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Abstract: Non-random cell-free DNA fragmentation is a promising signature for cancer 

diagnosis. However, its aberration at the fine-scale in early-stage cancers is poorly 

understood. Here, we developed an approach to de novo characterize the cell-free DNA 

fragmentation hotspots from whole-genome sequencing. In healthy, hotspots are enriched in 

gene-regulatory elements, including open chromatin regions, promoters, hematopoietic-

specific enhancers, and, interestingly, 3’end of transposons. Hotspots identified in early-stage 

hepatocellular carcinoma patients showed overall hypo-fragmentation patterns compared to 

healthy controls. These cancer-specific hypo-fragmented hotspots are associated with genes 

enriched in gene ontologies and KEGG pathways that are related to the initiations of 

hepatocellular carcinoma and cancer stem cells. Further, we identified the fragmentation 

hotspots at 297 cancer samples across 8 different cancer types (92% in stage I to III), 103 

benign samples, and 247 healthy samples. The fine-scale fragmentation level at most variable 

hotspots showed cancer-specific fragmentation patterns across multiple cancer types and non-

cancer controls. With the fine-scale fragmentation signals alone in a machine learning model, 

we achieved 48% to 95% sensitivity at 100% specificity in different early-stage cancer. We 

further validated the model at independent datasets we generated at a small number of early-

stage cancers and healthy plasma samples with matched age, gender, and lifestyle. In cancer-

positive cases, we further localized cancer to a small number of anatomic sites with a median 

of 80% accuracy. The results highlight the significance of de novo characterizing the cell-free 

DNA fragmentation hotspots for detecting early-stage cancers and dissection of gene-

regulatory aberrations in cancers.  
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Introduction 

Circulating cell-free DNA (cfDNA) from patients’ plasma is a promising non-invasive biomarker 

for disease diagnosis[1]. The fragmentation patterns of cfDNA are not evenly distributed in the 

genome and altered in cancer, bringing enormous signals from both tumor and peripheral 

immune cells to detect early-stage cancers [2–4]. Recently, several patterns have been 

derived to capture the full spectrums of the cfDNA fragmentation in cancer, such as patterns 

near transcription start sites (TSS) and transcription factor binding sites (TFBS), orientation-

aware cfDNA fragmentation (OCF), the preferred-ended position of cfDNA, motif diversity 

score (MDS), large-scale fragmentation patterns at mega-base level (DELFI), nucleosome 

positioning (window protection score, WPS), and multi-modality integrations[2,5–13]. However, 

the studies of fragmentation patterns at selected known regulatory elements, such as TSS[6], 

TFBS[9], and known open chromatin regions in selected immune cells(OCF)[8], limited their 

opportunities to unbiasedly characterize the genome-wide fragmentation aberrations on other 

regulatory regions in early-stage cancers. The preferred-ended position of cfDNA has not been 

associated with known gene-regulatory elements yet[7]. The end motif and MDS[10] is a 

summary statistic score for each patient that does not allow further explorations of its 

association with specific gene-regulatory elements. The large-scale fragmentation patterns at 

mega-bases level (DELFI)[2] are challenging to be associated with the fine-scale gene-

regulatory elements, genes, pathways, and therefore further druggable targets for the 

interventions of early-stage cancers. These challenges limited their potential opportunity to 

characterize the underlying unknown gene-regulatory aberrations during the initiations of early-

stage cancers. 

To conquer these challenges, we need an unbiased genome-wide approach to narrow down 

the regions of interest from cfDNA fragments directly. A previous study on cfDNA from healthy 

and late-stage cancers de novo characterized the regions with high WPS signals that are 
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associated with nucleosome occupancies[5]. Nucleosome occupancies inside the cells are 

usually measured by MNase-seq, which is not comprehensively performed at various primary 

cell types across different human pathological conditions, such as cancer. Thus, the 

characterization of nucleosome-occupied regions from cfDNA, such as WPS, will still limit our 

scope to dissect the potential regulatory aberrations in cancer. However, the reduced 

fragmentation process (“fragmentation coldspots”) at nucleosome-occupied regions, on the 

other side, indicates the potential existence of an increased fragmentation process 

(“fragmentation hotspots”) in the open chromatin regions. The open chromatin region is a 

hallmark of DNA regulatory elements and has recently been comprehensively profiled by 

ATAC-seq and DNase-seq at many primary cell types across different pathological and 

physiological conditions, including cancer and immune cells[14,15]. Transcription factors, 

which are critical for disease progression, usually bind the open chromatin regions rather than 

the nucleosome-occupied regions[16]. Therefore, instead of identifying “fragmentation 

coldspots” at nucleosome-occupied regions, we hypothesize that the characterization of cfDNA 

“fragmentation hotspots”, potentially enriched in open chromatin regions and gene-regulatory 

elements, will not only boost the power for the identification of nuanced pathological 

conditions, such as early-stage cancer, but also elucidate the unknown in vivo gene-regulatory 

mechanisms indicated by the cfDNA fragmentation patterns from patients’ plasma. 

Here, we developed a computational approach, named Cell fRee dnA fraGmentation (CRAG), 

to de novo identify the genome-wide cfDNA fragmentation hotspots by utilizing the weighted 

fragment coverages from cfDNA paired-end WGS data. We observed the high enrichment of 

these fragmentation hotspots at open chromatin regions and related gene-regulatory elements. 

