2 algorithm29 to assure repeatability.  

 
Figure 22. Final clusters. We identified 13 different clusters of ventral midbrain cells. 
 
We subsequently performed supplementary post hoc qualitative analysis to identify 
biological attribute of clusters. Specifically, we identified clusters of cells that co-express 
known ventral midbrain markers indicated before. This is a classical approach and has been 
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used in the latest studies aiming at identifying different cell types. We identified ten genes 
differentially expressed in our dataset that were matching with La Manno el al.31 : Pdgfra, 
Clu, Ccl4, Cst3, Gad2, Six3, Nefl, Rit2, Cd36, and Apod (Figure 23). 
 

     
Figure 23. Differentially expressed genes. Ten sample differentially expressed genes for ventral midbrain cells 
identified using likelihood-ratio.  
 
Figure 24 shows a snapshot plot of all cells, sorted by cluster membership, versus top genes 
expressed in clusters. Yellowish color shows high expression of those genes in different 
clusters.   
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Figure 24. Heatmap plot of top genes expressed in different clusters. Cells are sorted based on cluster identity as 
shown on top of the plot. Genes that were differentially expressed are presented on the y axis. Yellow color shows 
high expression.  
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