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Abstract

Large single-cell atlases are now routinely generated with the aim of serving as reference to anal-
yse future smaller-scale studies. Yet, learning from reference data is complicated by batch ef-
fects between datasets, limited availability of computational resources, and sharing restrictions
on raw data. Leveraging advances in machine learning, we propose a deep learning strategy to
map query datasets on top of a reference called single-cell architectural surgery (scArches, https:
//github.com/theislab/scarches). It uses transfer learning and parameter optimization to en-
able efficient, decentralized, iterative reference building, and the contextualization of new datasets
with existing references without sharing raw data. Using examples from mouse brain, pancreas, and
whole organism atlases, we showcase that scArches preserves nuanced biological state information
while removing batch effects in the data, despite using four orders of magnitude fewer parameters
compared to de novo integration. To demonstrate mapping disease variation, we show that scArches
preserves detailed COVID-19 disease variation upon reference mapping, enabling discovery of new
cell identities that are unseen during training. We envision our method to facilitate collaborative
projects by enabling the iterative construction, updating, sharing, and efficient use of reference
atlases.

Introduction

Large single-cell reference atlases [1–4] comprising millions [5] of cells across tissues, organs, de-
velopmental stages, and conditions are now routinely generated by consortia such as the Human
Cell Atlas [6]. These references help to understand the cellular heterogeneity that make up natural
and inter-individual variation, ageing, environmental influences, and disease. We call such atlases
"references" as their central goal is to enable users to learn from these comprehensive maps and thus
analyse their own data (e.g., compare disease data to a healthy reference). Indeed, reference atlases
provide an opportunity to radically change how we analyze single-cell datasets currently [6]: by
learning from the appropriate reference we could automate the tedious clustering and annotation of
new dataset, and easily perform comparative analyses across tissues, species, and disease conditions.

Learning from a reference atlas requires mapping a query dataset to this reference to generate a joint
embedding. Yet, query datasets and reference atlases typically comprise data generated in different
labs, with differing experimental protocols and thus contain batch effects. Data integration methods
are typically used to overcome these batch effects in reference construction [7]. However, these
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approaches require access to all datasets used to generate the reference, which can be prohibitive
especially for human data due to legal restrictions on data sharing. Furthermore, contextualizing a
single dataset in this manner would require rerunning the full integration pipeline, which presupposes
computational expertise and sufficient computational resources. Finally, traditional data integration
methods assume that any perturbation between datasets that affects most cells is a technical batch
effect to be removed. However, biological perturbations, such as disease, may also affect most cells.
Thus, even if all above requirements are met, conventional approaches would not suffice for mapping
query data onto references across biological conditions.

Exploiting large reference datasets is a well-established approach in Computer Vision [8] and Natu-
ral Language Processing [9]. In these fields, the commonly used deep learning approaches typically
require a large number of training samples, which are not always available. By leveraging weights
learned from large reference datasets to enhance learning on a target or query dataset [10], transfer
learning (TL) models such as image-net [11] and BERT [12] have revolutionized analysis approaches
[8, 9]: TL has improved method performance with small datasets (e.g., clustering [13], classifica-
tion/annotation [14]) and enabled sharing of models using model zoos [15–17]. Recently, transfer
learning has been applied on scRNA-seq for denoising [18], variance decomposition [19], and cell
type classification [20, 21]. However, the current TL approaches in genomics show several draw-
backs: they do not account for technical effects within and between reference and query[18], and
lack systematic retraining with query data [19–21]. These limitations can lead to spurious predictions
on query data with no, or small, overlap in cell types, tissues, species, or cell states [22, 23]. Given
the recent success of deep learning models for data integration in single-cell genomics [7, 24–26],
TL may also prove transformative to address the issues of efficient learning from reference data and
model sharing.

We propose a novel TL and fine-tuning strategy for conditional neural network models called ar-
chitecture surgery, implemented in the scArches pipeline. scArches is a fast and scalable tool for
updating, sharing, and using reference atlases. Specifically, given a basic reference atlas, scArches
enables users to share this reference as a trained network with other users, who can in turn update
the reference using query-to-reference mapping and partial weight optimization without any sharing
of their potentially private or unpublished data. Thus, users can build their own extended reference
models, or perform stepwise analysis of datasets as they are collected, which is often crucial for
emerging clinical datasets. Furthermore, scArches allows users to learn from reference data by con-
textualizing new, e.g. disease, data with a healthy reference in a joint latent space representation.
Within this representation, one can perform reference-based clustering and transfer of annotation
to query cells. We demonstrate the above features of scArches using publicly available scRNA-seq
datasets ranging from pancreas to whole mouse atlases and COVID-19 immune cells. scArches is
able to iteratively update a pancreas reference, transfer knowledge between mouse atlases, and map
COVID-19 data onto a healthy reference while preserving disease-specific variation.