We demonstrated the cfDNA fragmentation aberrations in early-stage cancers. Finally, as a 

proof-of-concept study, we showed the possibility to utilize these cancer-specific fragmentation 

hotspots for the detection and localization of multiple cancers, mostly early-stage.  
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Results  

CRAG: a probabilistic model to characterize the cell-free DNA fragmentation hotspots. 

We proposed a computational approach to de novo characterize the fine-scale genomic 

regions with higher fragmentation rates than the local and global backgrounds, defined as 

cfDNA fragmentation hotspots (Fig. 1a-b). Since both fragment coverages and sizes are 

essential parts of evaluating the fragmentation process, we weighed the fragment coverages in 

each region by the ratio of average fragment sizes in the region versus that in the whole 

chromosome, named integrated fragmentation score (IFS) (Details in Methods). The negative 

binomial model we proposed correctly captured the variation of IFS in the background and 

indicated the existence of cfDNA fragmentation hotspots (Fig. 1c, Details in Methods). We 

utilized both local (50kb) and global (whole chromosome) backgrounds to identify the 

significant hotspots, which is especially useful when the focal copy number changes exist. 

Since sequencing coverages are usually affected by the G+C% content, we also normalized 

the IFS signals with the G+C% content within the regions (Details in Methods). We used the 

cfDNA deep WGS data (BH01, ~100X)[5] from the healthy non-pregnant individuals as the 

primary dataset to evaluate our approach in healthy individuals. In the BH01 dataset, we 

identified 138,938 cfDNA fragmentation hotspots. The IFS distributions in both BH01 and 

another independent dataset from a healthy individual (IH01, ~100X) showed expected 

depletions at the center of BH01 hotspots (Fig. 1d, Fig. S1a), suggesting that we correctly 

capture the genome-wide fragmentation hotspots.  

It is well known that the fragment coverages and lengths from next-generation sequencing, 

including cfDNA WGS, are affected by the sequence compositions[5,17,18]. To check if the 

depletion of IFS signals is just due to the bias of sequence compositions, we normalized the 

IFS signals by k-mer composition (n=2) at BH01 hotspots (Details in Methods). We did not 

observe any change in the overall distribution of fragmentation patterns before and after the 
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correction (Fig. S1b). These results suggested that our model robustly captured the 

fragmentation hotspots in cfDNA WGS. 

Cell-free DNA fragmentation hotspots are highly enriched in open chromatin regions 

and active gene-regulatory elements. 

We next sought to characterize the genomic distributions of these fragmentation hotspots in 

healthy individuals (BH01). Similar to the previous studies on the open chromatin regions[19], 

the fragmentation hotspots from cfDNA are highly enriched at the CpG island (CGI) promoters 

and CTCF insulators, but not enriched at the non-CGI promoters, 5’ exon boundaries, 

transcription termination sites (TTS), and random genomic regions (Fig. 2a). We plotted the 

distributions of publicly available DNA accessibility and active/repressive histone modification 

marks from the major hematopoietic cell types around the hotspots. We found the high 

enrichment of epigenetic marks related to the active regulatory element as expected (Fig. 2b-c, 

Fig. S2-S3). Moreover, the enhancer mark H3K4me1, from hematopoietic cell types but not 

other cell types, showed a high enrichment around the hotspots, which is consistent with 

previous studies that hematopoietic cell types are the major contributors to cfDNA in healthy 

individuals[20–22] (Fig. 2d, Fig. S3). To further understand the enrichment of fragmentation 

hotspots at different chromatin states, we utilized the 15-states chromHMM segmentation 

results across different cell types from the NIH Roadmap Epigenomics Mapping 

Consortium[23]. The hotspots mainly showed the enrichment in the tissue/cell-type-specific 

chromHMM states from hematopoietic cell types but not other cell types. (Fig. 2e). The 

evolutionary conservation score (phastCons) in hotspots is significantly higher than in matched 

random regions (two-sided Mann–Whitney U test, p < 2.2e-16, Fig. S4) [24], further suggesting 

the enrichment of the functional regulatory elements. 

We further asked if we could predict the open chromatin regions by using fragmentation alone. 

Neutrophils are one of the major contributors to the cfDNA in healthy individuals (20-
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60%)[21,22]. However, the open chromatin regions in neutrophils are still missing. Thus, we 

utilized the matched constitutively open regions and closed regions across different cell types 

to benchmark the accuracy that we can detect the open chromatin regions by the 

fragmentation level. We achieved the 0.95 (95% CI: 0.93-0.96) area under the curve (AUC) to 

predict the known open chromatin regions (Fig. 2f, Details in Methods), further suggesting the 

strong link between fragmentation hotspots and open chromatin regions. 

We next asked if we could detect other unknown regulatory potentials from cfDNA 

fragmentation hotspots. We collected 523 publicly available open chromatin region datasets 

measured by DNase-seq or ATAC-seq across different cell types (Details in Table S1). These 

cell types are the major known contributors to cfDNA in healthy non-pregnant individuals, 

including liver and rest or activated immune cells from the Roadmap Epigenomics Consortium, 

ENCODE, BLUEPRINT, and other publications[15,23,25–27]. Interestingly, after excluding the 

potential overlap with all these known open chromatin regions, we noticed a high enrichment of 

hotspots not within but right after the 3’ end of transposable elements (TEs). To exclude the 

possible artifact of reads mapping caused by the sequence composition bias, we examined the 

distribution of mappability and G+C% content right after the 3’ end of TEs and did not notice 

the significant bias there (Fig. 2g, Fig. S5a, b). The motif enrichment results at these hotspots 

right after the 3’end of TEs further suggested the high enrichment of pioneer transcription 

factors, such as OCT (POU, Homeobox), which usually bind the nucleosome-occupied regions 

(Fig. S5c)[28]. Moreover, we observed the differences in DNA methylation at the same regions 

(right after the 3’end of Alu) with or without the overlap of hotspots, which indicates the 

potential functional association between hotspots and the local epigenetic status, besides 

nucleosome occupancy, after the 3’end of TEs (Fig. 2h). 
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Taken together, in healthy individuals, these de novo characterized cfDNA fragmentation 

hotspots are highly enriched in open chromatin regions and active gene regulatory elements 

and can potentially reveal other unknown regulatory elements from cfDNA WGS. 

