1	Title: Pseudogene-mediated DNA demethylation leads to oncogene activation
2	Authors: Junsu Kwon ¹ , Yanjing V. Liu ^{°1} , Chong Gao ^{°2} , Mahmoud A. Bassal ^{1,3} , Adrianna I.
3	Jones ³ , Junyu Yang ² , Zhiyuan Chen ² , Li Ying ¹ , Henry Yang ¹ , Leilei Chen ¹ ,
4	Annalisa Di Ruscio ^{4,5} , Yvonne Tay ^{*1,6} , Li Chai ^{*2} , Daniel G. Tenen ^{*1,3,4}
5	
6	Affiliations
7	¹ Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
8	² Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
9	³ Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
10	⁴ Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
11	02115, USA
12	⁵ Department of Translational Medicine, University of Eastern Piedmont, Novara, 28100, Italy
13	⁶ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of
14	Singapore, 117599, Singapore
15	°These authors contibuted equally to this work as co-second authors
16	*Co-correspondence
17	
18	Running title: Hepatitis B virus induces pseudogene to activate SALL4
19	
20	Keywords: SALL4, hepatocellular carcinoma, hepatitis B infection, pseudogene-mediated
21	oncogene reactivation, DNA demethylation
22	
23	Co-corresponding authors: Yvonne Tay, National University of Singapore, 14 Medical
24	Drive, Singapore, 117599. Phone: +65 6516-1160, E-mail: yvonnetay@nus.edu.sg; Li Chai,

25	Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB630D. Phone: +1 617-840-
26	6711; Fax: 617-277-9013; E-mail: lchai@bwh.harvard.edu; Daniel G. Tenen, National
27	University of Singapore, 14 Medical Drive, Singapore, 117599. Phone: +65 6516-1160; E-
28	mail: daniel.tenen@nus.edu.sg.
29	
30	Declaration of interests: The authors declare no competing interests.
31	
32	This study was supported by Singapore Ministry of Health's National Medical Research
33	Council; National Institutes of Health; Xiu Research Fund, National Research Foundation
34	Fellowship; National University of Singapore President's Assistant Professorship; Singapore
35	Ministry of Education under its Research Centres of Excellence initiative; Singapore
36	Ministry of Education's AcRF Tier 3 grants; National Cancer Institute; Italian Association for
37	Cancer Research (AIRC).
38	
39	Word count: 3236 words for the abstract, statement of significance, introduction,
40	results, and discussion
41	
42	Total number of figures: 4
43	
44	Total number of supplementary figures/tables: 4/5
45	
46	

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

47 Abstract

48	Despite being one of the leading causes of cancer-related deaths, there is an unmet clinical
49	need for hepatocellular carcinoma (HCC) patients. The lack of effective treatment is, at least
50	in part, due to our lack of understanding of the molecular pathogenesis of this disease.
51	Oncofetal protein SALL4 is re-activated in patients with aggressive HCC along with other
52	solid tumors and hematologic malignancies. This study identifies a previously unrecognized
53	mechanism of SALL4 reactivation which is mediated by pseudogene-induced demethylation.
54	Using a locus-specific demethylating technology, we identified the critical CpG region for
55	SALL4 expression. We showed that SALL4 pseudogene 5 hypomethylates this region
56	through interaction with DNMT1, resulting in SALL4 upregulation. Intriguingly,
57	pseudogene 5 is significantly upregulated in a hepatitis B virus (HBV) model prior to SALL4
58	induction, and both are increased in HBV-HCC patients. Our results suggest that pseudogene-
59	mediated demethylation represents a unique mechanism of oncogene activation in cancer.
60	
61	Significance

Our study provides a mechanistic link between HBV infection, activation of the oncogene
SALL4, and HCC. We reveal a previously undescribed capability of a pseudogene to
epigenetically activate an oncogene by demethylation in a locus-specific manner.

65

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

66 Introduction

Hepatocellular carcinoma (HCC) is one of leading causes of cancer-related deaths 67 globally, with more than 700,000 new cases and 600,000 estimated HCC deaths each year. 68 69 Hepatitis B virus infection is one of the main causes of HCC, particularly in Asia. While 70 surgery, liver transplantation, or radiological intervention may be a viable option for early stage disease, prognosis for advanced stage HCC remains bleak, with most patients 71 72 eventually dying within 20 months after diagnosis. Sorafenib, an oral multikinase inhibitor, is the one of the few approved agents for patients with advanced HCC (1.2). However, the 73 74 effectiveness of Sorafenib for advanced HCC is debatable (2). There is an unmet clinical need for the development of more effective therapies for the treatment of HCC. The lack of 75 effective treatment options for HCC is at least in part due to our lack of understanding the 76 77 pathogenesis of this disease. Identifying novel pathway(s) that are responsible for HCC could be translated into targeted therapy and improve the outcomes of these patients. 78

SALL4 is a potent stem cell factor for self-renewal and pluripotency of embryonic stem 79 cells (ESCs) (3,4). During development, SALL4 expression diminishes gradually and is 80 eventually silenced in most normal tissues. Strikingly, high SALL4 expression levels have 81 82 been observed in many malignancies such as liver cancer, acute myeloid leukemia, breast cancer and lung cancer (5-8). Re-expression of SALL4 in cancers is associated with a more 83 84 aggressive cancer phenotype, drug resistance and reduced patient survival (5,6,9-11). Of note, HCC patients with detectable SALL4 expression have enriched hepatic progenitor-like gene 85 signatures and poorer prognoses (10). Furthermore, targeting SALL4 in HCC cell lines by 86 knocking down or using inhibitory peptides resulted in cellular death (12), suggesting that 87 SALL4 plays a crucial role in hepatocarcinogenesis and that targeting SALL4 may provide 88 an innovative therapeutic approach for this disease. However, mechanistically, how SALL4 is 89 re-activated in HCC is still unclear, although it has been reported that aberrant methylation 90

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

91 could be a contributing factor (13,14). By defining the mechanism of SALL4 reactivation in
92 HCC, we can better treat HCC.

DNA methylation is a frequently studied mechanism of epigenetic regulation in humans 93 that is mediated by DNA methyltransferases (DNMT); of which, DNMT1 has a structural 94 binding preference (15). Research by multiple groups including ours has demonstrated that 95 non-coding RNAs (ncRNAs) such as ecCEBPa, Dali, Dum, and Dacor1 can interact with 96 DNMT1 to inhibit its methylation activity. These ncRNAs thus indirectly alter local 97 methylation states in different cancers, acting as key tissue-specific epigenetic regulators of 98 gene expression (15-18). It was also reported that the exon 1-intron 1 region of the 99 100 SALL4 gene locus is hypermethylated in non SALL4-expressing K562 leukemic cells. Reprogramming of these cells resulted in demethylation of this region and a subsequent 101 increase in SALL4 expression (14). Recently, a report described demethylation of specific 102 103 CpG sites downstream of the SALL4 transcriptional start site (TSS) in hepatitis B (HBV)related HCC which could contribute to SALL4 re-activation in HCC (13). However, it is still 104 105 unclear how HBV infection could initiate the demethylation and reactivation of specific 106 oncogenes.

Pseudogenes are a class of non-coding RNAs (ncRNAs) once regarded as insignificant 107 108 "junk" DNA relics due to their lack of coding potential. However, studies have demonstrated that pseudogene transcripts can regulate gene expression of oncogenes and tumor-suppressors 109 by acting as antisense transcripts, processed small interfering RNAs (siRNAs) and competing 110 endogenous RNAs (ceRNAs) (19-21). Recent pseudogene expression analysis in over 2,800 111 patient samples showed strong concordance between pseudogene expression and tumor 112 113 subtypes, as well as patient prognoses, highlighting the clinical importance of pseudogenes (22). Our group focused on characterizing regulatory functions of SALL4 pseudogenes. 114 SALL4, a well-studied oncogene with high expression levels in several hematological 115

	Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation
116	malignancies and solid tumors, has eight pseudogenes of different lengths varying from 500
117	nucleotides to 6,000 nucleotides, and yet there have been no studies investigating SALL4
118	pseudogenes (5-8).
119	As many pseudogenes are actively transcribed in cells, we postulated that they could
120	interact with RNA-binding proteins such as DNMT1 via highly homologous RNA motifs and
121	exert regulatory functions. We therefore tested the hypothesis as to whether pseudogenes are
122	involved in DNA methylation as DNMT1-interacting lncRNAs in an HBV-positive HCC
123	model.
124	
125	Results
126	SALL4 expression is negatively correlated with methylation of the
127	5' UTR - exon 1 - intron 1 region
128	We hypothesized that the degree of methylation in the SALL4 locus is associated with
129	SALL4 expression, therefore, we examined HBV-positive HCC patients. Using a publicly
130	available dataset (23), the overall transcript levels and methylation status of SALL4 were

analysed using probes covered the entire SALL4 gene locus. A significant negative

132 correlation between SALL4 expression and methylation was observed in primary tumours at

the Probe 1 (Fig. 1A and 1B) which was only observed in the 5'UTR – exon 1 region. Sites

134 located either proximal or distal (Probe 2) to the 5'UTR-exon 1 locus showed poor to no

135 correlation with SALL4 expression (Fig. 1C).

