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Abstract 
Spontaneous canine cancers are a valuable but relatively understudied and underutilized model in 
cancer research.  To enhance their usage, we reanalyzed whole exome sequencing data published 
for 601 dogs with mammary cancer, osteosarcoma, oral melanoma, lymphoma, glioma or 
hemangiosarcoma from over 35 breeds, after rigorous quality control, including breed validation.  
Each cancer type harbors distinct molecular features, with major pathway alterations matching 
its human counterpart (e.g., PI3K for mammary cancer and p53 for osteosarcoma).  On average, 
mammary cancer and glioma have lower mutation rates (median <0.5 mutation per Mb), whereas 
oral melanoma, osteosarcoma and hemangiosarcoma have higher mutation rates (median ≥1 
mutation per Mb).  Across cancer types and across breeds, the mutation rate is strongly 
associated with TP53 mutation, but not with PIK3CA mutation.  The mutation rate is also 
associated with a mutation signature enriched in osteosarcoma of Golden Retrievers, independent 
of TP53 mutation.  Finally, compared to other breeds examined, DNA repair genes appear to be 
less conserved in Golden Retriever which is predisposed to numerous cancers. 
 
 
Introduction  
Cancers in pet dogs occur spontaneously in animals with an intact immune system, which gives 
them an advantage over traditional cancer models such as cell lines and rodents.  These canine 
cancers more accurately emulate human cancers in etiology, complexity, heterogeneity, 
behavior, treatment and outcome.  These similarities give them the potential to effectively bridge 
a gap between preclinical models and human clinical trials, accelerating bench-to-bedside 
translation, and as such, the National Cancer Institute (NCI) has recently issued programs 
targeting canine cancers.  These include funding multi-institute immunotherapy trials with pet 
dogs and a 5-year project to build the NCI Integrated Canine Data Commons, a database to 
disseminate canine molecular and clinical data to the public. 
 
However, current deficiencies create roadblocks to the effective use of canine cancers.  This is 
clearly exemplified by sequence mutation, a hallmark of cancer1.  Tumor mutation rate, mutation 
signature and mechanism are extensively investigated for nearly every type of human cancer via 
pan-cancer studies2-5.  However, to our knowledge, no pan-cancer research has been published 
for the dog, and fundamental questions remain unanswered.  For example, mutation rate varies 
significantly among human cancer types6,7,8{Alexandrov, 2020 #1546, and mutation rate-based subtypes 
have been identified in multiple cancers in human9,10.  Do the same hold true for canine cancers?  
A recent study reports similar mutation rates for mucosal melanoma between the two species11, 
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while another study reports that canine and pediatric glioma are closer in mutation rate than 
canine and adult glioma12.   
 
To answer these questions, we performed a pan-cancer and pan-breed study with 710 canine 
cases with public whole exome sequencing (WES) and/or whole genome sequencing (WGS) 
data11-22.  We used 601 cases with WES data11-13,15-17 for discovery, and 18 with WES data18,23 
and 91 with WGS data18-22 for validation.  We also compared our canine findings to those 
published for the corresponding human cancers3,4,24-27.  The study is described below.  
 
 
Results 
We performed a rigorous quality control (QC) on the WES data published for 601 canine 
cases. 
The 601 canine cases consist of over six cancer types, including mammary cancer13, oral 
melanoma11, osteosarcoma15, lymphoma16, glioma12 and hemangiosarcoma17 (Table S1).  They 
represent over 35 breeds (Table S1A).  Their WES data were generated by different groups, 
using different exome-capturing kits and Illumina sequencing machines11-13,15-17.  We hence 
performed a rigorous QC to ensure that each study met a set of quality standards before any 
further integrative analysis. 
 
Among these cancers, the mammary cancer study13 has the most comprehensive case 
information provided in the SRA database and related publications11-13,15-17  (Table S1).  It has 
not only the patient info (e.g., age, sex, breed), but also histological subtypes and limited clinic 
data (e.g., tumor invasiveness, patient alive/death status).  The osteosarcoma15, lymphoma16, 
glioma12, and hemangiosarcoma17 studies all have patient info (Table S1), but lack clinical data, 
while the melanoma study11 lacks this patient info, including the breed.  
  
For our WES data QC, we first found that, except for the normal samples in the mammary cancer 
dataset, all other datasets have a median sequencing amount of >50 million (M) read pairs 
(Figure S1A).  We identified two outliers with sequencing pairs <5M and excluded them from 
further analyses (Table S1B).   
  
We then investigated the mapping of read pairs to the canine reference genome28. With the 
exception of the glioma study12, the mapping rates of all other datasets have >80% read pairs in 
each sample that are coordinately and uniquely aligned to the reference genome, with the median 
close to or above 90% (Figure S1B).  We excluded 6 samples with mapping rates <60% from 
further analysis (Table S1B).  Furthermore, all samples have >70% of their reads with mapping 
quality scores >30, with the mammary13 and melanoma11 datasets reaching median values of 
>90% (Figure S1B).  For the target mapping rate, all studies have on average >50% uniquely and 
coordinately mapped pairs aligned to the coding sequence (CDS) regions, with the melanoma 
study11 achieving >60% (Figure 1A).  We excluded three samples whose target mapping rate 
<30% from further analysis (Table S1B).  All studies have reached an average CDS region read 
coverage median value of >70X among their samples (Figure 1B).  We excluded 14 samples 
with coverage <30X (Table S1B).  For the mapped read distribution in the target regions (which 
reflects sequencing randomness), we determined the deviation of each sample from its 
theoretical Poisson distribution (as a completely random sequencing process can be 
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approximated by the Poisson distribution).  The results indicate that the mammary cancer study 
has the most random sequencing, closely followed by the melanoma dataset (Figure 1C).  
Finally, for total callable bases, determined from MuTect29 (see later), of >10Mb (Figure 1D)all 
but one sample have >10Mb (Figure 1D).  We excluded that sample. 
 