Cell-free DNA fragmentation hotspots reveal the potential gene regulatory aberrations in 

early-stage cancer. 

We next sought to explore whether or not the cfDNA fragmentation dynamics in the hotspots 

can reflect the aberrations of gene regulatory elements in early-stage cancer. We collected the 

publicly available low-coverage cfDNA WGS (~1X/sample) from 90 patients with early-stage 

hepatocellular carcinoma (HCC, 85 of them are Barcelona Clinic Liver Cancer stage A, 5 of 

them are stage B) and 32 healthy individuals from the same study[29,30]. Since these cfDNA 

WGS are all sequenced with low coverage, we estimated the minimum number of fragments 

required by CRAG (see Supplementary Methods and Fig. S6) and pooled these low coverage 

cfDNA WGS to obtain enough fragments for the hotspot calling in each condition. The 

unsupervised hierarchical clustering of the top 10,000 most variable hotspots showed a clear 

fragmentation dynamic between early-stage HCC and healthy (Fig. 3a, Fig. S7). The volcano 

plot of the false discovery rate (FDR, two-sample t-test) and z-score difference of IFS between 

HCC and healthy across all the fragmentation hotspots showed a large fraction of hypo-

fragmented hotspots in early-stage HCC (Fig. 3b).  

To further understand the molecular mechanism behind these fragmentation aberrations at the 

hotspots, we split the significantly differentiated fragmentation hotspots (FDR<0.01) into two 

groups: Class I (Hypo-fragmented in cancer) and Class II (Hyper-fragmented in cancer) (Fig. 

3b, Table S2). We associated these hotspots with their targeted genes by CistromeGO and 

identified the enrichment of Gene Ontology Biological Processes (GO BPs) at these genes 

(Fig. S8)[31]. Genes associated with Class I hotspots are enriched in “cell adhesion” related 

GO BPs. For example, Epithelial Cell Adhesion Molecule (EpCAM) genes within the GO: 
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0098742 were considered the marker of HCC cancer stem cells for a long time[32,33]. Genes 

associated with Class I hotspots are relatively enriched in “cysteine endopeptidases”, 

“apoptosis”, and “purine biosynthesis” related GO BPs, which were all associated with cancer 

progression and invasion in the previous studies[34,35]. We also characterize the KEGG 

pathway enrichment at the Class I hotspots (Hypo-fragmented in cancer), which are highly 

associated with HCC initiations, such as Hepatocellular Carcinoma (hsa05225) and signal 

pathway regulating pluripotency of stem cells (hsa04550) (Fig. 3c). Interestingly, we found the 

motif enrichment of BORIS/CTCFL at the Class I hotspots (Hypo-fragmented in cancer) but not 

at the Class II hotspots (Hyper-fragmented in cancer) (Fig. 3d), which suggested the potential 

associations with the changes in three-dimensional chromatin organizations. 

To understand the cell type specificity of these cancer-specific hotspots, we performed the 

enrichment analysis at chromatin states from different cell types. In the Epigenome Roadmap 

studies, Enhancer and TssFlank are considered to be mostly cell-type-specific[23]. Compared 

to Class I hotspots (Hypo-fragmented in HCC, i.e., open in healthy), we found that the Class II 

hotspots (Hyper-fragmented in HCC, i.e., open in HCC) are significantly enriched in cell-type-

specific chromHMM states from liver and liver cancer (HepG2) but not other cell types (Fig. 

S9a). 

In summary, in early-stage cancer, we found the global aberrations of fragmentation patterns 

at the cfDNA fragmentation hotspots, which bring together the signals mostly from peripheral 

immune cells and potentially small fractions from tumor tissues. These aberrations at the 

hotspots are highly associated with the alterations of regulatory elements and genes related to 

the initiation of cancer. 

Cell-free DNA fragmentation hotspots for the detection and localization of multiple 

early-stage cancers. 
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Next, we asked if we could utilize the cfDNA fragmentation hotspots for the diagnosis of early-

stage cancer. The diagnosis of early-stage HCC is usually compared with not only healthy 

individuals but also patients with liver diseases. Thus, we collected additional cfDNA WGS 

datasets in 67 patients with chronic HBV infection and 36 patients with HBV-associated liver 

cirrhosis from the same study as above [29]. Unsupervised hierarchical clustering at the most 

variable hotspots showed the clear dynamics of the fragmentation patterns among early-stage 

HCC, HBV, Cirrhosis, and healthy controls (Fig. S10-11). Utilizing the ten-fold cross-validation, 

we identified hotspots only in the samples pooled in the training dataset to avoid the 

information leak to the test dataset. We utilized the z-score transformed IFS from the cfDNA 

fragmentation hotspots as the features for the classification by a linear Support Vector 

Machine (SVM) approach (Details in Methods). Overall, for the comparison between HCC and 

healthy, we obtained 91% sensitivity at 100% specificity (96% sensitivity at 100% specificity 

after GC bias correction) (Table S3-4, Fig. S12). For the comparison between HCC and all 

other non-cancer controls, we obtained 83% sensitivity at 100% specificity (88% sensitivity at 

100% specificity after GC bias correction). Both comparisons showed higher performance than 

other methods, especially fragmentation at known regulatory elements, from the same dataset 

with the same data split (Fig. S13, Table S5-6). 