As the methylome and transcriptome of cell lines could be different from those of primary tumours, we further investigated the negative correlation between SALL4 methylation and expression among HCC cell lines. The 5'UTR-exon 1-intron 1 region was first inspected and found to have over 30 CpG dinucleotides (Supplementary S1). Bisulfite sequencing in the

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

140	HCC cell lines SNU398 and SNU387 revealed distinct and unique methylation profiles for
141	the two cell lines (Fig. 1D). Within the profiled region, SNU387 showed a near universal,
142	methylated profile in stark contrast to SNU398 which showed a completely demethylated
143	profile, with the exception of 4 CpG dinucleotides. The result was consistent with previous
144	reports observing that methylation of the SALL4 5'UTR-exon 1-intron 1 region is
145	differentially methylated in K562-induced pluripotency reprogrammed cells and HBV-related
146	HCC patients. (13,14). To investigate the relationship between the observed methylation
147	profiles and gene expression, we examined SALL4 expression in both SNU398 and SNU387
148	(Fig. 1E and 1F). The level of SALL4 transcription was substantive as more than 100 copies
149	of SALL4 mRNAs per cell were detected in SNU398, while SNU387 cells only expressed
150	about 10 copies per cell. It was also evident that SALL4 was expressed at much higher
151	magnitude in SNU398, in which the SALL4 loci was hypomethylated. Taken together, both
152	the cell line and patient data suggest that SALL4 methylation and expression are negatively
153	correlated. We therefore confirmed that DNA methylation could be a potential regulatory
154	mechanism for SALL4 expression in HCC.

155

156 CRISPR-DiR demethylates and activates SALL4

157 To further investigate the correlation between methylation of the SALL4

158 5' UTR- exon 1- intron 1 region and SALL4 expression, the CRISPR-DNMT1-interacting

159 RNA (CRISPR-DiR) technique was utilized to induce locus-specific demethylation by

- blocking DNMT1 activity in SNU387 cells. Briefly, the single guide RNA (sgRNA) was
- 161 constructed to contain a SALL4 exon 1 targeting sequence, two RNA loops of ecCEBPα with
- validated DNMT1 inhibitory function (15), and the dCAs9-interacting domain (Fig. 2A).
- 163 Numerous sgRNAs targeting the SALL4 5' UTR- exon 1- intron 1 locus were designed, with
- the four most efficient candidates shortlisted (sgSALL4_1 sgSALL4_4) via *in vitro* sgRNA

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

selection (Supplementary Fig. S2A). Transduced cells were also validated to express the

166 dCas9-mCherry through FACS (Supplementary Fig. S2B).

167	Methylation of the SALL4 5' UTR- exon 1- intron 1 CpG island was monitored in
168	SNU387 cells with four independent CRISPR-DiR inductions, one for each shortlisted
169	sgRNA. Of these inductions, sgSALL4_1 was the most potent sgRNA tested. Upon
170	transduction of SNU387 cells with sgSALL4_1, significant demethylation changes were
171	observed after 14 days, which continued for over 7 additional days (Fig. 2B). Conversely, no
172	change in methylation was observed in non-targeting, negative control transduced cells. To
173	examine potential off-target effects of CRISPR-DiR, we concurrently monitored methylation
174	of a region in SALL4 exon 4, and confirmed demethylation was localized to only the targeted
175	5' UTR - exon 1 - intron 1 CpG island (Supplementary Fig. S2C).
176	Following CRISPR-DiR targeted demethylation of the SALL4 5' UTR-exon 1-intron 1
170	Tonowing CRISTR-Dire targeted demetrylation of the SALL+ 5° OTR-exon T-inition T
177	CpG island, both SALL4 transcript and protein levels increased as predicted (Fig. 2C and
178	2D). The magnitude of SALL4 upregulation observed in these cells was comparable to that of
179	treatment with 5-aza-2'-deoxycytidine, a global demethylating agent. Furthermore, SALL4
180	expression was not significantly altered when the cells were transduced with other less
181	efficient sgRNAs (Supplementary Fig. S2D). As SALL4 overexpression promotes cancer cell
182	growth, we performed growth assays on sgSALL4-transduced SNU387 cells and observed
183	increased anchorage-independent and -dependent growth compared to negative control (Fig.
184	2E and F), suggesting that targeted demethylation of the SALL4 locus leads to upregulated
185	expression of SALL4, with concomitant enhanced cellular growth.

186

187 SALL4P5 demethylates and activates SALL4, and associates with DNMT1

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

There are 8 SALL4 pseudogenes, and since none are located on the same chromosome as
SALL4, it is unlikely that they will be transcribed as siRNAs or antisense transcripts to
deregulate SALL4. However, the identified pseudogenes do share high sequence homology
with the paralogous coding SALL4 gene. It is therefore possible that the SALL4 pseudogenes
could bind to other proteins with either matching DNA/RNA motifs or with comparable
secondary and tertiary structures owing to their high sequence homology. As previously
reported, ecCEBP α , a ncRNA that overlaps with and thus has regions of identity with its
paralog, CEBP α , can interact with DNMT1 and affect CEBP α gene expression. We therefore
postulated that SALL4 pseudogenes, which are highly homologous to SALL4, could
potentially mediate SALL4 demethylation.
Each SALL4 pseudogene was transiently overexpressed in SNU387 cells, and the
methylation profile of the 5' UTR-exon 1-intron 1 CpG island was assessed (Fig. 3A). Only
SALL4 pseudogene 5 (SALL4P5) overexpression resulted in a demethylation pattern
comparable to that seen using CRISPR-DiR. Consistently, SALL4P5 knock-down in
hypomethylated SNU398 cells led to increased methylation of the locus as predicted (Fig.
3B).
Additional evidence to suggest direct SALL4P5-DNMT1 interaction can be seen by their
matched cellular localization. Cellular localization of pseudogene transcripts is a critical
factor in determining their function, as they must be localized in the same cellular
compartment as their binding partners to exert specific biological functions. It is known that
DNMT1 facilitates methylation exclusively in the nucleus. Critically, SALL4P5 is also
primarily localized to the nucleus. This contrasts with SALL4P7, which has a predominant
cytoplasmic localization in SNU398 (Fig. 3C). Therefore, although SALL4P7 shares
sequence homology with SALL4P5 and SALL4, its primary localization in cytoplasm could,

212 in part, account for its inability to demethylate the SALL4 locus.

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

213	As DNMT1 is known as a maintenance DNA methylator, we therefore investigated
214	whether our observed SALL4P5 demethylation phenotype is due to a SALL4P5-DNMT1
215	interaction. As there are no known interacting SALL4P5-DNMT1 binding regions or pockets,
216	we performed an unbiased biotinylated pull-down assay using full-length SALL4P5. First, to
217	validate the efficacy of the pull-down, DNMT1 protein could successfully pull-down
218	ecCEPBα (Fig. 3D). Similarly, SALL4P5 was able to successfully pull-down DNMT1,
219	whereas SALL4P7 and the antisense negative control did not.
220	Having shown an association between SALL4 exon 1 - intron 1 demethylation and SALL4
221	expression up-regulation, we next investigated the effect of transiently overexpressing
222	SALL4P5 on SALL4 levels. SALL4P5 overexpression significantly upregulated SALL4
223	transcript (Fig. 3E) and protein levels, the latter of which was more striking and equivalent to
224	the overexpression of SALL4 itself (Fig. 3F). Interestingly, SALL4P7 overexpression also
225	increased SALL4 protein levels. Although SALL4P7 may not play a role in SALL4
226	demethylation, it could still contribute to gene regulation as homologous pseudogenes could
227	also function as ceRNAs (21) by sequestering bioavailable microRNAs that target and repress
228	SALL4. Consistent with the phenotype of elevated SALL4 levels, SALL4P5 overexpression
229	also significantly increased colony formation of SNU387 cells (Fig. 3G). The data suggest
230	that SALL4P5 could have oncogenic effects as it can directly upregulate SALL4 expression
231	and cell growth.