To assess the data accuracy, we examined the reported tumor and normal sample pairing using 
germline variants found in each sample (Figure 1E), assuming that correctly paired samples, 
compared to other samples in the same study, should share the most variants.  We found a total 
of 24 mispaired cases and excluded them from further analysis.  
  
Finally, we assessed the accuracy of the provided breed data.  We first identified 7,168 breed-
specific variants, which are germline variants that are unique to or enriched in each of the 9 
breeds with ≥10 animals (see Materials and Methods).  We then examined the variant allele 
frequency (VAF) of each breed-specific variant in normal samples (Figure 1F), and we identified 
9 cases with mis-assigned pure breeds (5 Golden Retrievers, 3 Yorkshire Terriers and 1 Poodle), 
and excluded them from any breed-related analysis.  We also repeated this analysis by including 
107 cases with missing breed data (e.g., the oral melanoma dataset).  We were able to 
unambiguously assign breeds to 46 cases (8 to Boxer, 10 to Cocker Spaniel, 14 to Golden 
Retriever, 4 to Maltese, 6 to Rottweiler, 3 to Shih Tzu and 1 to Yorkshire Terrier) (Figure S1D; 
Table S1F). 
  
In summary, our QC analysis indicates that the mammary cancer and melanoma studies have the 
highest sequence quality, and that the mammary cancer study has the most comprehensive case 
info.  A total of 50 cases out of 601 total have failed our QC steps (Table S1B) and are excluded 
from the analyses described below.   
  
Each cancer type has distinct molecular features.  
With 557 tumors from 551 cases (5 oral melanoma cases have both primary and metastatic 
tumors) that have passed our QC measures, we identified mutated and/or amplified/deleted 
genes, along with their molecular pathway, in each tumor.  The study reveals unique alteration 
features for each canine cancer type.  
  
Mammary cancer harbors frequent PI3K pathway alteration (54%) (Figure 2A).  The PIK3CA 
H1047R mutation30 is especially common, found in 39% tumors (Figure 2A).  However, another 
PIK3CA mutation hotspot, the E542/545 site, is intriguingly missing in these canine tumors, 
unlike human breast cancer31.  
  
Oral melanoma and osteosarcoma both harbor frequent p53 pathway alteration (62%) (Figures 
2D and 2E).  However, the actual altered genes differ, with TP53 mutated in 54% of 
osteosarcoma tumors (Figure 2E) and MDM2 amplified in 48% of oral melanoma tumors (Figure 
2D), consistent with previous findings11,15. Moreover, while deletion is more common in 
osteosarcoma, amplification is more common in oral melanoma (Figure S2).  Indeed, CDKN2A 
is deleted in 26% of osteosarcoma and CDK4 is amplified in 30% oral melanoma, resulting in 
frequent cell cycle gene alteration in both cancer types (Figures 2D and 2E). 
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Hemangiosarcoma has a TP53 mutation frequency of 71%, the highest among the 6 cancer types 
(Figure 2F).  PIK3CA is another frequently mutated gene, found in 34% hemangiosarcomas.  
Consistent with published studies 11,13,15,16, T cell lymphoma harbors frequent T cell receptor 
(TCR), while B cell lymphoma harbors frequent B cell receptor (BCR) alteration (Figure 2C).   
 
We noted that each canine cancer type shares major pathway alterations with its human 
counterpart (Figure 2), including breast cancer, pediatric and adult glioma, diffuse large B-cell 
lymphoma, oral melanoma, osteosarcoma, or angiosarcoma3,4,24-27.  In both species, p53 pathway 
alteration and cell cycle alteration are common in osteosarcoma and oral melanoma (Figures 2D 
and 2E).  PI3K signaling is the most frequently altered pathway in mammary cancer in both 
humans and dogs (Figure 2A).  
 
We also observed dog-human differences.  For example, p53 pathway alteration is at least twice 
more common in human glioma than in canine glioma (Figure 2B).  Chromatin remodelers are 
frequently altered in human glioma but not in canine glioma (Figure 2B), while the opposite is 
observed for osteosarcoma (Figure 2E).  
 
Canine mutation rate varies among cancer types but not among breeds. 
We investigated mutation rate in each of the 557 canine cancers that pass the QC.  Resembling 
human cancer2,32, canine mutation rate varies among these cancers, ranging from 0 to 161 
somatic mutations per Mb CDS (Figure 3).  However, overall the mutation rate is low, with a 
median of 0.6.  Hypermutation (mutation rate >10) and ultrahypermutation (mutation rate >100) 
are both rare in these canine cancers (Figure 3). 
 