Results

Architectural surgery enables decentralized data integration by mapping novel query
studies to reference datasets

Architectural surgery is a TL approach that adapts existing deep learning models. After training on
multiple reference datasets, trained weights can subsequently be transferred with only minor weight
adaptation (fine tuning) to map or overlay a novel study onto this reference. While this approach
can be applied to any deep learning model, here we apply scArches to our recently proposed transfer
variational autoencoder model trVAE [27] and to Negative Binomial conditional VAEs (CVAE) (see
Methods) similar to scVI [25].

Consider the scenario with N ‘reference’ scRNA-seq datasets of a particular tissue or organism. We
assign a categorical label Si to each dataset that corresponds to the study label, which is encoded
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as a condition in the CVAE. These study labels may index traditional batch IDs (i.e., samples,
experiments across labs, or sequencing technologies), biological batches (i.e., organs or species when
used over the set of orthologous genes), perturbations such as disease, or a combination of these
categorical variables.

We pretrain the model with the reference studies S1:N (Figure 1a), which results in a latent space
free of technical variation across these datasets [28]. Thus, we can use this embedding for further
downstream analysis such as visualizations, identification of cell clusters, or sub-populations. Within
scArches we allow to upload such references to a model repository via our built-in API for Zenodo
(Methods). To enable the user to map new datasets on top of such a custom reference atlas,
instead of sharing the N studies, we propose to share the model weights, which can now easily be
downloaded from the model repository and be fine-tuned with new query (Figure 1b).

A potential challenge in conditional neural network models however is the fact that a study corre-
sponds to an input neuron, which does not allow for adding new studies within the given network.
To overcome this, we implement the architecture surgery approach to incorporate new study labels
as new input nodes (Methods). As in a classical TL approach for supervised models, all weights
are fully transferred to the target model without further modification. The trainable parameters of
the query model however are restricted to a small subset of weights that account for the query study
labels. Depending on the size of this subset (see later experiments), this restriction functions as an
inductive bias to prevent the model from strongly adapting its parameters to the query studies and
thus overfitting the query data. Thus, the query data updates the reference atlas. The resulting
integrated data can be used for transferring cell type annotations from the reference to the query
and joint analysis of reference and query data.

To illustrate the feasibility of this approach, we applied scArches with trVAE to consecutively in-
tegrate two novel studies into a pancreas reference atlas comprised of three studies, all measured
with different sequencing technologies (Figure 1c). To additionally simulate the scenario where
the query data contains a new cell type absent in the reference, we removed all the alpha cells in
the training reference data. We first trained a trVAE model with scArches to integrate the training
data and construct a reference atlas (Figure 1d). Once the reference atlas was constructed, we
fine-tuned the reference model with the first query data (SS2) and subsequently updated the refer-
ence atlas with this study (Figure 1e). This procedure was repeated with the second query data
(CelSeq2, Figure 1f). After each update, we observe that our model overlays all the shared cell
types present in both query and reference. Additionally, reference mapping and updating yielded a
separate and well-mixed cluster of alpha cells in the query datasets (black dashed circles in Figure
1e, f). To further assess the robustness of the approach, we held out two cell types (alpha cells
and gamma cells) in the reference data while keeping both of them in the query datasets. Here,
our model robustly integrates the query data while placing unseen cell types into distinct clusters
(Supplementary Figure 1). Additional testing using simulated data showed that scArches is also
robust to simultaneously updating the reference atlas with more than one query study at a time
(Supplementary Figure 2). Overall, TL with architectural surgery enables the users to update
the learnt reference models by integrating novel query data, accounting for differences in cell type
composition, and missing cell types in a reference.

Selecting fine-tuning strategies for scArches favors simple low-complexity model up-
dates

To determine the number of weights to optimize in scArches, we evaluated the data integration
performance of different fine-tuning strategies by quantifying the entropy of batch mixing (EBM)
after integration (see Methods) [29]. While higher EBM scores indicate better mixing of cells
across batches, a perfect integration score can be achieved by neglecting any biological variation and
randomly mixing all the data points regardless of their cell type. To assess the preservation of small
neighborhoods of cells in the original data, we added an opposing metric called k-nearest neighbors
(KNN) purity (seeMethods) [30]. A high KNN purity can be obtained by partitioning the cells into
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Figure 1 | scArches enables iterative query to reference single-cell integration. (a) Pretraining of
a latent representation using public reference datasets and corresponding reference labels. (b) Decentralized
model building: Users download parameters for the atlas of interest, fine-tune the model and optionally
upload their updated model for other users. (c-f) Illustration of this workflow for a human pancreas atlas.
Training a reference atlas across three human pancreas datasets (CelSeq, InDrop, Fluidigm C1), UMAP
embedding for the original (c) and the integrated reference for the pretrained models (d). (e) Querying a
new SMART-Seq2 (SS2) dataset to the integrated reference. (f) Updating the cell atlas with a fifth dataset
(CelSeq2). The black dashed circles represent cells absent in the reference data.