232

233 SALL4P5 is upregulated in HCC patients and during hepatitis B induction

The aforementioned results demonstrate that SALL4P5 upregulation can reactivate SALL4
expression in cell lines. We next sought to validate these findings in primary patient samples,
and measured SALL4P5 expression in HCC patients, who frequently have elevated levels of
SALL4 (10). Twenty HCC patients with paired non-disease samples were screened from a

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

Hong Kong cohort. Among these 20 patients, 19 of them were HBV positive and 7 had
increased SALL4 levels of over 1.5-fold (Fig. 4A). Interestingly, within these 7 patients, only
SALL4P5 expression was concomitantly upregulated, while SALL4P7 showed little to no
change. For patients, such as patient #1, with no SALL4 level change, SALL4P5 expression
was also unaltered.

243 HBV infection is the single most common risk factor of HCC, as more than 50% of patients contract hepatitis B prior to HCC (24). We therefore sought to investigate whether 244 SALL4P5-mediated demethylation and subsequent reactivation of SALL4 during hepatitis B 245 infection could drive oncogenesis. The HepAD38B model was used, as it allows controlled 246 induction of hepatitis B virus production using the tet-off system (13). Using digital droplet 247 PCR (ddPCR), we validated that the HepAD38B cells produced the major hepatitis B viral 248 transcripts such as core, surface, hepatitis B antigen X (HBx) and polymerase transcripts 249 (Supplementary Fig. 3A). Upon hepatitis B induction, SALL4 and SALL4P5 transcript levels 250 also increased (Fig. 4B, Supplementary Fig. S3B and S3C). Interestingly, the expression 251 level for HBx increased first, SALL4P5 expression then followed at 54 hours, and lastly 252 SALL4 expression at 84 hours in step-wise manner. When performing bisulfite sequencing of 253 254 these critical time points, it was found that the average methylation across the CpG island in the 5'UTR - exon 1 – intron 1 junction decreased upon hepatitis B induction, suggesting that 255 256 the infection-induced upregulation of SALL4P5 demethylates and reactivates SALL4. (Fig. 4C). 257

258

259 Discussion

In this study, we provided a mechanistic link between HBV infection, activation of the oncogene SALL4, and HCC development. We, for the first time to our knowledge, showed that hepatitis B viral infection could lead to pseudogene upregulation, which in turn could

263	epigenetically regulate oncogenes and drive tumorigenesis. We also demonstrated for the first
264	time that a pseudogene can associate with a DNA methyltransferase to inhibit its function and
265	subsequently influence expression of its coding paralog, oncogenic SALL4. We described a
266	strong negative correlation between SALL4 expression and exon 1-locus specific methylation
267	in HCC patients as well as in cell lines. By utilizing a novel CRISPR-DiR technology, we
268	validated the importance of exon 1 methylation to SALL4 expression and cell growth.
269	Interfering with DNMT1 activity at a specific CpG island in this region resulted in the
270	upregulation of SALL4. Furthermore, we identified and characterized SALL4 pseudogene 5
271	(SALL4P5), which shares high sequence homology with its paralogous coding gene SALL4,
272	as a critical regulator of SALL4 expression and function by interacting with DNMT1 to
273	demethylate and upregulate SALL4 expression. More importantly, we demonstrated that
274	SALL4P5 and SALL4 expression are sequentially upregulated in an HBV induction model as
275	well as positively correlated and upregulated in hepatitis B-infected HCC patients.
275 276	well as positively correlated and upregulated in hepatitis B-infected HCC patients. This work highlights the previously undescribed capability of a pseudogene to
276	This work highlights the previously undescribed capability of a pseudogene to
276 277	This work highlights the previously undescribed capability of a pseudogene to epigenetically regulate an oncogene by interacting with DNMT1 and affecting its methylation
276 277 278	This work highlights the previously undescribed capability of a pseudogene to epigenetically regulate an oncogene by interacting with DNMT1 and affecting its methylation in a specific region. It is reported that there are at least 12,000 pseudogenes (25) in the human
276 277 278 279	This work highlights the previously undescribed capability of a pseudogene to epigenetically regulate an oncogene by interacting with DNMT1 and affecting its methylation in a specific region. It is reported that there are at least 12,000 pseudogenes (25) in the human genome. A recent pan-cancer analysis of pseudogene expression in different cancers
276 277 278 279 280	This work highlights the previously undescribed capability of a pseudogene to epigenetically regulate an oncogene by interacting with DNMT1 and affecting its methylation in a specific region. It is reported that there are at least 12,000 pseudogenes (25) in the human genome. A recent pan-cancer analysis of pseudogene expression in different cancers demonstrated that pseudogene expression alone can serve as a molecular and prognostic
276 277 278 279 280 281	This work highlights the previously undescribed capability of a pseudogene to epigenetically regulate an oncogene by interacting with DNMT1 and affecting its methylation in a specific region. It is reported that there are at least 12,000 pseudogenes (25) in the human genome. A recent pan-cancer analysis of pseudogene expression in different cancers demonstrated that pseudogene expression alone can serve as a molecular and prognostic factor for patients with different cancer subtypes, highlighting the functional and clinical
276 277 278 279 280 281 282	This work highlights the previously undescribed capability of a pseudogene to epigenetically regulate an oncogene by interacting with DNMT1 and affecting its methylation in a specific region. It is reported that there are at least 12,000 pseudogenes (25) in the human genome. A recent pan-cancer analysis of pseudogene expression in different cancers demonstrated that pseudogene expression alone can serve as a molecular and prognostic factor for patients with different cancer subtypes, highlighting the functional and clinical importance of pseudogenes (22). There may be other pseudogenes capable of mediating
276 277 278 279 280 281 282 282 283	This work highlights the previously undescribed capability of a pseudogene to epigenetically regulate an oncogene by interacting with DNMT1 and affecting its methylation in a specific region. It is reported that there are at least 12,000 pseudogenes (25) in the human genome. A recent pan-cancer analysis of pseudogene expression in different cancers demonstrated that pseudogene expression alone can serve as a molecular and prognostic factor for patients with different cancer subtypes, highlighting the functional and clinical importance of pseudogenes (22). There may be other pseudogenes capable of mediating similar DNMT1-interactions and exerting the demethylating function on oncogenes and

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

287	Understanding the mechanism of pseudogene-mediated demethylation may provide
288	insights into SALL4 re-expression in HCC, which is of therapeutic value owing to SALL4's
289	prognostic significance for the disease (7). Here we elaborate how a pseudogene could play a
290	crucial role in epigenetic regulation of an important oncogene, thereby suggesting that there
291	could similarly significant and impactful pseudogenes potentially contributing to early-stage
292	gene regulation of tumor-suppressors and oncogenes. In addition, pseudogenes could exert
293	non-canonical functions by interacting with other RNA-binding proteins, with potential wide-
294	ranging implications in gene regulation and function as we have demonstrated here.
295	Previous studies from Di Ruscio et al., demonstrated that RNAs require distinct secondary
296	structures in order to associate with DNMT1 (15). This preferential interaction through
297	structure could potentially explain why DNMT1 interacts with SALL4P5, but not SALL4P7,
298	even though the two pseudogenes are highly homologous. Another striking aspect of
299	SALL4P5-SALL4 regulation is that unlike ecCEBP α , which resides in the CEBP α locus, the
300	SALL4P5 locus is on chromosome 3, while its paralogous coding gene SALL4 is on
301	chromosome 20. This <i>trans</i> regulation implies that it could be the sequence homology and
302	perhaps secondary structure that plays a more critical role than chromosomal location for a
303	ncRNA to work as a DNMT1-interacting RNA. Moreover, as DNMT1 plays a crucial role in
304	de novo methylation, the SALL4P5-DNMT1 interaction could contribute to SALL4
305	reactivation as well as other oncogene activation in cancers.
306	DNA hypermethylation of CpG islands in gene promoter regions has consistently
307	correlated with inactivation of tumor suppressors in cancers (26). Conversely, demethylation
308	of oncogene promoters leads to increased gene expression (27). Interestingly, it was the