The mutation rate varies among cancer types (Figure 4A).  Canine mammary cancer and glioma 
have the lowest mutation rate, with a median value of 0.37 and 0.43 respectively, and hence are 
classified as mutation rate-low (MR-L) (Figure 4A).  Canine oral melanoma, osteosarcoma, and 
hemangiosarcoma all have higher mutation rate, however, with a median value of 0.94, 1.07 and 
1.28 respectively.  They are hence classified as MR-high (MR-H) (Figure 4A).  Canine 
lymphoma is somewhere in between, with a median of 0.6, and is classified as MR-median (MR-
M) (Figure 4A).  These findings are validated using two other WES datasets18,23. 
 
Within the same cancer type, the mutation rate appears similar among breeds (Figure 5A), except 
for osteosarcoma, where Golden Retrievers have significantly higher mutation rates than those of 
Rottweilers and Greyhounds (Figure 5A).  Thus, we conclude that mutation rates in canine 
cancers are primarily determined by cancer types, but not by breeds.  
 
Canine mutation rate is correlated with TP53 mutation but not PIK3CA mutation.  
Like human cancer, TP53 is frequently mutated in canine cancer (Figure 3).  Importantly, we 
noted a strong association between mutation rate and TP53 mutation across cancer type and 
within a cancer type (Figure 4B).  This is clearly seen in canine hemangiosarcoma and 
osteosarcoma, which are both MR-H (Figure 4A) and have TP53 mutated in 68% and 58% of 
tumors, respectively (Figure 4B).  Furthermore, the median mutation rate in osteosarcomas and 
hemangiosarcomas with mutant TP53 ihas increased to 1.34 and 1.88 respectively, compared to 
0.98 and 0.7 for the corresponding tumors with wild type TP53 (Figure 4B).  
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A strong association between mutation rate and TP53 mutation is also observed across breeds 
(Figure 5B).  Indeed, the median mutation rate increases significantly with TP53 mutation in  
Golden Retriever (0.66 to 1.88), Greyhound (0.73 to 1.14), Rottweiler (0.68 to 1.0) and Maltese 
(0.34 to 0.91) (Figure 5B).   
 
PIK3CA is another gene frequently mutated in canine cancer (Figure 3).  However, in contrast to 
TP53, we did not observe an association between mutation rate and PIK3CA mutation in any 
cancer type or breed (Figures 4B and 5B).  Furthermore, for BCR and TCR alterations, which are 
common only in lymphoma (Figure 2C), we observed an association only for TCR alterations 
(Figure S4) but not for BCR alterations. 
 
Mutation rate is consistently associated with p53 pathway alteration (Figure 3).  This is because 
besides TP53, we also observed a strong association with other genes in the p53 pathway, 
including CDKN2A deletion which is frequent in canine osteosarcoma and melanoma (Figures 3 
and S4), and ATM mutation which is frequent in lymphoma (Figure S4).  
 
Cell cycle pathway alteration is also associated with canine mutation rate (Figure 3), due to 
CDKN2A/2B deletion and CDK4 amplification (Figure S4).  
 
Notably, we observe the same associations described above about canine cancers in 
corresponding human cancers, either adult or pediatric (Figure 4B).  Our findings add another 
piece of data supporting that canine cancers faithfully recapitulate the molecular features of their 
human counterparts.  
  
Osteosarcoma in Golden Retriever harbors mutation rate-associated signature. 
We investigated mutation signatures in these canine tumors, and identified three signatures, 
which we named S1, S2 and S3 (Figure 5C).  S2, matching the aging signature reported in 
human adult and pediatric cancers2-4,32, is the dominant signature in these canine cancers (Figure 
5C).  S3 matches the human UV signature2-4,32, and is mostly enriched in tumors of unknown 
cancer types (Figure 5C).  S1 lacks significant matches to any known signatures reported in 
human cancer (Figure 5C) 2-4,32.  Notably, S1 is significantly enriched only in osteosarcomas of 
Golden Retriever dogs (Figure 5C); hence it is considered breed- and cancer-specific.  S1 is 
associated with mutation rate, but not with TP53 mutation (Figures S5A-B).  We also detected 
S1 by analyzing published WGS data of canine cancer18-22. 
 
To better understand the genetic basis of S1, we determined S1-associated mutations, which 
include ABTB2 R643C, a germline mutation limited to Golden Retrievers within our study,  and 
BRPF1 V771G, a somatic mutation only found in osteosarcoma of Golden Retrievers (6 total)  
(Figure S5C).  Notably, BRPF1 encodes a subunit that constitutes the MOZ/MORF histone 
acetyltransferase complexes, which remodel chromatin, regulate gene expression and is 
implicated in cancer development33. 
  
DNA repair genes appear to evolve faster in Golden Retrievers. 
Compared to other breeds, Golden Retriever dogs harbor higher mutation rates, more TP53 
mutation, and a unique mutation signature (Figures 5A-C).  To understand the reasons for these 
observations, we examined DNA repair genes, whose alterations lead to inefficient DNA repair 
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in the cell and higher mutation rates2,34.  We determined the ratio of germline mutations in 
classical DNA repair genes (116 total; see Table S5G) versus those in all non-DNA repair genes 
in the canine genome.  We found that Golden Retriever has the highest ratio, compared to other 
breeds examined, in two datasets including our WES data described above and a published WGS 
study of 722 dogs35 (Figure 5E).  The results indicate that DNA repair genes evolve faster in 
Golden Retriever, which may decrease DNA repair efficacy and possibly explain the observed 
higher mutation rates in Golden Retriever dogs (Figure 5A). 
 