separate clusters without performing any mixing. Hence, an accurate integration algorithm would
result in a high EBM score and high KNN purity (retaining the original structure of the data).

Apart from fine-tuning only the weights connecting newly added studies as proposed above, we
considered two less regularized candidates for fine-tuning: (1) training input layers in both encoder
and decoder while the rest of the weights are frozen, and (2) fine-tuning all weights in the model.
We trained a reference model using a subset of 250, 000 cells from two mouse brain studies from
Saunders et al. [31] and Rosenberg et al. [32]. Using the same reference model, we compared the
integration performance of the candidate fine-tuning strategies when mapping two query datasets
(Zeisel, Tabula Muris) [1, 33] onto the reference data. Applying TL with the outlined three granular-
ity levels to the brain atlas, we find that the models with fewer parameters yield better mixing while
preserving the distinctions between the different cell types (Figure2a-c). This can be attributed to
the strong bias towards the reference model by restricting the training solely to the batch-associated
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Figure 2 | scArches enables efficient integration compared to full integration workflow with
existing data integration methods. (a-c) Comparing different granularity levels in the proposed transfer-
learning strategy by mapping two brain studies to a reference brain atlas. The reference model was trained
on a subset of 250, 000 cells from two brain studies [31, 32], and then updated with Zeisel et al.[33] and
the Tabula Muris brain subset [1]. The KNN purity (k=15) and EBM (k=15) were measured to evaluate
the performances. Fine-tuning strategies vary from training a few query study labels weights (a) to input
layers of both the encoder and decoder (b) or retraining full network (c). The comparison of the number
of the trained weights (d) and integration quality (e) on the brain atlas for these three granularity levels.
(f-h) Evaluation of existing fully retrained integration methods versus transfer learning on the two brain
(n = 15, 200) and pancreas (n=5, 387) datasets, respectively, for varying sample sizes. The mean and s.d.
shown for n=5 random subsamples for each sample size.

weights. Specifically, the strongly regularized scArches reduces the trainable parameters by 4 − 5
orders of magnitude while also demonstrating a better mixing between the studies (Figure 2d-e,
Supplementary Figure 3).

Low-complexity architectural surgery allows for efficient data integration compared to
full integration methods

To demonstrate scArches’ performance in batch correction, we benchmarked our TL approach against
several existing fully-trained batch-correction methods (Seurat v3 [21], Harmony [34], Liger [35], scVI
[25], Scanorama [36], MNN correct [29], Conos [37], and trVAE [27]). In addition to quantifying
EBM and KNN purity metrics for each method, we visualized the integrated data using UMAP
(Supplementary Figure 4-5). We found that across 2 organs and 4 data sets, scArches+trVAE
performed on par with existing methods in preserving the internal substructures of the original data,
while outperforming these methods on mixing across studies. This performance gain is particularly
prominent for the more challenging integration of mouse brain data sets (Figure 2f-h). Notably,
our method substantially outperforms the baseline trVAE, which does not benefit from TL.

Additionally, we tested the effect of dataset size by assessing the quality of integration on subsamples
of varying sizes. With increasing sample size, both the EBM and KNN purity increase across
datasets and sample sizes when using scArches (Figure 2f,g). This observation only holds for
scArches+trVAE and illustrates the overall performance improvement attributable to TL in large
data regimes such as large cell atlases with many cells, where the robustness of mapping and cell-type
identification across newly added studies is desired. Further, in the presence of low cell numbers,
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scArches+trVAE outperforms other existing methods in almost all cases, demonstrating the benefits
of the added regularization of TL in low-data regimes in scArches. Therefore, scArches can also be
used to integrate plate-based datasets that typically contain lower numbers of cells [38]. The above
observations are robust to changes in kNN graph neighborhood size (Supplementary Figure
6). Overall, scArches improves the integration performance of DL models and outperforms other
integration methods especially in large data regimes.