309 methylation profile of the 5'UTR - Exon 1-Intron 1 region of SALL4 that was critical in

310 SALL4 upregulation leading to cell growth. Further investigation will be needed to determine

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

311	whether this non-canonical methylation site, downstream from the promoter, is only
312	significantly affected in the context of pseudogene-mediated demethylation.
313	These studies represent one of the first examples of gene locus specific demethylation
314	resulting in the activation of an oncogene. By an innovative strategy, we have identified the
315	specific CpG island in the locus that is required for SALL4 activation and expression. This
316	approach could be extended to other loci to identify the CpG "regulating" modules allowing
317	gene expression and controlled by an RNA-mediated mechanism.
318	Our studies suggest a model in which hepatitis B viral infection upregulates SALL4P5,
319	followed by SALL4 (Fig. 4D). This novel insight addresses unmet clinical need in HCC as
320	HCC is one of the leading causes of cancer-related deaths globally and chronic hepatitis B
321	virus infection accounts for more than 50% of HCC cases (1,28). Elucidating molecular
322	mechanisms of oncogene activation during hepatitis B virus infection could enhance our
323	understanding of the pathogenesis of HCC, and hence, aid in development of robust
324	therapies. Increased SALL4P5 expression is observed in HBV-related HCC patients, making
325	this pseudogene and its related function in oncogene SALL4 activation relevant to developing
326	novel therapeutics in HBV-related HCC.

327

328 Methods

329 Cell Culture

All HCC cell lines were obtained from ATCC and grown according to the manufacturer's
instructions in the absence of antibiotics. Human hepatocellular carcinoma cell lines
(SNU398, SNU387 and HepAD38B) were maintained in Dulbecco's Modified Eagle's
medium (DMEM) and Roswell Park Memorial Institute 1640 medium (RPMI) (Life
Technologies, Carlsbad, CA) with 10% fetal bovine serum (FBS) (Invitrogen) and 2 mM L-

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

Glutamine (Invitrogen). These cell lines were cultured at 37°C in a humidified incubator with

5% CO2. SNU398 was derived in 1990 from a 42-year-old, Asian male hepatocellular

carcinoma patient. SNU387 was derived in 1990 from a 41-year-old, Asian female

hepatocellular carcinoma patient. HepAD38B cell line was derived from a 15-year-old, male

339 hepatoblastoma patient.

340

341 RNA extraction and gene expression analysis

Total RNA was extracted from cells using the Trizol® reagent (Invitrogen) and purified 342 343 using the RNeasy Mini kit from Qiagen. 1 µg of purified RNA was used for cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific) 344 according to the manufacturer's instructions. The QuantStudio 5 Real-Time PCR System 345 (Thermo Fisher Scientific) was used to assess the expression levels of the mRNAs, miRNAs, 346 and pseudogenes of interest. GoTag® qPCR Master Mix (Promega) was used as a SYBR 347 master mix reagent for the qPCR procedures. The qRT-PCR data was analyzed using the 348 OuantStudioTM Design & Analysis Software Version 1.2 (ThermoFisher Scientific) and 349 represented as relative expression($\Delta\Delta$ Ct), normalized against either GAPDH or β -actin. The 350 primer sequences used for the quantitative real-time PCR are provided in Supplementary 351 Table 1. 352

353

354 Genomic DNA extraction

Genomic DNA was extracted from HCC cell cultures using DNeasy Blood & Tissue
 kit(Qiagen) for bisulfite-sequencing assay according to the manufacturer's protocols.

357

358 Bisulfite treatment and sequencing

359	SALL4 5'UTR Exon 1 3'UTR region methylation status was assessed using bisulfite
360	sequencing. In brief, 1 μ g of genomic DNA extracted using the DNeasy Blood & Tissue
361	kit(Qiagen) was bisulfite-converted by using the EZ DNA Methylation kit (Zymo Research).
362	PCR products were gel-purified (Qiagen) from the 1.5% TAE gel and cloned into the pGEM-
363	T Easy Vector System (Promega) for transformation. The cloned vectors were transformed
364	into ECOS 101 DH5 α cells and miniprep was performed to extract plasmids. Sequencing
365	results were analysed using BiQ analyser software. Samples with more than 90% conversion
366	rate and 70% sequences identity were analysed. The minimum number of clones for each
367	sequenced condition was 6. Primers used for the bisulfite sequencing of SALL4
368	5' UTR - exon 1 - intron 1 are listed in Supplementary Table 2.
369 370	Protein extraction and immunoblotting
371	Total cell lysates in protein lysis buffer (PLB) (100mM KCl (Ambion), 5mM MgCl2
372	(Ambion), 25mM EDTA pH 8.0 (Life Technologies), 10mM HEPES (Life Technologies),
373	0.5% NP-40 (Roche), 20mM DTT(Fermentas), Proteinase inhibitor tablet (Roche)). PLB was
374	added to the cell pellets and incubated for 15 minutes on ice. The lysates were centrifuged for
374 375	added to the cell pellets and incubated for 15 minutes on ice. The lysates were centrifuged for 10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford
375	10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford
375 376	10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford Protein Assay (Bio-Rad Laboratories) and absorbance was measured at 595 nm on the Tecan
375 376 377	10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford Protein Assay (Bio-Rad Laboratories) and absorbance was measured at 595 nm on the Tecan Infinite® 2000 PRO plate reader (Tecan, Seestrasse, Switzerland). Equal amounts of protein
375 376 377 378	10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford Protein Assay (Bio-Rad Laboratories) and absorbance was measured at 595 nm on the Tecan Infinite® 2000 PRO plate reader (Tecan, Seestrasse, Switzerland). Equal amounts of protein for each sample were diluted with 4X sample buffer (ThermoFisher Scientific) and heated at
375 376 377 378 379	10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford Protein Assay (Bio-Rad Laboratories) and absorbance was measured at 595 nm on the Tecan Infinite® 2000 PRO plate reader (Tecan, Seestrasse, Switzerland). Equal amounts of protein for each sample were diluted with 4X sample buffer (ThermoFisher Scientific) and heated at 95 °C for 5 minutes. The proteins were resolved by SDS-PAGE 12% self-cast gel and
375 376 377 378 379 380	10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford Protein Assay (Bio-Rad Laboratories) and absorbance was measured at 595 nm on the Tecan Infinite® 2000 PRO plate reader (Tecan, Seestrasse, Switzerland). Equal amounts of protein for each sample were diluted with 4X sample buffer (ThermoFisher Scientific) and heated at 95 °C for 5 minutes. The proteins were resolved by SDS-PAGE 12% self-cast gel and transferred onto polyvinylidene difluoride (PVDF) membrane using the Mini Trans-Blot®
 375 376 377 378 379 380 381 	10 minutes at 15,000 x g at 4 °C. Protein concentrations were measured using the Bradford Protein Assay (Bio-Rad Laboratories) and absorbance was measured at 595 nm on the Tecan Infinite® 2000 PRO plate reader (Tecan, Seestrasse, Switzerland). Equal amounts of protein for each sample were diluted with 4X sample buffer (ThermoFisher Scientific) and heated at 95 °C for 5 minutes. The proteins were resolved by SDS-PAGE 12% self-cast gel and transferred onto polyvinylidene difluoride (PVDF) membrane using the Mini Trans-Blot® Electrophoretic Transfer Cell (Bio-Rad) in transfer buffer (25 mM Tris, 192 mM Glycine,