Discussion 
Taking advantage of public canine data, we have investigated 601 canine cases of over 6 cancer 
types and over 35 breeds.  To our knowledge, this represents the first pan-cancer and pan-breed 
study for the dog.  Importantly, our study provides a deeper understanding of canine cancer 
mutation rates. 
 
Mutation rate and TP53 mutation. 
Our study reveals that canine mutation rate is primarily cancer type-dependent, but largely breed-
independent.  TP53 mutation and p53 pathway alteration are potential reasons, due to their strong 
association with mutation rate observed across cancer types and across breeds, a pattern not 
observed in PIK3CA mutation.  
 
Canine melanoma, osteosarcoma, and hemangiosarcoma have significantly higher mutation rates 
than other cancer types investigated.  Notably, TP53 mutations are very frequent in canine 
osteosarcoma and hemangiosarcoma, while MDM2 amplification (which promotes TP53 
degradation) is common in melanoma.  In contrast to these cancers, canine mammary cancer and 
glioma harbor infrequent TP53 mutation or p53 pathway alteration, and a lower mutation rate.  
We hypothesize that these observations are related to the cells of origin in each cancer and their 
tumorigenesis mechanism.  
 
Mammary cancer originates from epithelial cells.  Establishment of epithelial cell apical-
basolateral polarity decreases cell proliferation, and acts as potent tumor suppressor36,37.  
PIK3CA H1407R/K mutation, common in canine mammary cancer, increases cell stemness38 
and decreases epithelial cell polarity, leading to accelerated cell proliferation and tumorigenesis.   
For glioma, epigenetic alterations (e.g., aberrant DNA methylation12) drives tumorigenesis.  
However, in both cancer types, even with accelerated cell proliferation, the cell cycle checkpoint 
is functional, leading to low mutation rate.   
 
Hemangiosarcoma, osteosarcoma and melanoma all arise from mesenchymal cells, which lack 
cell polarity and cell adhesion.  Loss of function of p53, due to either TP53 mutation or MDM2 
amplification, leads to defective cell cycle checkpoints.  This shortens the G0 and G1 phases, 
accelerating cell cycle.  As a result, fewer DNA damages are repaired and fewer DNA 
replication errors are corrected9, increasing the mutation rate and contributing to tumorigenesis.   
 
In supporting the hypothesis above, we have noted a strong association between cell cycle 
alteration, including CDK2A deletion, and canine mutation rate. 
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Dog-human homology 
Our pan-cancer study reveals numerous dog-human homologies.  First, each canine cancer type 
shares major pathway alterations and often the same mutated genes with its human counterpart, 
consistent with previous individual cancer studies11-22.  Second, the order of canine cancer types 
sorted by the mutation rate (i.e., mammary cancer < glioma < lymphoma, etc.) is the same as that 
of the corresponding human cancer types11,39-43, even though the actual mutation rates may 
differ.  Third, across cancer types in both species, mutation rate is strongly associated with TP53 
mutation and p53 pathway alteration, but not with PIK3CA mutation.   
  
Golden Retriever 
Among the 35 breeds investigated here, Golden Retriever is the largest breed, with 149 animals 
in total after QC and breed validation.  These dogs constitute a large portion of the osteosarcoma 
and lymphoma cases and the entirety of the hemangiosarcoma case set.  Importantly, our study 
reveals unique features of Golden Retrievers.  These include a mutation signature, which is 
enriched only in osteosarcomas of Golden Retriever dogs and is associated with mutation rate, 
independent of TP53 mutation.  Furthermore, DNA repair genes, which are closely linked to 
mutation rate8,9, appear to evolve faster in Golden Retrievers than other breeds examined.  This 
may lead to less efficient DNA repair, possibly explaining the higher mutation rate of cancers 
from Golden Retrievers.  Importantly, this may explain why Golden Retriever dogs are prone to 
the development of multiple cancer types.  These of course require future validation studies.  
 
 
Materials and Methods 
WES data collection 
We acquired canine cancer data from the Sequence Read Archive (SRA) database with 
BioProject IDs PRJNA391455 (osteosarcoma), PRJNA489159 (mammary cancer), 
PRJNA247493 (lymphoma), PRJEB12081 (oral melanoma), PRJNA579792 (glioma), 
PRJNA552034 (hemangiosarcoma), and PRJNA247493 (unclassified).   We also obtained other 
information from relevant publications11-17,30,44,45.  Sources are shown in Table S1.  
  
WES data QC 
Mapping rates:  We aligned sequence read pairs using BWA- aln (version 07.17)46 to the canine 
reference genome CanFam3.1.  We identified coordinately and uniquely mapped pairs based on 
the flag values and TAG values (with XT: AU or XT: AM) to calculate each sample’s overall 
mapping rate.  We identified pairs with at least one read with >=1bp overlap with a coding 
sequence (CDS) region (from Canfam3 1.99 GTF) to calculate the target mapped rate.  A case 
was considered to have failed QC if its tumor or normal sample has a coordinately and uniquely 
mapping rate below 0.6 or a target mapping rate below 0.3. 
  