We further extended our study from early-stage HCC to multiple other cancer types. We 

collected publicly available low-coverage cfDNA WGS data (~1X/sample) from 208 patients 

across seven different kinds of cancer (88% in stage I-III, colon, breast, lung, gastric, bile duct, 

ovary, and pancreatic cancer) and 215 healthy controls in the same study[2,30]. We applied a 

similar strategy as the HCC study above for the hotspot calling (pool the samples in the 

training dataset). Across seven different types of cancer and healthy conditions, the z-score 

transformed IFS signals in the most variable fragmentation hotspots showed clear cancer-

specific fragmentation patterns in both t-SNE visualization and unsupervised hierarchical 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2022. ; https://doi.org/10.1101/2020.07.16.201350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.201350
http://creativecommons.org/licenses/by/4.0/


11 
 

clustering (Fig. 4a-b, Fig. S14, Details in Supplementary Methods). We also performed the 

enrichment analysis at chromatin states similar to that in HCC above. Compared to Class I 

hotspots (Hypo-fragmented in the lung cancer, i.e., open in healthy), we found that the Class II 

hotspots (Hyper-fragmented in lung cancer, i.e., open in cancer) are significantly enriched in 

cell-type-specific chromHMM states from lung cancer (A549)(Fig. S9b). 

By 10-fold cross-validation, the linear SVM model showed a consistent high classification 

performance across different stages for its high sensitivity at high specificity (72% sensitivity to 

91% sensitivity at 100% specificity, Fig. 4c, Table S7). Across different cancer types, we 

achieved 48% to 95% sensitivity at 100% specificity. Particularly, at 100% specificity, we 

achieved 95% sensitivity (95% CI: 85%-100%) in colorectal cancer,  93% sensitivity (95% CI: 

85%-100%) in breast cancer, and 90% sensitivity (95% CI: 80%-100%) in gastric cancer, 

which of these are poorly detected at high specificity level by other liquid biopsy approaches in 

the same dataset [2,36–39]. (Fig. S15-16, Table S7, Table S8). In the other cancer types, the 

performance is largely comparable to the previous results [2].  Since the cfDNA cancer 

diagnosis is mostly affected by the tumor fractions, even in early-stage cancers, we estimated 

the tumor fractions in each sample by the CNV-based approach (ichorCNA)[40]. A recent 

study suggested that the increases in signal breadth could increase the sensitivity even with a 

low tumor burden in cfDNA[41]. De novo hotspot characterization will expand the signals and 

thus increase the sensitivity. Our approach indeed showed a consistently high performance 

across samples with different tumor fractions (Fig. S17). 

To validate the model performance in an independent test dataset, we generated low-coverage 

cfDNA WGS at plasma from two types of cancers: early-stage HCC (n=8, stage I-II) and breast 

cancer (n=25, stage I-III), together with their matched healthy controls (1:1 matched age, 

gender, alcohol usage, and smoking history, meta-data details in Table S9).  We utilized the 

model trained in Cristiano 2019 data (Breast vs. Healthy) and Jiang 2015 data (HCC vs. 
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Healthy) directly on the test set. We obtained high performance in both independent datasets 

and showed superior performance to other approaches, especially known regulatory elements, 

in the same test sets (Fig. S18, Table S10). However, the ROC curve could show perfect 

separation between cancer and non-cancer controls in the test set but fail to validate either the 

sensitivity or the specificity based on the fixed cutoff when applying to the clinical cases. To 

further validate the clinical application of our approach, we performed the batch effect 

correction at the training and test set (Details in Supplementary Methods, Fig. S19). We fixed 

the cut-off of our model in the training set of the training dataset and compared the 

performance of the model at the validation set in the training dataset and the independent test 

set. Our model still showed high performance in the test dataset (87.5% sensitivity at 87.5% 

specificity in early-stage liver cancer and 56% sensitivity at 80% specificity in early-stage 

breast cancer) (Table S11).  

Next, we asked whether or not we could identify the tissues-of-origin of cancer samples by 

using the fine-scale fragmentation levels alone. In the cancer positive samples identified above 

by the machine learning algorithm, without any clinical information about the patients, we 

further localized the sources of cancer to one or two anatomic sites in a mean of 80% of these 

patients across five different cancer types and 76% accuracy across six different cancer types. 

Furthermore, we were able to localize the source of the positive test to a single organ in a 

median of 62% of these patients (Fig. 4d, Table S12, Fig. S20) (Details in Methods). The 

prediction accuracy varies among tumor types, from 67% (95%CI: 36%-97%) in pancreatic 

cancer to 97% (95%CI: 92%-100%) in breast cancer (Fig. 4d and Table S12), but significantly 

higher than random choices by the frequency of samples in each cancer type (Fig. S21).  