385	antibodies. The immune-reactive proteins were detected using the protein bands were
386	visualized using SuperSignalTM West Dura Extended Duration Substrate (ThermoFisher
387	Scientific) and visualized on Image Quant LAS 500 machine (GE Healthcare) according to
388	the manufacturer's instructions. SALL4 (Santa Cruz Biotechnology, EE30, #sc-101147),
389	GAPDH (Cell Signaling Technology, #5174), and DNMT1 (Abcam, #ab87656) antibodies
390	were used for immunoblotting as per manufacturer's instructions.
391	
392	Bacterial transformation
393	ECOSTM 101 competent cells(DH5 α) from Yeastern Biotech Co., Ltd. were used for
394	transformation following the manufacturer's instructions. 50µl of cells were thawed at room
395	temperature in a water bath. 2µl of pre-chilled DNA was immediately added. The tubes were
396	kept on ice for 5 minutes to increase the transformation efficiency. The cells went through
397	heat shock in a 42°C water bath for 30 seconds. The cells were kept on ice again for 5
398	minutes and plated on LB plates. The plates were incubated at 37°C for 16 hours.
399	
400	Plasmid extraction
401	Plasmid was extracted from 1.5 ml of bacterial culture with the QIAamp DNA Mini
402	Kit(Qiagen) and purified for sequencing validation (1st BASE). For transfected cell line
403	DNA extraction, plasmid was extracted from the cell pellet that is suspended in 100 μ l of
404	PBS.
405	
406	Plasmid transfection
407	SNU398 cells were seeded at a density of 75,000 cells/well in 12-well plates 24 hours
408	before transfection. SNU387 and SNU182 cells were seeded at higher density of 100,000
409	cells/well in 12-well plates. 500 ng of plasmid was added to 3 μ l of P3000 reagent (Life

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

Technologies) in 75 µl of Opti-MEM prior to mixing with 2 µl of Lipofectamine 3000 (Life
Technologies). The reagent mixture was incubated at room temperature for 10 minutes before
adding to each well.

413

414 Cell viability assay

24 hours post-transfection, cells were trypsinized and split into 5 individual wells of 5 415 separate 12-well plates. Upon adherence, cells were fixed using 10% neutral buffered 416 formalin solution (Sigma-Aldrich, HT501128-4L) and labelled as day 0. Subsequently, the 417 418 remaining plates were fixed daily from day 2 to day 5 (excluding day 1) prior to staining with crystal violet (Sigma-Aldrich, C0775-100G) for 3-5 minutes at room temperature. Stained 419 wells were washed three times with Milli-Q water and left to dry. Crystal violet stain was 420 solubilized using 10% acetic acid (Sigma-Aldrich, A6283-2.5L). The plates were left on a 421 shaker at room temperature for at least 20 minutes. The absorbance reading for each well was 422 measured at 595 nm using the Tecan Infinite® 2000 PRO plate reader (Tecan, Seestrasse, 423 Switzerland). 424

425

426 Soft agar assay

A 0.6% agarose base was prepared by mixing 3.9 ml of 2% Ultrapure agarose (Invitrogen) with 9.1 ml of cell culture medium. 2 ml of the mixture was added to individual wells of 6well plates. 24 hours post-transfection, cells were trypsinized, counted, and diluted to a concentration of 15,000 cells/well. 450 μ l of the 2% agarose was added to 2.55 ml of cells for a final agarose concentration of 0.3%, and 1 ml of the mixture was added to each well containing the solidified 0.6% agarose base. 1 ml of culture media was added to the top agar layer upon solidification and the cells were incubated at 37 °C in a humidified incubator.

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

434 Culture medium was changed every two days. Images of the colonies were taken under 4X

435 magnification every 4-5 days for a period of up to 14 days and quantified using ImageJ.

436

437 In vitro transcription (IVT) and biotinylated RNA pulldown

The DNA template was first amplified by PCR with primers containing a 5' T7-tag for in 438 vitro transcription. Antisense SALL4P5 control was also amplified by having the reverse 439 primers carrying the T7-tag. The IVT was performed as per manufacturer's guidelines. 1 µg 440 of purified PCR product was incubated with the transcription mix which was composed of 441 442 10X transcription buffer, 400 mM NTP mix, and 200 U T7 RNA polymerase for 5 hours at 37 °C. 140 µl of RNase-free water and 1000 µl of 100% ethanol were added to the 443 transcription product and incubated for at least 30 minutes at -20 °C. The reaction mixture 444 was centrifuged for 1 hour at 4 °C to precipitate the RNA. The RNA pellet was collected and 445 dissolved in 100 µl of ultra-pure water. The RNA was further purified using RNeasy Mini 446 250 columns (Qiagen) according to the manufacturer's instructions. The purified RNA 447 obtained from IVT was labelled with biotin at the 3'end using the PierceTM RNA 3'End 448 Desthiobiotinylation Kit (ThermoFisher Scientific) according to the manufacturer's protocol. 449 Biotin labelling efficiency of the RNA probes was determined using the Chemiluminescent 450 Nucleic Acid Detection Module Kit (ThermoFisher Scientific) following the manufacturer's 451 protocol. Biotin labelling efficiency was normalized against the efficiency of antisense 452 453 transcript to determine amount of initial RNA bait used for the subsequent pulldown experiment. Pulldown using these labelled RNA probes was carried out using the PierceTM 454 Magnetic RNA-Protein Pull-Down Kit (ThermoFisher Scientific) according to the 455 manufacturer's instructions. Protein lysates eluted from the pulldowns were used for 456 immunoblotting and other downstream analysis. The primer sequences with the T7-tag for 457 the PCR are provided in Supplementary Table 3. 458

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

459

460 In vitro generation of sgRNA transcripts

461 Approximately 1.4kb of genomic fragment spanning SALL4 5' UTR - exon 1 - intron 1

- 462 was PCR amplified (Zymo Research) and cloned into the pGEM-T Easy vector. The vector
- 463 was linearized with BamH1 restriction enzyme (New England Biolabs). SALL4-targeting
- 464 sgRNA candidates were transcribed with HiScribe[™] Quick T7 High Yield RNA Synthesis
- 465 Kit (New England Biolabs) following manufacturer's instructions. The sgRNA target
- 466 sequences within SALL4 locus can be supplied upon request
- 467

468 In vitro cleavage and selection of sgRNA transcripts

In vitro cleavage assay was performed using purified Cas9 nuclease from S. pyogenes 469 (New England Biolabs) in order to select SALL4-specific sgRNA among candidates. The 470 experiment was performed according to the manufacture's protocol. The sgRNAs were 471 denatured at 95°C for 3 minutes, then Cas9 protein and sgRNAs were incubated for 10 472 minutes at 25°C to form a complex. Lastly, a linearized SALL4 DNA fragment was added to 473 the mixture and the entire reaction was incubated at 37°C for 1 hour. The reaction mixture 474 was composed of purified Cas9 protein, individual sgRNA, and linearized SALL4 genomic 475 fragment in ratio of 10: 10: 1. 1 ul of Proteinase K was added to each sample after the 476 477 cleavage reaction, and it was then incubated at room temperature for 10 minutes. The result 478 was analyzed with a 1% agarose gel.

479

480 Lentiviral transduction of sgSALL4_1 and dCas9

481 Lentiviruses expressing dCas9 or sgRNA were packaged in 293T cells the plasmids

482 psPAX2 and pMD2.G. TransIT-LT1 Transfection Reagent (Mirus) was used for transfection

483 into 293T cells. Virus was collected at 48 hours and 72 hours post-transfection. The collected

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

484	virus was filtered through 0.45 μm microfilters and stored at -80 °C. Transduction of SNU-
485	387 cells was performed by mixing virus and 4 μ g/mL polybrene (Santa Cruz) together to
486	add to the cells seeded in T75 flasks 24 hours prior to the transduction. 24 hours after the
487	transduction, the medium was replenished with normal RPMI culture medium. Transduction
488	efficiency was determined by GFP (for sgRNA) or mCherry (dCas9) expression by FACS
489	analysis, and the positive cells were sorted by a FACS Aria machine (BD Biosciences).
490	

491 **5-aza-2'-deoxycytidine(decitabine) treatment**

SNU387 cells were treated with 1.25 uM of 5-aza-2'-deoxycytidine (Sigma-Aldrich)
according to the manufacturer's instructions. Culture medium and drug were refreshed every
24 hours due to the drug being light-sensitive. RNA (for RT–PCR) and genomic DNA (for
bisulphite sequencing) were isolated after 5 days of treatment