Mapped sequence coverage and distribution:  We calculated base coverage using GATK 
(version 3.8.1)47 DepthOfCoverage with minimum mapping quality and base quality scores set to 
Phred 10.  The mean coverage was derived by dividing the sum of the total depth for each locus 
by the number of total loci. Cases were considered to have failed QC if either their tumor or 
normal samples have a mean coverage below 30X. 
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To identify the read distribution in target regions (which reflects sequencing randomness), we 
calculated the root mean square error (RMSE) of sequence coverage by comparing the sequence 
distribution in the sample to Poisson distribution with λ equals to the mean coverage of each 
sample. 
  
Quantifying Callable bases:  We calculated callable bases for each case using Mutect (v1.1.7)29 
with minimum base quality score set to Phred 30.  Cases with fewer than 10 million callable 
bases were ruled out before any integrative data analysis. 
  
Germline variant calling 
Starting with realigned bam files (see Somatic mutation detection in WES data), we used GATK 
3.8-147 HaplotypeCaller to call germline variants for every normal and tumor sample separately 
(parameters: -dontUseSoftClippedBases -stand_call_conf 20.0).  We then filtered out variants 
using GATK VariantFiltration (filters: FS > 30.0 and QD < 2.0).  We calculated the coverage of 
every coding sequence locus using GATK DepthForCoverage with parameters --minBaseQuality 
10 and --minMappingQuality 10.  Finally, we compiled all protein modifying variants (indels, 
stop-gain, and missense) that are observed in at least one case and called in both of its normal 
and tumor samples.  We calculated the Variant Allele Frequency (VAF) for each called variant in 
every sample using the formula: allele depth/total base depth.  For variants that are not called by 
HaplotypeCaller, we assigned a VAF value of 0.  For each variant, we excluded samples with 
locus coverage <10, according to DepthForCoverage tool, from further analysis related to that 
variant, whether it has been called or not. 
  
Tumor-normal sample pairing accuracy 
Using all passed germline variants by VariantFiltration above, we calculated the total number of 
variants in tumor (𝑇 ) and normal (𝑁 ) sample for every case 𝑖. We also calculated the number of 
shared variants between any two tumor and normal samples 𝑆 ,  from the same dataset. The 
proportion of shared variants between a tumor sample 𝑖 and a normal sample 𝑗 is given by: 

𝑃 ,
𝑆 ,

min 𝑇 , 𝑁
 

I.e. it is the number of shared variants divided by the smaller number of variants amongst two 
samples. If 𝑖 𝑗, 𝑃 ,  𝑃 , 𝑃 , 𝑆𝑒𝑙𝑓 , the proportion of shared variants between the tumor-
normal pair of the same case. The 𝐵𝑒𝑠𝑡 𝑛𝑜𝑛𝑠𝑒𝑙𝑓  match is the highest proportion of shared 
variants observed between the tumor sample of case 𝑖 and any other normal in the same dataset 
or between the normal sample of case 𝑖 and any other tumor, whichever is higher. 

𝐵𝑒𝑠𝑡 𝑛𝑜𝑛𝑠𝑒𝑙𝑓 max 𝑃 , , 𝑃 , , ∀ 𝑗 ∈ 1, 𝑛  𝑎𝑛𝑑 𝑗 𝑖 
Therefore, 𝑆𝑒𝑙𝑓 𝐵𝑒𝑠𝑡 𝑛𝑜𝑛𝑠𝑒𝑙𝑓  is negative if and only if either the tumor or the normal of a 
case 𝑖 has a better match from another case. 
 
Breed validation 
Using the compiled germline variants above, we analyzed the VAF values of all normal samples. 
Each breed with at least 10 samples was included and considered a major breed group in the 
analysis. All samples with assigned breed labels other than major breeds were grouped into 
“Other” breed. All samples of mixed or missing breed were excluded from this analysis. 
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We categorized VAF values into reference (VAF < 0.2) and non-reference (VAF ≥ 0.2), or NA 
for variants with locus coverage below 10. In this analysis, we first filtered out variants whose 
locus coverage <10 in more than 20% of the total samples. This is needed to rule out variants 
with poor coverage or not covered in every whole-exome library. 
  
We considered a variant “breed-specific” if it falls into breed-unique or breed-enriched variant 
category.  A breed-unique (for a major breed A) variant satisfies three criteria: 1) is non-
reference in at least 5 samples of breed A; 2) is non-reference in at least 40% of breed A 
samples; and 3) is reference in all other samples with sufficient coverage.  Breed-enriched 
variants must be enriched in one and exactly one breed.  For each variant, we used Fisher’s exact 
test to compare each combination of two breeds using the reference and non-reference sample 
counts in each breed. A breed-enriched variant must be 1) enriched in breed A against every 
other breed group at P=0.1 and 2) not enriched in any breed B against any breed group at P=0.1. 
  