Overall, our proof-of-concept study on the publicly available cfDNA WGS dataset suggested 

that the de novo characterization of cfDNA fragmentation hotspots is a promising novel 

approach for the diagnosis and localization of multiple early-stage cancers.  
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Discussion 

In summary, we developed a computational approach, named CRAG, to de novo identify the 

cfDNA fragmentation hotspots by weighting fragment coverages with the fragment size 

information. The cfDNA fragmentation hotspots are highly enriched at open chromatin regions 

and active gene-regulatory elements. While in early-stage cancers, a significant proportion of 

these hotspots are hypo-fragmented. These hypo-fragmented hotspots in early-stage cancer 

are mostly enriched in GO terms and pathways related to the initiation of cancer, which further 

suggests the functional importance of these cancer-specific hypo-fragmented hotspots. In 

addition, the BORIS/CTCFL motif is enriched at these hypo-fragmented hotspots, which 

suggests the potential three-dimensional chromatin organization changes during the initiation 

of early-stage cancer that has been reported before but not revealed by the non-invasive 

cfDNA approaches [42]. Overall, our results suggested that the de novo characterization of 

fine-scale cfDNA fragmentation hotspots is critical to revealing the unknown gene-regulatory 

aberrations in pathological conditions. 

Compared to the fragmentation studies at the known regulatory elements, such as TSS and 

TFBS, our de novo approach shows several advantages. First, de novo approach will expand 

the signal breadth. The tumor content in cfDNA is low in most early-stage cancers. Recent 

studies suggested that the increase of signal breadth could increase the sensitivity even with a 

low tumor burden in cfDNA[41]. The aberration of regulatory elements in cancer involves both 

genes and distal regulatory elements[14,43]. De novo characterization will expand the signals 

from known genes’ promoters to many distal regulatory elements and thus increase the 

sensitivity. Second, the landscape of known regulatory elements has not been well 

characterized in tumor and immune cells from early-stage cancer patients yet. The initiation of 

early-stage cancer involves the interaction between the tumor and the immune 

environment[44,45]. The chromatin accessibility landscape has recently been profiled in late-
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stage tumors in cancer patients and immune cells in healthy individuals[14,15]. However, the 

landscape of regulatory elements from early-stage tumors and the immune environment of 

patients with early-stage cancers are still not known. Therefore, it is challenging to utilize 

comprehensive regulatory element maps in tumor and immune cells for the study of early-

stage cancers. Finally, a lot of distal regulatory elements do not contain well-defined motifs or 

TFBS. Moreover, tissue-specific and cancer-specific TFBS are also not well-defined across 

many diseases, especially early-stage cancers. Characterization of motifs and TFBS from 

sequence directly can not represent the whole aberration map of regulatory elements in early-

stage cancers. Our benchmark results over the known regulatory elements also supported this 

conclusion (Fig. S18, Table S10).   

The in vivo fragmentation process is complicated. There is a significant computational 

challenge to identify the fragmentation hotspots compared to the identification of fragmentation 

coldspots at nucleosome-occupied regions in cfDNA WGS[5]. For example, genomic regions 

with a higher fragmentation rate do not always indicate the open chromatin regions. Further, 

besides nucleosomes, both biological (e.g., DNA methylation and histone modifications)[46,47] 

and technical artifacts (e.g., G+C%, k-mer, and mappability)[17,48] can affect the 

measurements of fragmentation level. After excluding the known effects of open chromatin 

regions and technical artifacts, our genome-wide analysis here revealed the enrichment of 

hotspots after the 3’end of transposable elements and potentially associated with local DNA 

methylation level, which suggested the unknown origin of the cfDNA fragmentation processes.  

Previous efforts had been made to characterize the nucleosome-free regions by using the 

depletion of coverages from MNase-seq/ChIP-seq assay [49]. The measurement of cfDNA 

fragmentation here, however, involves information from both fragment coverages and sizes. 

CRAG can be further improved by better integrating the fragment coverages and sizes, or 

even with more dimensions, such as the fragment orientation, jagged ends, and endpoint, to 
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fully capture the spectrum of fragmentation. Also, G+C% bias is known to affect the peak 

calling result in ChIP-seq/ATAC-seq [50]. A better statistical model with the incorporation of 

GC normalization on both the fragment coverages and sizes will improve our method’s 

performance. PCR-free library preparation for WGS will also mitigate the concerns of GC bias 

and other sequencing artifacts [51]. 

Our study here on the detection and localization of early-stage cancer is still in the proof-of-

concept stage. There are still several limitations. First, due to the limited number of publicly 

available early-stage cancer cfDNA datasets, the classification performance here is mainly 

evaluated by multi-fold cross-validation on a relatively small sample size cohort in each cancer 

type without strictly matched healthy controls, similar to other cfDNA WGS studies[2]. We only 

generated small-scale datasets from two cancer types for independent validations. Multiple 

independent large-scale prospective cohorts with strictly matched controls will be a better way 

to assess the power of our approach for the diagnosis of early-stage cancer. Second, previous 

studies suggested that pre-analytic differences in the patient populations could bring the 

artifact for fragmentomic studies and finally affect the diagnosis performance[52–57]. Unified 

sample collection, experimental workflow, and better computational approaches to adjust these 

cofounders are still needed. Third, we pooled the low-coverage WGS samples from the same 

condition for the hotspot calling, which may cause a problem with a small number of samples. 