496

497 **Digital droplet PCR**

Reactions for the ddPCR were prepared by harvesting 100,000 cells on each day for RNA 498 extraction and cDNA preparation. The reaction mixture was prepared with the 2x ddPCR 499 supermix for probes (Biorad, Cat #186-3026), 10-fold diluted cDNA, nuclease-free water, 500 and forward and reverse primers. Once the reaction mixture was ready, it was loaded into a 501 502 DG8 cartridge for the QX200 Automated Droplet Generator (Biorad, Cat#186-4003). We 503 then proceeded to the thermal cycling with a Biorad C1000 Touch Thermal Cycler with the following cycle conditions: 95°C for 10minutes, 94°C for 30 seconds (40 cycles), 60°C for 2 504 minutes (40 cycles), 98°C for 10 minutes and 4°C hold. The reaction plate was loaded into 505 506 the QX200 Droplet Reader (Biorad, Cat#186-4003) for gene expression analysis. 507

508 SALL4 methylation and expression correlation analysis

509	Pea	rson correlations between SALL4 expression and methylation levels were performed	
510	for the sites within the 5' UTR - exon 1 - intron 1 intron 1 region and distant sites in the		
511	intron 1 (Fig S2). In order to show that a negative correlation is specific to primary HBV+		
512	HCC p	atients, adjacent normal samples were used as negative controls. The data used for the	
513	correla	tion was taken from Yang, et al (15), containing 19 pairs of primary HBV+ HCC	
514	patient	s and their matched adjacent normal tissues.	
515			
516	Mater	ials Availability	
517	All plasmids and mouse lines generated in this study are freely available from the authors		
518	upon reasonable request.		
519			
520	Data a	nd Code Availability	
521	The data used for the correlation was taken from Yang, et al, 2017 containing 19 pairs of		
522	primary HBV+ HCC patients and their matched adjacent normal tissues. The authors declare		
523	that all other data supporting the findings of this study are available within the paper and its		
524	supplementary information files.		
525			
526	Refere	ences	
527 528	1.	Yang JD, Roberts LR. Epidemiology and management of hepatocellular carcinoma. Infect Dis Clin North Am 2010 ;24(4):899-919, viii doi S0891-5520(10)00059-00.1016/j.idc.2010.07.004.	
529 530	2.	Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 2009 ;69(2):223-40 doi 10.2165/00003495-200969020-000066.	
531 532	3.	Yang J, Chai L, Fowles TC, Alipio Z, Xu D, Fink LM, et al. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proc Natl Acad Sci U S	
533 534 535	4.	A 2008 ;105(50):19756-61 doi 10.1073/pnas.0809321105. Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, <i>et al.</i> Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of	
536 537 538 539	5.	Pou5f1. Nat Cell Biol 2006 ;8(10):1114-23 doi 10.1038/ncb1481. Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM, <i>et al.</i> SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 2006 ;108(8):2726-35 doi 10.1182/blood-2006-02-001594.	

540	<i>c</i>	
540	6.	Yue X, Xiao L, Yang Y, Liu W, Zhang K, Shi G, et al. High cytoplasmic expression of SALL4
541		predicts a malignant phenotype and poor prognosis of breast invasive ductal carcinoma.
542		Neoplasma 2015 ;62(6):980-8 doi 10.4149/neo_2015_119.
543	7.	Kobayashi D, Kuribayashi K, Tanaka M, Watanabe N. Overexpression of SALL4 in lung cancer
544		and its importance in cell proliferation. Oncol Rep 2011 ;26(4):965-70 doi
545		10.3892/or.2011.1374.
546	8.	Oikawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y, et al. Sal-like protein 4
547		(SALL4), a stem cell biomarker in liver cancers. Hepatology 2013 ;57(4):1469-83 doi
548		10.1002/hep.26159.
549	9.	Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H, et al. SALL4 is a key regulator of survival
550		and apoptosis in human leukemic cells. Blood 2008 ;112(3):805-13 doi 10.1182/blood-2007-
551		11-126326.
552	10.	Yong KJ, Gao C, Lim JS, Yan B, Yang H, Dimitrov T <i>, et al.</i> Oncofetal gene SALL4 in aggressive
553		hepatocellular carcinoma. N Engl J Med 2013 ;368(24):2266-76 doi
554		10.1056/NEJMoa1300297.
555	11.	Li A, Jiao Y, Yong KJ, Wang F, Gao C, Yan B, et al. SALL4 is a new target in endometrial cancer.
556		Oncogene 2015 ;34(1):63-72 doi 10.1038/onc.2013.529.
557	12.	Liu BH, Jobichen C, Chia CSB, Chan THM, Tang JP, Chung TXY, et al. Targeting cancer
558		addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proc Natl
559		Acad Sci U S A 2018 ;115(30):E7119-E28 doi 10.1073/pnas.1801253115.
560	13.	Fan H, Cui Z, Zhang H, Mani SK, Diab A, Lefrancois L, et al. DNA demethylation induces SALL4
561		gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or
562		C virus infection. Oncogene 2017 ;36(17):2435-45 doi 10.1038/onc.2016.399.
563	14.	Amabile G, Di Ruscio A, Muller F, Welner RS, Yang H, Ebralidze AK, et al. Dissecting the role
564		of aberrant DNA methylation in human leukaemia. Nat Commun 2015 ;6:7091 doi
565		10.1038/ncomms8091.
566	15.	Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, et al. DNMT1-
567		interacting RNAs block gene-specific DNA methylation. Nature 2013 ;503(7476):371-6 doi
568		10.1038/nature12598.
569	16.	Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, et al. The long non-coding RNA
570		Dali is an epigenetic regulator of neural differentiation. Elife 2014 ;3:e04530 doi
571		10.7554/eLife.04530.
572	17.	Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. LncRNA Dum interacts with Dnmts to
573		regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell
574		Res 2015 ;25(3):335-50 doi 10.1038/cr.2015.21.
575	18.	Merry CR, Forrest ME, Sabers JN, Beard L, Gao XH, Hatzoglou M, et al. DNMT1-associated
576		long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer.
577		Hum Mol Genet 2015 ;24(21):6240-53 doi 10.1093/hmg/ddv343.
578	19.	Hawkins PG, Morris KV. Transcriptional regulation of Oct4 by a long non-coding RNA
579		antisense to Oct4-pseudogene 5. Transcription 2010 ;1(3):165-75 doi
580		10.4161/trns.1.3.13332.
581	20.	Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y <i>, et al.</i>
582		Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes.
583		Nature 2008 ;453(7194):539-43 doi 10.1038/nature06908.
584	21.	Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent
585		function of gene and pseudogene mRNAs regulates tumour biology. Nature
586		2010 ;465(7301):1033-8 doi 10.1038/nature09144.
587	22.	Han L, Yuan Y, Zheng S, Yang Y, Li J, Edgerton ME, et al. The Pan-Cancer analysis of
588		pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat
589		Commun 2014 ;5:3963 doi 10.1038/ncomms4963.

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

590 591	23.	Yang Y, Chen L, Gu J, Zhang H, Yuan J, Lian Q, <i>et al.</i> Recurrently deregulated IncRNAs in hepatocellular carcinoma. Nat Commun 2017 ;8:14421 doi 10.1038/ncomms14421.
592	24.	Di Bisceglie AM. Hepatitis B and hepatocellular carcinoma. Hepatology 2009 ;49(5
593		Suppl):S56-60 doi 10.1002/hep.22962.
594	25.	Torrents D, Suyama M, Zdobnov E, Bork P. A genome-wide survey of human pseudogenes.
595		Genome Res 2003 ;13(12):2559-67 doi 10.1101/gr.1455503.
596	26.	Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev
597		Genet 2007 ;8(4):286-98 doi 10.1038/nrg2005.
598	27.	Huhtanen CN, Feinberg JI, Trenchard H, Phillips JG. Acid Enhancement of Clostridium
599		botulinum Inhibition in Ham and Bacon Prepared with Potassium Sorbate and Sorbic Acid. J
600		Food Prot 1983 ;46(9):807-10 doi 10.4315/0362-028X-46.9.807.
601	28.	Ganem D, Prince AM. Hepatitis B virus infectionnatural history and clinical consequences.
602		N Engl J Med 2004 ;350(11):1118-29 doi 10.1056/NEJMra031087.
603		

604 Author contributions

D.G.T., L.C., and Y.T. initiated the project and provided guidance throughout. D.G.T,

606 L.C., Y.T., C.G., and J.K. designed the experiments. J.K. carried out experiments, analyzed

data, prepared figures, and wrote the manuscript. C.G, Y.L, and A.J carried out experiments,

prepared figures and edited the manuscript. M.A.B. analyzed the data, prepared figures, and

609 edited the manuscript. H.Y. and L.Y. performed the bioinformatics analysis on SALL4

610 expression and methylation. A.D.R. and J.Y. reviewed the manuscript. D.G.T, L.C, and Y.T

611 conceived of and supervised the project, designed experiments, and critically reviewed the

612 manuscript.