Starting with all breed-specific variants found above, we omitted any sample with low coverage 
in more than 20% of the breed-specific variants because these samples can introduce noise in the 
clustering process. We assigned random VAF values for the remaining low coverage sites. We 
finally performed standard hierarchical clustering. Cases of major breeds with breed label and 
breed cluster agreement pass the QC. We also assigned breeds to cases with missing breed info 
based on their breed cluster (Table S1E-F). 
  
Identification of somatic copy number alterations 
We used VarScan v2.4.248 to call somatic copy number alterations (CNAs) using WES data of 
matched tumor and normal sample pairs.  We applied the software CBS49 to coding regions of 
the identified CNAs via DNAcopy R package48.  Segments with log2 (T/N) greater than 1 or less 
than -1 were regarded as candidate CNAs. For canine MC samples, candidate CNAs from CBS 
results were further selected if log2 (T/N) associated with a gene is positively correlated with its 
mRNA expression (correlation coefficient > 0.2 for both Spearman and Pearson correlations).  
For other canine cancers analyzed, we selected genes with CNAs detected by both CBS and 
SEG50 using the same cutoff as mentioned50.   
  
Comparison of genomic alterations between canine and human cancer at pathway level 
Mutated genes and altered pathways in human cancers were extracted from published studies, 
including 996 breast cancers24,25, 91 high grade pediatric gliomas40,41, 507 adult low grade 
gliomas12, 48 diffuse large B-cell lymphomas25, 65 oral melanomas27, 58 pediatric 
osteosarcomas3,4, and 48 angiosarcomas26.   
 
Somatic mutation detection in WES data 
To acquire the tumor mutation burden, we mapped samples with BWA (version 0.7.17)46 and 
used Picard (version 2.16.0) to exclude unmapped reads, sort, and mark duplicate sequences. We 
then used GATK (version 3.8-1)47 to realign the samples and find exonic bases with sufficient 
coverage.  We then used Mutect (version 1.1.7)29 to detect somatic mutations with reference 
genome CanFam3, with a minimum base quality of 30 51. We applied further filtering as 
previously described 11. We detected somatic indels with Strelka, and further filtered for those 
found in the CDS region of CanFam352. Finally, we annotated mutations for function with 
Annovar (version 2017Jul16)53, and separated retrogenes from known coding genes for mutation 
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rate calculation. Additionally, using the realigned bam files from GATK, we used the GATK 
commands HaplotypeCaller and VariantFiltration to detect the germline mutations present in the 
WES data. These germline mutations were then also annotated with Annovar. The number of 
mutations in coding nonretrogenes of passing sequence quality by Mutect was divided by the 
number of callable exonic bases to get the mutation rates. 
 
Identifying retro and nonretrogenes 
We acquired the retrogene and nonretrogene lists from the Canfam3 1.99 GTF file. We classified 
a gene as a retrogene if it has an Ensembl ID but no gene name, the gene is protein-coding and it 
contains only one exon. A nonretrogene has both an Ensembl ID and a gene name, the gene is in 
the protein-coding region, and it contains more than one exon. We also excluded mitochondrial 
genes to get the final retrogene and nonretrogene list, leaving 1564 retrogenes and 14733 
nonretrogenes in the list. 
 
Quantifying the Consensus Somatic Mutation Calling 
We used GATK4 Mutect2 (version4.1.6) 41,Varscan2 (version2.4.2)54, and LoFreq55 
(version2.1.2) to call somatic variants.  We first ran Mutect2 in panel-of-normals (PON) mode 
using paired normal samples that pass our QC (n=557). Using the resulting PON file, we used  
Mutect2 to call somatic variants in paired mode with parameters: –germline-resource: 
DbSNP_canFam3_version151-DogSD_Feb2020_V4.vcf (SNP derived from Ensembl (version 
151), DogSD germline SNP (downloaded from 
ftp://download.big.ac.cn/idog/dogsd/vcf/Filtred_Published.vcf.bz2, and Genome-Wide Variant 
Discovery56) –af-of-alleles-not-in-resource 0.008621. To find consensus variant callings across 
Mutect2, Varscan2, and LoFreq,  We followed the procedure and parameters described 22 to 
identify the consensus somatic variants using SomaticSeq (version 3.4.1)57. 
 
Comparisons of TP53 and PIK3CA mutations on mutation rate 
Mutation rate and alterations in the TP53, PIK3CA, and Cell Cycle pathways in cancers 
matching canine types (Breast invasive carcinoma (BRCA), Low grade glioma (LGG), Diffuse 
large B-cell lymphoma (DLBC), and Glioblastoma (GBM), all from the TCGA pan-cancer atlas) 
were acquired from cbioportal27,41,42. Oral melanoma (OM), osteosarcoma (OSA), and pediatric 
high-grade glioma (HGG) alterations/mutations for these pathways and genes were acquired 
from additional sources 11,39,43. Mutation rates between samples with any mutation in TP53 or 
PIK3CA or wild-type per cancer type are shown in Figure 3C. The difference between samples 
with mutated vs. wild-type TP53 and PIK3CA were compared by Wilcoxon rank-sum test, and 
the fold change between the medians of each group (altered/not altered) within cancers was 
shown if the difference was determined to be significant. Additionally, the same comparison was 
performed for samples with any mutation, gene fusion, or copy number change, which would be 
considered altered in this case, in any gene in these respective pathways, between altered and 
non-altered samples, as well as the full pathway (Supplemental Figure 4). 
 