Architectural surgery enables integrating cell atlases across organisms and species

Following the robust data integration performance of scArches, we investigated whether it can map
queries to references across nominally stronger batch effects arising from tissues, and even species [7].
Integrating across tissues and species allows users to investigate the similarity of cellular populations
across organs [2] and assess the suitability of model organisms [39, 40]. With whole-organism atlases
becoming available in both mouse [1, 3] and human[4], these questions can be asked by mapping the
query data on top of these references.

We considered the recently published Tabula Senis (TS) [3] as our reference, which includes 155
distinct cell types across 23 tissues and five age groups ranging from one month to thirty months
from plate-based (SMART-Seq2) and droplet-based (10x Genomics) assays. As the query data, we
used the cells from the 3-month time point, which is equivalent the previously published Tabula
Muris (TM) dataset [1]. The query data consists of 90, 120 cells from 24 tissues including an out-
of-distribution tissue, trachea, which we excluded from the reference data. trVAE with scArches
accurately integrates the query and reference data across time points and sequencing technologies
and creates a distinct cluster of tracheal cells (n = 9, 330) (Figure 3a-c).

Building upon the query-reference embedding, we investigated the transfer of cell-type labels from the
reference dataset. We approached this classification problem by first training a simple kNN classifier
on the latent space representation of the reference TS. Then each cell in the query TM was annotated
using its closest neighbors in the reference dataset. Additionally, our classification pipeline provides
an uncertainty score for each cell while reporting cells with more than 50% uncertainty as unknown
(see Methods). Our model transferred the labels from the reference atlas to the query atlas with
≈ 89% accuracy for all the tissues except tracheal cells (Figure 3d). Moreover, all misclassified
cells and cells from the out-of-distribution tissue received high uncertainty scores (Figure 3e-f).
Overall, the classification results across tissues indicated a robust prediction accuracy across most
tissues (Figure 3g) while highlighting which cells were not mappable to the reference. The robust
performance of a simple KNN classifier on the integrated latent space demonstrates that scArches
can successfully merge large and complex query datasets into reference atlases.

To demonstrate the scalability and robustness of architecture surgery for whole-atlas integration,
we used scArches to map a large query of both the Mouse Cell Atlas (MCA) [2] (Microwell-seq)
and TM (Smart-seq2, 10X) to the TS reference atlas. As the MCA was profiled using a different
technique and was sequenced at a shallow depth, integrating this dataset has been reported to be a
considerably harder challenge [7].

Using atlas type and sequencing technique as batch labels, our model successfully groups similar
tissues from different atlases while preserving the heterogeneity within each tissue (Figure 3h).
Illustratively, we further examined two major brain cell clusters after integration. scArches suc-
cessfully aligned the query microglia cells to the myeloid brain cell cluster in the reference while
non-immune glial cells such as astrocytes and oligodendrocytes were correctly integrated to the non-
myeloid cluster (Figure 3i). Thus, transferring weights from the TS reference model to co-embed
MCA data enabled the integration of different atlases to overcome batch effects from different lab-
oratories, technologies, and ages.

In addition to integrating studies from an organism, it is instructive to assess the similarity of cell
types across species. Illustratively, we trained a reference model based on the recently published
Human Cell Landscape (HCL) [4] comprised of 249, 845 cells across 63 human tissues. After ar-
chitecture surgery, we aligned the MCA (n=122, 944) into the reference human cells (Figure 3j).
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Figure 3 | scArches successfully integrates data across whole organisms and between species.
(a-c) Querying Tabula Muris (n=90, 120) to the larger reference atlas Tabula Senis (n=264, 287) (a) across
different technologies, tissues (b), and ages (c). The tissues were correctly grouped across the two data sets
(a-b). (d) Location of misclassified and unknown cells after transferring the labels from the reference to the
query data. The highlighted tissue represents the trachea cells, which were removed from the reference data.
(e) Reported uncertainty of the transferred labels, which was low in the correctly classified cells (f) and
high in the incorrect and unknown ones, particularly in trachea. (g) The number of correct, incorrect, and
unknown cells across different tissues. The red dashed line represents trachea cells only present in Tabula
Muris. (h) Aligning query Mouse Cell Atlas (MCA, n=71, 259) and Tabula Muris (n=43, 127) mouse atlases
into Tabula Senis (n=169, 425). The red dashed circle represents the stomach cells only present in MCA.
(i) Alignment of query brain cells across both the myeloid and non-myeloid in the reference. (j) Querying
MCA (n=122, 924) to the reference human cell atlas (n=249, 845). (k) The cross-species comparison between
immune cells, illustrating mixedness across species.