613

614 Acknowledgements

615 We thank Sudhakar Jha and Polly Chen for their insightful suggestions. We also thank the

Tenen, Tay, and Chai lab members for reviewing the manuscript. D.G.T. is funded by the

617 Singapore Ministry of Health's National Medical Research Council under its Singapore

Translational Research (STaR) Investigator Award, as well as NIH grants 1R35CA197697

and P01HL131477. Y.T. is funded by a Singapore National Research Foundation Fellowship

and National University of Singapore President's Assistant Professorship. This research is

621 supported by the National Research Foundation Singapore and the Singapore Ministry of

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

- 622 Education under its Research Centres of Excellence initiative, as well as the RNA Biology
- 623 Center at the Cancer Science Institute of Singapore, NUS, as part of funding under the
- 624 Singapore Ministry of Education's AcRF Tier 3 grants, Grant number MOE2014-T3-1-006.
- 625 L.C. is funded by NIH/NHLBI grant P01HL095489. A.D.R. is funded by NCI
- 626 R00CA188595, the Italian Association for Cancer Research (AIRC) start up grant #2014-
- 627 15347, and the Giovanni Armenise-Harvard Foundation.
- 628
- 629 Figure Legends

630 Figure 1: SALL4 expression is negatively correlated with methylation of the

5'UTR-exon 1-intron 1 region. (A) Schematic representation of the methylation probes. The 631 numbers refer to each CpG dinucleotide. The probe in the 5'UTR-exon 1 junction, "Probe 1", 632 assesses the methylation status of the CpG dinucleotide #11 and the intronic probe, "Probe 2" 633 assesses the CpG dinucleotide #68 in Supplementary Figure 1. (**B and C**) SALL4 expression 634 635 and methylation correlation analysis in 19 HBV+ patients. Compared to paired adjacent nontransformed liver tissue, there is a negative correlation between SALL4 expression and 636 Probe 1 methylation, which is not observed using Probe 2. (D) Bisulfite sequence of the 637 5'UTR-exon 1 intron 1 region in wildtype SNU398 and SNU387 HCC cell lines. White color 638 represents hypomethylation while black represents hypermethylation of the individual CpG 639 dinucleotide. Degree of methylation was determined as a proportion of methylated cytosine 640 residue at a position out of 10 clones. Only CpG dinucleotides 1 to 35 are represented as the 641 sequencing efficiency was poor for dinucleotides 36 to 39. (E) Absolute quantification of 642 SALL4 mRNA expression in wildtype SNU398 and SNU387. β-actin was used as a positive 643 control for the assay. cDNA for β-actin quantification was diluted 10 times and back-644 calculated accordingly later. The levels of β-actin were comparable between SNU398 and 645 646 SNU387 at about 400 to 600 copies of transcripts per cell. However, SNU398 cells expressed

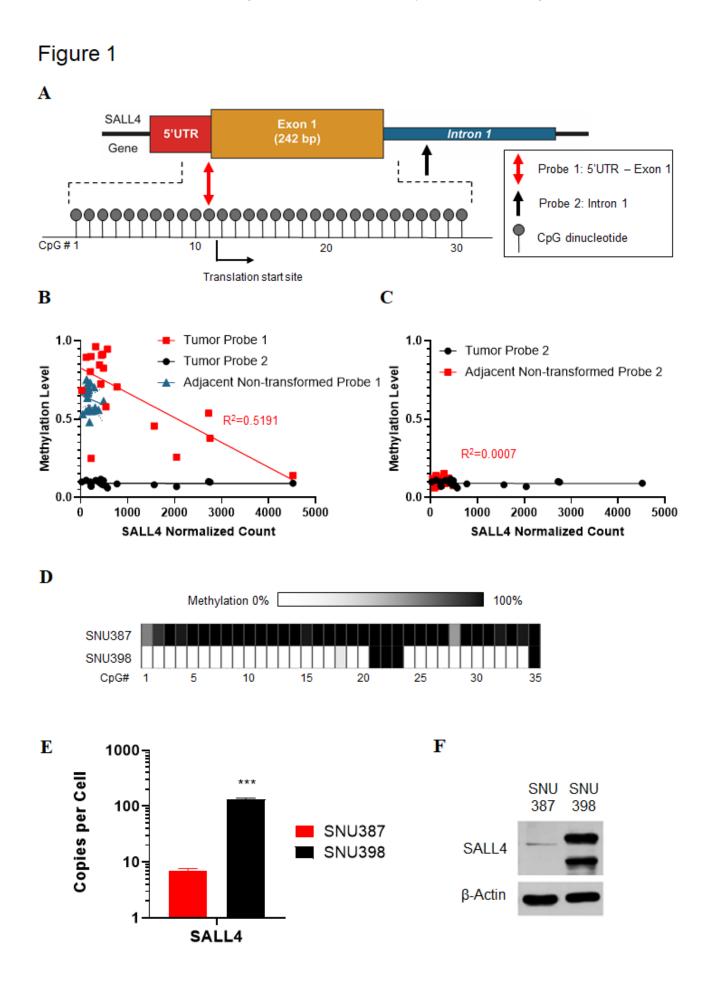
Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

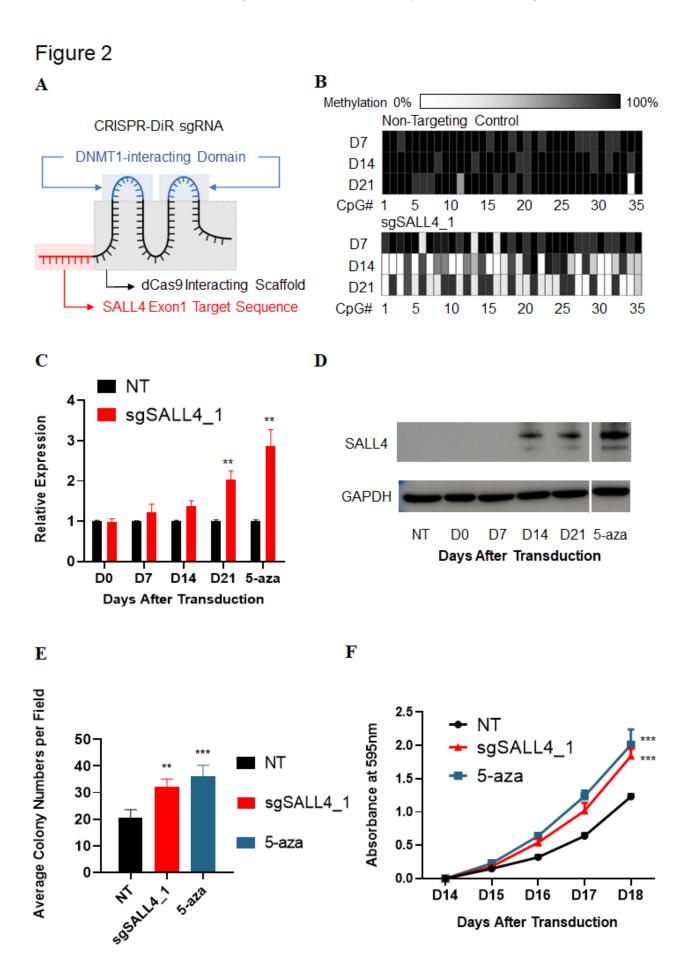
more than 150 copies of SALL4 mRNAs while SNU387 expressed less than 10 copies on
average. (F) SALL4 protein levels in wildtype SNU398 and SNU387. β-actin was used as a
loading control for immunoblotting.