Mutation signatures 
The raw counts of filtered somatic mutations (see Somatic mutation detection in WES data) were 
used as input for signature discovery. We ran SignatureAnalyzer R code 58 with the default 
parameters, except for the number of iterations=40 and hyper=False. 553 total tumor samples 
were used after excluding one HSA ultrahypermutated sample, HSA_4. The most frequent 
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solution (20 iterations) consists of four signatures, where the classic aging signature is broken 
into C>T and T>C signatures, with the latter showing no resemblance to any known signature. 
We considered this separation an artifact. The second most frequent solution (15 iterations) 
consists of three signatures where the classic aging signature has both C>T and T>C mutations. 
We selected this solution for the remaining analysis. The signature plots are based on raw 
mutation counts. To compare canine signatures to Cosmic signatures v232,  and pediatric cancer 
signatures3,4, we adjusted the human signatures using the human genomic background 
trinucleotide probabilities and the canine signatures using the canine exonic trinucleotide 
probabilities. We used cosine similarity to compare the adjusted signatures. All data related to 
this analysis are in Table S5. 
  
S1 association with germline variants and somatic mutations 
We categorized Golden Retriever tumors into S1 high (N=16), containing 20 or more S1 
mutations, and S1 low tumors (N=119), containing fewer than 20 S1 mutations. For germline 
variants, we started with the combined list of protein modifying variants (see Germline variant 
calling), which consists of 75,253 variants. Based on the VAF distribution analysis, we 
categorized VAF values into reference (VAF < 0.2), heterozygous (0.2 ≤ VAF < 
0.8) and homozygous (VAF ≥ 0.8). We conducted two independent tests for every germline 
variant: (1) homozygous versus reference and (2) heterozygous versus reference. 
 
Since S1 is Golden Retriever enriched, we controlled for breed by including only Golden 
Retriever specific variants. These are variants enriched in every Fisher’s test between Golden 
Retriever and another major breed at P=0.05. We found 514 homozygous and 730 heterozygous 
Golden Retriever-specific variants, some of which are overlapping. From the remaining list, we 
selected variants which are enriched in normal samples matching S1 high tumors versus those 
matching S1 low tumors at P=0.05. Only 17 heterozygous and one homozygous variants pass 
this condition. Finally, we used UCSC multiz100way protein alignment to select only 
evolutionarily conserved variants (Table S5F). 
 
For somatic mutations, we started with a compiled list of 13,917 somatic mutations in 557 
tumors (see Somatic mutation calling), but only 39 are observed in at least 5 samples, the 
minimum we required to perform enrichment analysis. We directly performed S1 high versus S1 
low Fisher’s test on these 39 mutations and selected those enriched at False Discovery Rate 0.1. 
13 mutations pass this condition. Among them, we selected the evolutionary conserved ones 
(Table S5F).Golden RetrieverGolden RetrieverGolden RetrieverGolden RetrieverGolden 
Retriever 
 
DNA-repair variants within breeds 
We performed two independent analyses for DNA-repair variants: (1) We used the list of 7,168 
breed-specific protein-modifying variants (see Breed validation) and counted the number of 
variants located inside DNA-repair and non-DNA-repair domains. The DNA-repair domain is 
defined as a list of 116 classical DNA-repair genes (Table S5G). (2) We used a list of 34 million 
genomic variants (SNPs or indels) inside gene regions identified using 722 WGS data of 722 
dogs 35. In this dataset, our analysis was limited to breeds that have 10 or more samples and 
belong to one of the major breeds in this study. For each breed, breed-associated variants were 
calculated. Among the 34 million variants in the second set, a variant was considered breed-
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associated if it is called in at least half of that breed’s samples at a minimum base coverage of 10 
reads and a minimum VAF value of 0.2.  
 
In both data sets, the bar plots (Figure 5E) indicate the odds ratios of DNA-repair variants, which 
is the ratio between DNA-repair and non-DNA-repair variant counts divided by the ratio 
between DNA-repair and non-DNA-repair domain size.  Finally, Fisher’s test was applied to test 
differences in the ratio of DNA-repair variants between two breeds using the DNA-repair and 
non-DNA-repair variant counts in the two breeds. 
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Figure Legends 
 
Figure 1.  We performed a rigorous quality control (QC) of whole-exome sequencing 
(WES) data published for 607 canine cases. 
A. Mapping rates of read pairs aligned coordinately and uniquely to the canFam3 coding 

sequence (CDS) regions per sample. The median mapping rate of each dataset is indicated by 
a black line.  The dashed line indicates the QC cutoff. MC: mammary cancer; GLM: glioma; 
LYM: lymphoma; OM: oral melanoma; OSA: osteosarcoma; HSA: hemangiosarcoma.   

B. Mean read coverage per sample. The figure is presented as in A. 
C. Root-mean-square error (RMSE) between the actual sequence coverage and the theoretical 

coverage based on the Poisson distribution per sample. The figure is presented as in A. 
D. Total number of callable bases per cancer case, output by Mutect (v 1.1.7).  
E. Tumor-normal pairing accuracy.  “Self” (in green) is the proportion of germline variants 

shared between the normal and tumor samples of a dog.  “Best nonself” is the proportion of 
germline variants shared between a normal or tumor sample of one dog and its best matched 
sample from another dog.  “Self – Best nonself” (in red) indicates the difference, and a 
negative difference points to incorrect tumor-normal pairing. 