Due to the random drop out of the fragment coverages and many genomic windows in the 

genome, the number of falsely discovered hotspots without any biological interpretations will 

increase. Our current strategy by filtering low mappability regions and correcting GC bias is 

helpful to reduce the false-positive rate for the hotspot detection. However, the accuracy of IFS 

signals at individual hotspots from each sample is still severely affected by the low coverage 

data. Recent efforts showed the possibility to integrate genome-wide mutational patterns at 

low-coverage WGS to enable the ultra-sensitive detection of cancer samples with low tumor 
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burden[41], which is similar to our strategy for the IFS signals at low-coverage samples here. 

Since we narrow down the regions of interest, even with missing values at part of the loci, 

many other hotspots from the same sample will still provide informative signals rather than 

noises for the model to make the classifications. In the future, appropriate statistical models for 

the imputation of missing fragmentation patterns are still needed to mitigate the missing data 

problem. Lastly, in some cancer types, our fine-scale study here showed complementary 

classification performance compared with that in the previous large-scale fragmentation study 

in the same dataset [2]. For example, our results on gastric, breast, and colorectal cancer 

outperformed previous large-scale fragmentation studies, while for bile duct, pancreatic, and 

lung cancer, the performance is reversed. Future combinations of the fragmentation patterns at 

multi-scales and information from other modalities or clinical meta-data may further improve 

the performance. 

 

Materials and Methods 

Public Datasets. 

Public datasets used in this study are listed in Table S1. 

Preprocess of whole-genome sequencing data. 

The adapter was trimmed by Trimmomatic (v0.36)[58] in paired-end mode with the following 

parameters: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:true MINLEN:36. After adapter trimming, 

reads were aligned to the human genome (GRCh37, human_g1k_v37.fa) using BWA-MEM 

0.7.15 [59] with default parameters. PCR-duplicate fragments were removed by samblaster 

(v0.1.24) [60]. Only high-quality autosomal reads were used for all downstream analyses (both 

ends uniquely mapped, either end with a mapping quality score of 30 or greater, properly 
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paired, not supplementary alignment, and not a PCR duplicate). In addition, fragments shorter 

than 50bp and longer than 1000bp are excluded from downstream analysis. 

Preprocess of whole-genome bisulfite sequencing data. 

DNA methylation levels measured by WGBS in cfDNA were obtained from the previous 

publications (Details in Table S1) [22,61]. Single-end WGBS from cfDNA was processed by 

the following internal pipeline. Based on FastQC results on the distribution of four nucleotides 

along the sequencing cycle, the adapter was trimmed by Trim Galore! (v0.6.0) with cutadapt 

(v2.1.0) and with parameters “--clip_R1 10” and “--clip_R1 10 --three_prime_clip_R1 13”. After 

the adapter trimming, reads were aligned to the human genome (GRCh37, 

human_g1k_v37.fa) by Biscuit (v0.3.10.20190402) with default parameters. PCR-duplicate 

reads were marked by samtools (v1.9)[62]. Only high-quality reads were used for all the 

downstream analyses (uniquely mapped, mapping quality score of 30 or greater, and not a 

PCR duplicate). The methylation level at each CpG was called by Bis-SNP (v0.90) with default 

parameters in bissnp_easy_usage.pl [63]. 

Identification of cfDNA fragmentation hotspots by CRAG. 

Fragment coverages and sizes are both essential parts of the cfDNA fragmentation patterns. 

However, popular peak calling tools, such as MACS2[64], cannot utilize the signals from two 

dimensions. Thus, we created an integrated fragmentation score (IFS) by weighting the 

fragment coverage based on the ratio of average fragment size in the window versus that in 

the whole chromosome. We also found that hotspots called by IFS showed a better enrichment 

at regulatory regions than those called by fragment coverage alone. We utilized a 200bp 

sliding window with a 20 bp step to scan each chromosome (autosome only). In the ith window: 

 (1) 

        (2) 
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where Ci is the IFS score round down to the nearest integer in the ith window, ni is the number 

of fragments whose mid-points are located within the ith window, li is the average fragment size 

in the ith window, L is the average fragment size in the whole chromosome. Windows 

overlapped with dark regions or with average mappability scores smaller than 0.9 were 

removed. Dark regions were defined by the merged DAC blacklist and Duke Excluded from the 

UCSC Table Browser. Mappability score was generated by the GEM mappability program on 

the human reference genome (GRCh37, human_g1k_v37.fa, 51mer) [65].  

The negative binomial (NB) model was previously utilized for the ChIP-seq peak calling[66]. 

Across the genome, the background IFS score is far from constant. The Poisson distribution, 

which requires a single fixed distribution mean (lambda), is not an ideal model to fit the 

overdispersed data. Instead, NB distribution can be viewed as a compound Poisson 

distribution, i.e., a continuous mixture of Poisson distributions of dispersed, Gamma-distributed 

lambdas. Thus, we found that the negative binomial model is better than the Poisson model by 

allowing the background IFS scores to vary across the genome. Here, we assumed the 

background Ci  following the NB distribution.  

𝐶! = 𝑁𝐵(𝑛, 𝑝) = "($%&)
"(&)$!

𝑝&(1 − 𝑝)$       (3) 

We denoted the sample mean and sample variance as μ and ν. Thus, we can estimate NB 

parameters as follows: 

             (4) 

    (5) 

We utilized the NB model to test whether the Ci in the ith window was significantly smaller than 

the local background (50 kb) and global background (the whole chromosome). In R (v4.2.0), 

we can calculate p-values using the following function: 
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 (6) 

where q is the observed IFS score in the window. Based on Median Absolute Deviation (MAD), 

we identified the outlier of the IFS score (MAD > 5) and excluded them from the p-value 

calculation. For each window, we took the larger value between the local background and the 

global background p-value and then performed multiple hypothesis correction (Benjamini and 

Hochberg method). Only windows with an adjusted p-value smaller than a cut-off (FDR <= 0.2) 

were kept for further analysis. Finally, significant windows with a distance of less than 200bp to 

each other were merged as the final hotspots. 