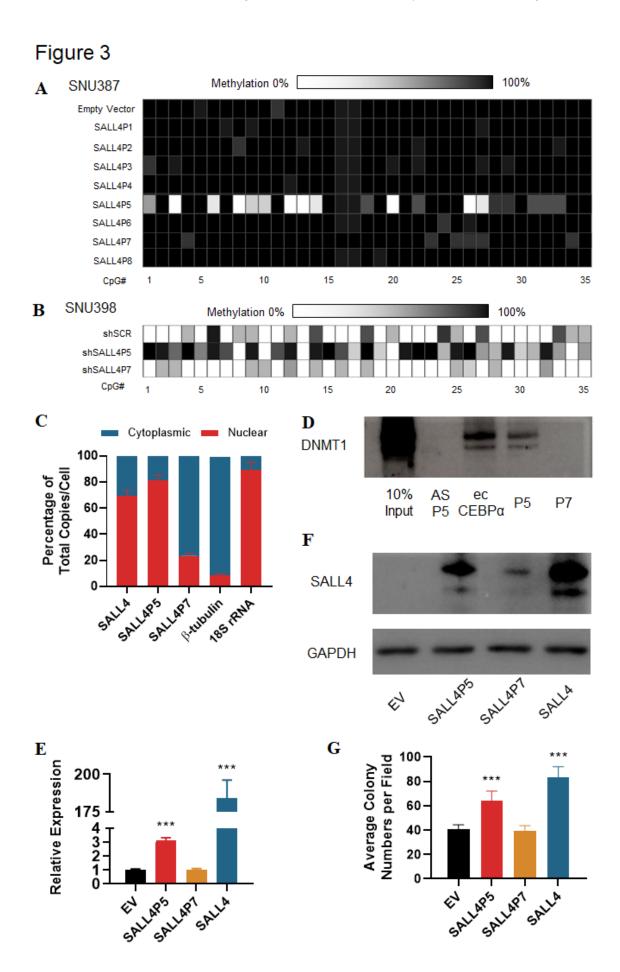
650

Figure 2. CRISPR-DiR demethylates and activates SALL4. (A) single-guide RNA design 651 for the CRISPR-DiR. The red region targets and interacts with the SALL4 5'UTR. The black 652 region interacts with dCas9. The blue regions are the two segments of ecCEBP α that interact 653 with DNMT1 (15). (B) Bisulfite sequence of CRISPR-DiR transduced SNU387 cells. The 654 data represents the methylation profile 14 days after CRISPR-DiR for SALL4. The numbers 655 indicate each of the CpG dinucleotides in the 5'UTR-exon 1 intron 1 junction. The white 656 color represents hypomethylation while the black hypermethylation of the individual CpG 657 dinucleotides. Only CpG dinucleotides 1 to 35 are represented as the sequencing efficiency 658 was poor for dinucleotides 36 to 39. (C & D) SALL4 transcript and protein levels after 659 CRISPR-DiR in SNU387. The western blot image is cropped as there were multiple lanes in 660 between "D21" and "5-aza". However, they are from the same blot and exposed for the same 661 662 duration. (E) Soft agar growth assay for CRISPR-DiR in SNU387. (F) Growth curve assay for CRISPR-DiR for SALL4 in SNU387. 5-aza-2-deoxycytidine(decitabine) was used as a 663 positive control. NT denotes non-targeting negative control. Mean \pm SD, $n \ge 3$, *P < 0.05; 664 **P < 0.01; ***P < 0.001. 665

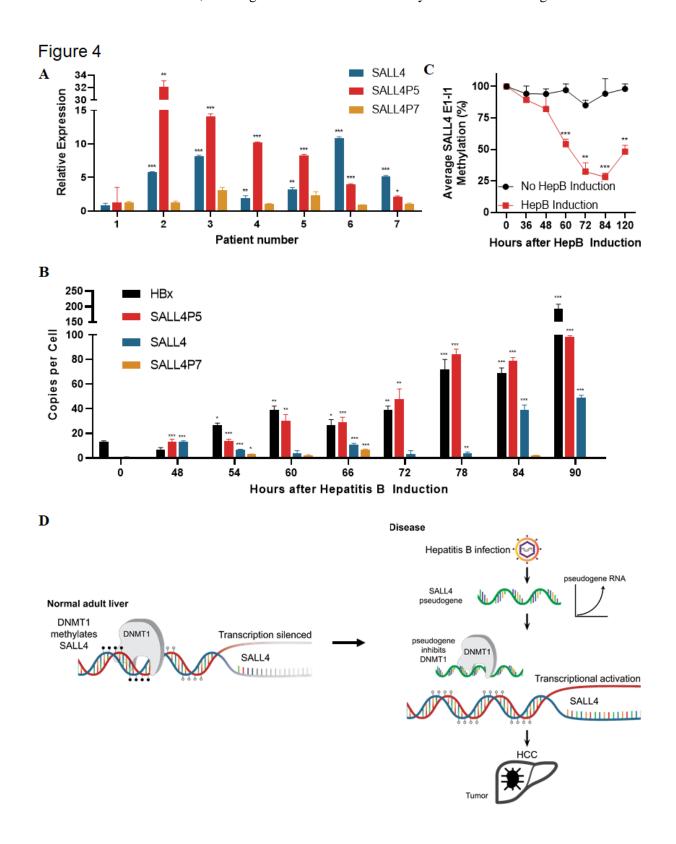
666


667 Figure 3. SALL4P5 demethylates and activates SALL4, and associates with DNMT1.


668 (A) Bisulfite sequencing after transient overexpression of individual SALL4 pseudogenes in


669 SNU387. The methylation status of CpG dinucleotides in SALL4 5'UTR-exon 1 intron is

- shown. (**B**) Bisulfite sequencing after SALL4P5 knockdown in SNU398. ShScr denotes
- 671 scrambled shRNA. shSALL4P7 was used as a negative control. (C) Transcript localization in


672	SNU398. Cells were fractionated into nuclear and cytoplasmic fractions and transcript
673	expression was quantified. β -tubulin was used as a cytoplasmic fraction control, 18S rRNA
674	as the nuclear fraction control. (D) Biotin-labelled pull-down of DNMT1 in SNU398. Full
675	length SALL4P5 was used as a bait to pull down complexes and DNMT1 presence was
676	probed using immunoblotting. "as P5" denotes the negative control, antisense-SALL4P5 and
677	"ecCEBP α " denotes the positive control. Full length SALL4P7 was used as a pseudogene
678	negative control as well. (\mathbf{E} and \mathbf{F}) SALL4 transcript and protein expression after pseudogene
679	overexpression in SNU387. (G) Soft agar growth assay for pseudogene overexpression in
680	SNU387. Mean \pm SD, n \geq 3, *P < 0.05; **P < 0.01; ***P < 0.001.
681	
682	Figure 4. SALL4P5 is upregulated in HCC patients and during hepatitis B induction.
683	(A) Relative SALL4 transcript expression in paired HCC patient samples. All expression
684	data are normalized against adjacent non-transformed tissues. Patient #1 was used as a
685	negative control with unaltered SALL4 and SALL4P5 levels. The levels of SALL4,
686	SALL4P5, and SALL4P7 were assessed for the other six patients, patients #2 to 7, as they
687	had more than 1.5-fold elevation in SALL4 levels compared to adjacent non-transformed
688	tissued. (B) Absolute quantification (RNA copies per cell) of Hepatitis B antigen X, HBx,
689	and SALL4 transcripts during hepatitis B induction in HepAD38B. Transcript levels of HBx
690	and SALL4 transcripts were monitored every 6-12 hours post HBV induction (C) Average
691	methylation in SALL4 5'UTR-exon 1 intron 1 across the 35 CpG dinucleotides in
692	HepAD38B. Blue denotes SALL4 methylation profile without HBV induction, while red
693	denotes SALL4 methylation profile after induction. Mean \pm SD, n \geq 3. *P < 0.05; **P < 0.01;
694	***P < 0.001.

Kwon et al, Pseudogene-mediated DNA demethylation leads to oncogene activation