F. Breed validation with breed-specific germline variants. The heatmap indicates the variant 
allele frequency (VAF) values of each of 7,168 breed-specific variants in 359 total normal 
samples. 

See also Figure S1 and Table S1. 
 
Figure 2.  Each canine cancer type harbors distinct molecular features, many of which 
match those of their human counterpart.    
A-F. Oncoprints (left) indicate top 5 most frequently mutated genes and top 5 most frequently 

amplified or deleted genes in MC, GLM, B-cell lymphoma (BCL), T-cell lymphoma 
(TCL), OM, OSA and HSA.  Shown on the right for each subfigure are the most frequently 
altered pathways reported in the corresponding human cancer, with genes mutated and/or 
amplified/deleted in at least 5% of either human or canine tumors indicated.  The total 
percent of samples altered in each species per pathway is also shown.  Pathways altered at a 
comparable frequency between the two species are surrounded by solid lines, while 
pathways where the alteration frequency between the two species differs by two-fold or 
greater are surrounded by dashed lines.  See the bottom right corner for other legends.  
Human breast cancer (BC), pediatric and adult glioma (GLM), diffuse large B-cell 
lymphoma (DLBCL), oral melanoma (OM), osteosarcoma (OSA), and angiosarcoma (AS) 
are from published studies3,4,24-27.   

See also Figure S2 and Table S1B. 
  
Figure 3.  We identified mutation rate and alteration in each of 557 tumors representing  
over 6 cancer types and over 35 breeds.  
The oncoprint indicates mutation rate, cancer type, breed, and major gene/pathway alterations in 
557 cancer cases (Figure 1).  Cancers are ordered from left to right by lowest to highest mutation 
rate.  Six cancer types (182 MC, 49 GLM, 91 LYM, 71 OM, 65 OSA, and 41 HSA tumors) as 
well as those with unknown cancer types (55 cases) are included.  Specific breeds shown include 
those validated (350 cases; Figure 1) or clearly assigned by our analysis (46 cases; Figure S1). 
Also shown include mixed breeds (21 cases), other breeds (61 cases) for which we could not 
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validate due to small sample size, and unknown (76 tumors for 70 cases) where breeds were 
neither reported nor assigned by us, or breeds that failed our validation (9 cases).  
See also Figure S3 and Table S3. 
 
Figure 4.  Mutation rate varies across cancer types and is correlated with TP53 mutation. 
A. Mutation rate distributions for each cancer type, ordered (left to right) from lowest to 

highest median values. The left plot shows that retrogenes, a type of pseudogene, have 
significantly higher mutation rates than non-retrogenes, and are excluded from further 
analyses.  The right plot indicates that canine tumors are classified into mutation rate-low 
(MR-L), -medium (MR-M) and -high (MR-H).  

B&C. Mutation rate distributions for samples of each cancer type with (Mutant) or without 
(Wild-type) TP53 (left) or PIK3CA (right) mutations in dog (B) and human (C) cancers. 
Wilcoxon tests were conducted if both Wild-type and Mutant groups per cancer 
contained >= 3 cases to identify those cancer types with a significant association between 
TP53 or PI3KCA mutation and tumor mutation rate.  *, **, *** and **** represent 
p<0.05, <0.01, <0.001, and <0.0001 respectively.  For cancer types with a significant 
association found, the fold change in median mutation rate of TP53 (or PIK3CA) Mutant 
versus Wild-type samples is also shown.  

See also Figure S4 and Table S4. 
 
Figure 5.  Mutation rate is largely independent of breed, and Golden Retrievers harbor 
distinct molecular features.   
A. Mutation rate distributions of cases grouped by cancer type and breed.  Only groups with ≥ 

10 cases are shown.   
B. Mutation rate distributions of cases grouped by breed, cancer type, and finally TP53 (top) or 

PIK3CA (bottom) mutation status. Only those with TP53 (or PIK3CA) Wild-type and 
Mutant combined cases of >10 are shown. The same statistical analysis is shown as described 
in Figure 4B.  

C. Three mutation signatures are detected in 553 canine tumors, after excluding one HSA outlier 
(top). The bar plot (middle) indicates the distribution of the three signatures in each cancer 
type and in each validated breed. The numbers denote the tumor sample counts. The bottom 
heatmap indicates the cosine similarity scores between each canine signature and each of the 
30 COSMIC 32 and 12 pediatric 3,4 signatures. 

D. Golden Retriever-specific oncoprint, including 149 animals, presented as described in Figure 
3.  

E. Golden Retrievers have the most variance in DNA repair genes among all breeds examined.  
The left bar plot indicates the odds ratios of breed-specific variants (see Figure 1) inside  
DNA-repair genes (116 total) versus non-DNA-repair genes, normalized by total CDS base 
pairs for the corresponding gene types. The right plot indicates the same analysis with all 
germline variants (breed-specific and -nonspecific) in each breed reported by a published 
study59.  The blue line denotes the odds ratio where the variants distribution is balanced 
between the two gene types.  P-values are from Fisher’s exact tests.  

See also Figure S5 and Table S5. 
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