To remove the possible sequence composition bias caused by G+C% content, similar to the 

previous study[2], locally weighted smoothing linear regression (loess, span = 0.75) was 

utilized to regress out the GC covariates from the raw IFS score in each window. In R, we used 

the loess function for the calculation. The mean IFS score in each chromosome was added 

back to the residual value after the correction. The hotspots were called based on the 

corrected IFS finally.   

To check the possible fragmentation bias caused by k-mer, we first calculated the expected 

IFS by using the average IFS at each possible type of dimer (16 types) across the genome. 

Then at each location, the adjusted IFS was calculated by dividing the original IFS with the 

expected IFS based on the dimer composition at that location. Finally, the adjusted IFS at each 

location was multiplied by the ratios between the average adjusted IFS and the average 

expected IFS in the same chromosome. 

Utilizing cfDNA fragmentation level to predict the open chromatin regions. 

We utilized the cfDNA fragmentation from healthy (BH01) as the benchmark dataset. Open 

chromatin regions from neutrophils, which release 20-60% cfDNA in healthy, are not available 

yet. We can not determine whether the ones that are predicted as open regions but not in the 
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ATAC-seq/DNase-seq in immune cell types are false positive or still true positive but just the 

open regions in neutrophil, which is missing. Therefore, we used the conserved active 

chromatin regions and closed chromatin regions to benchmark the performance. We 

generated a balanced positive and negative group randomly sampled from two types of 

regions: (1) constitutively open regions: we used the -150 bp to 50 bp regions around the 

transcription start sites which are overlapped with TssA chromHMM states shared across all 

cell types (15-states chromHMM segmentation from NIH Epigenome Roadmap Consortium); 

(2) constitutively closed regions: we used the Quies chromHMM states shared across all cell 

types. We further randomly sampled the intervals from these constitutively closed regions with 

matched GC content and mappability as the constitutively open regions. We utilized the IFS 

score and k-mer (k=2) composition within these two types of regions as the features and 

applied the random forest model with default parameters (tree number = 100) in the setting of 

ten-fold cross-validation.  

Cancer early detection by cfDNA fragmentation hotspots. 

Here, we took the classification of liver cancer vs. healthy controls as an example. Ten-fold 

cross-validation was applied to evaluate the performance. In the training dataset, all the liver 

cancer samples and healthy samples were pooled to identify the hotspots, respectively. We 

used all the hotspots as the feature for the classification. It is well known that the sequencing 

depths will largely affect the number of peaks called in ChIP-seq and ATAC-seq[23]. In 

Cristiano et al. dataset [2], the sample size in the healthy group is ten times larger than that in 

any cancer type, which will lead to the uneven sequencing depths between healthy controls 

and cancers. Thus, by following the similar procedures in the previous publication[23], we 

downsampled the number of healthy controls to the same size as cancer before hotspot calling 

in each comparison (e.g., Breast cancer vs. Healthy). IFS before and after GC bias correction 

were both tested. IFS after GC bias correction was shown in the main figure for the 
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classification. Only genomic regions at +/-100bp of the hotspot center were used to retrieve the 

IFS in each sample (the same strategy was used in PCA and unsupervised clustering 

analysis). The IFS at each corresponding hotspot was z-score transformed based on the mean 

and standard deviation at each chromosome of each sample. Finally, a support vector 

machine (SVM) classifier with linear kernel and default parameters (fitcsvm function at Matlab 

2019b) was applied. At the testing dataset, the z-score transformed IFS in each sample was 

retrieved at the hotspot regions identified from the training set in that particular fold. The 

average AUC and 95% Confidence Interval (95% CI) of the AUC were calculated based on the 

classification results of the testing dataset across the ten folds. Specifically, we first compute 

the standard error of AUC (standard deviation divided by the square root of the iteration 

number). Then we multiply the standard error value by the z-score to obtain the margin of 

error. Finally, we add or subtract the margin of error from the mean AUC to obtain the 

confidence interval. To avoid the randomness of the data split, we repeated the cross-

validation randomly 10 times.  

Tissues-of-origin predictions by cfDNA fragmentation hotspots. 

Only samples predicted as cancers were kept for the tissues-of-origin analysis. The saturation 

analysis of the fragment number needed for hotspot calling suggested that 200 million 

fragments are required to achieve the saturated performance (Fig. S6, Details in 

Supplementary Methods). Thus, pathological conditions with less than 200 million fragments in 

total were not used for the tissues-of-origin analysis (e.g., lung cancer). Bile duct cancer was at 

the boundary condition. Therefore, we performed the analysis with or without bile duct cancer. 

By 10-fold cross-validation, similar to that in the cancer early detection part, hotspots for each 

cancer type in the training set were identified. The z-score transformed IFS after GC bias 

correction in each sample was obtained as the feature. Since the total number of fragments in 

breast cancer is much larger than that in the other cancer types, we downsampled breast 
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cancer to the median sample size across all the cancer types. The centroid in each cancer 

type was then calculated by the z-score transformed IFS across all the hotspots in the training 

set. In the testing dataset, each sample was assigned to the top two candidate cancers based 

on their distance to the centroids in each cancer type identified at the training set. The distance 

was calculated by corr function with ‘Type’ of ‘Spearman’ at Matlab 2019b. To further narrow 

down the best candidate cancer type, decision tree models (fitctree function at Matlab 2019b) 

were learned to identify the better candidate by all the hotspots in each possible pair of cancer 

types at the training set. Finally, we applied the corresponding decision tree model on the top 

two candidates to further characterize the best candidate at the testing dataset. 

Low coverage cfDNA WGS on plasma samples for independent validation. 

De-identified blood samples were collected under IRB approved studies 2012-3923 and 2012-

3745 approved by the University of Cincinnati Institutional Review Board.  Written informed 

consent was obtained from study participants to permit the collection and dispensing of de-

identified biospecimens and associated clinical data for research. Plasma samples were 

provided by the UC Biorepository and UC Fernald Community Cohort. Clinical information 

about patients is provided in Table S9. CfDNA was isolated using the MagMAX Cell-Free DNA 

Isolation Kit (Applied Biosystems). The concentration and size distribution of cfDNA were 

measured by Qubit (Invitrogen) and BioAnalyzer (Agilent), respectively. Samples were 

randomly distributed into different batches for library preparation and sequencing. Case and 

their matched controls were always put into the same batch. Library construction was 

performed on 1ng of cfDNA using the KAPA HyperPrep Kit (Roche) and NEXTFLEX Unique 

Dual Index Barcodes (300nM final concentration, PerkinElmer). Libraries were sequenced on 

Illumina NovaSeq 6000 in PE150 mode. 
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Figures. 

 

Fig. 1. The schematic of CRAG approach. (a). The schematic of using cfDNA hotspots for the 

cancer diagnosis. (b). The schematic of cfDNA hotspot identification. (c). The Q-Q plot for the 

negative binomial modeling of IFS score distribution. (d). The distribution of IFS around the 

hotspots (BH01, healthy).  
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Fig. 2. CfDNA fragmentation hotspots are enriched at active gene-regulatory regions in 

healthy. (a). The overlap of cfDNA fragmentation hotspots (BH01, healthy) and CGI 

Transcription Starting Sites (TSSs), non-CGI TSSs, 5’exon boundary (no TSS and CTCF 

within +/- 2 kb), Transcription Termination Sites (TTSs)(no TSS and CTCF within +/- 2 kb), 

CTCF transcription factor binding sites (no TSS within +/- 4 kb), and random genomics 

regions. (b) The DNA accessibility levels from hematopoietic cells around the cfDNA 

fragmentation hotspots(BH01, healthy). (c).The histone modification levels from monocytes 

around the cfDNA fragmentation hotspots(BH01, healthy). (d). The H3K4me1 histone 

modification levels from hematopoietic (solid lines) and non-hematopoietic (dashed lines) cells 

around the cfDNA fragmentation hotspots(BH01, healthy). (e). The enrichment of hotspots at 

tissue-specific chromHMM states (Enhancer and TssFlank). Odds ratio is compared with 

matched random regions (matched chromosome and length, repeated 10 times). Error bar is 

based on the 95% confidence interval. P value is calculated based on Fisher exact test. (f). 
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ROC curve for the prediction of open chromatin regions by using cfDNA fragmentation level at 

the hotspots from the constitutively open and closed regions. (g). The overlap of cfDNA 

fragmentation hotspots (BH01, healthy) and 3’end of transposons (Alu, L1, and LTR). (h). The 

cfDNA methylation level from healthy individuals (Sun eta l. 2015 PNAS)[22] around the 3’end 

of Alu that overlapped or not overlapped with the cfDNA fragmentation hotspots (BH01, 

healthy). 
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Fig. 3. The aberrations of cfDNA fragmentation patterns at hotspots in early-stage 

cancers. (a). Unsupervised clustering on the Z-score of IFS at the top 10,000 most variable 

cfDNA fragmentation hotspots called from HCC and healthy samples. Hotspots are selected 

based on the variance of the IFS values across all the samples. (b). Volcano plot of z-score 

differences and -log10 FDR-value (two-way student’s t-test) for the aberration of IFS in cfDNA 

fragmentation hotspots between early-stage HCC and healthy. (c).The significant KEGG 

pathways for the genes associated with Class I hotspots. Cistrome-GO was utilized to 

associate hotspots with their targeted genes. (d). The motifs that are significantly enriched 

within Class I hotspots. 
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Fig. 4. The detection and localization of multiple early-stage cancers. (a). t-SNE 

visualization on the Z-score of IFS (after GC bias correction) at the most variable cfDNA 

fragmentation hotspots (one-way ANOVA test with p-value < 0.01) across multiple different 

early-stage cancer types and healthy conditions. (b). Unsupervised clustering on Z-score of 

IFS (after GC bias correction) at the top 40,000 most variable cfDNA fragmentation hotspots 

across multiple different early-stage cancer types and healthy conditions. (c). The sensitivity 

across different cancer stages at 100% specificity to distinguish cancer and healthy condition 
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by using IFS (after GC bias correction) at cfDNA fragmentation hotspots called at training 

dataset. Error bars represent 95% confidence intervals. (d). Percentages of patients that were 

correctly classified by one of the two most likely types (sum of orange and blue bars) or the 

most likely type (blue bar). Error bars represent 95% confidence intervals. 
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