Given the abundance of species-specific cell types and species-specific functions of particular cell
types, we do not expect all cell types to overlap across species. Yet, we find that specifically simi-
lar immune cell types, such as neutrophils and macrophages, were clustered together across species
while species-specific cell types were placed separately (Figure 3k). These observations agreed
with the cluster-averaging pseudo-cell analysis from the original publication [4], confirming a high
similarity of the immune cells and other major cell type across both species. In all, the strong regu-
larization of the transfer from reference via scArches allows the integration to overcome the strong
species biological effect and focus on the gene expression similarity across major mammalian cell
types (Supplementary Figure 7); we thus believe that the resulting resource can offer a basis for
cross-species analysis of cell-type identity.

Mapping cells from COVID-19 patients onto a healthy reference retains healthy cell
states and captures emergence of novel, unseen, disease-associated cell types
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Figure 4 | scArches resolves severity in COVID-19 query data mapped to a healthy reference
and reveals emergent cell states. (a-c) Integration of query immune and epithelial cells from patients
with COVID-19 on the top of healthy immune atlas across multiple tissues (a), cell types (b) and cell
states (c). (d) Comparison of various macrophage subpopulations across both healthy and COVID-19
states. Top row: Tissue-resident alveolar macrophages (TRAMs) are characterized by expression of FAPB4,
while monocyte-derived inflammatory macrophages (MoMs) by expression of CCL2. Upregulation of C1QA
illustrates maturation of MoMs as they differentiate from monocytes to macrophages. Middle row: CXCL5,
IFI27 and CXCL10 illustrate context-dependent activation of TRAMs. Bottom row: scArches correctly
maps TRAMs from query to TRAMs from reference, while preserving MoMs, unseen in the reference, as a
distinct cell type. (e) Separations of activated query CD8+ T cells from patients with COVID-19 from the
rest of CD8+ T cells in the reference.

The query-reference setup in scArches enables users to contextualize their data using a compendium
of aggregated datasets. In the study of disease, the contextualization with healthy reference data is
essential. To showcase how disease contextualization can be performed with scArches, we mapped
a recent dataset, containing immune and epithelial cells collected via bronchoalveolar lavage from
healthy controls, and patients with moderate and severe COVID-19 (n = 62, 469) [41] to a reference
aggregated from bone marrow [42], PBMCs [43–45], and normal lung tissue [46–48] (n=154, 723;
Figure 4a-c). To demonstrate that our approach works with other types of models, we used a NB
CVAE similar to scVI here [25] (see Methods).

A successful disease-to-healthy data integration should satisfy three criteria: (1) preservation of
biological variation of healthy cell states; (2) integration of matching cell types between healthy
reference and disease query; and (3) preservation of distinct disease variation, such as the emergence
of the new cell types that are unseen during the healthy reference building. The COVID-19 query
data contains the following cell types: airway epithelial cells, plasma and B cells, CD8+ T cells,
neutrophils, monocytes, mast, natural killer cells, dendritic cells, and macrophages (Figure 4b,c
and Supplementary Figure 8).

Within the macrophage cluster, two distinct macrophage populations dominate the structure of the
embedding (Figure 4d): tissue-resident alveolar macrophages (TRAMs; FABP4+ and C1Q+), and
monocyte-derived inflammatory macrophages (MoMs; FABP4 -, CCL2+). Control samples from the
query dataset were obtained from healthy controls and dominated by TRAMs, which integrate well
with the healthy reference data from the lung (Figure 4c,d). Samples from patients with moderate
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COVID-19 contained both TRAMs and MoMs. While TRAMs from moderate COVID-19 integrated
with TRAMs from control lung tissue, they did not mix with normal TRAMs completely, as they
were activated and expressed IFI27 and CXCL10. Similarly, activated TRAMs (FABP4+, IL1B+,
CXCL5+) that originate from a single subject (donor 2 in the Travaglini et al. dataset) also formed
a distinct subcluster within TRAMs. MoMs are predominantly found in samples from patients with
severe COVID-19, and to a lesser extent samples from patients with moderate COVID-19. MoMs
originate from monocytes that are recruited to sites of infection and thus do not appear in healthy
reference tissue. Indeed, MoMs were placed in closer proximity to monocytes than TRAMs in
our embedding, reflecting their ontological relationship (Supplementary Figure 9 for PAGA [49]
proximity analysis). The monocyte to MoM differentiation is illustrated by the gradient of C1QA
expression. Activation of CD8+ T cells is another feature of COVID-19 [40]. Subsetting CD8+ T
cells from our integrated data object, we find CD8+ T cells from patients with COVID-19 separating
from the lung reference cells as these are in an activated state (Figure 4e; interferon-stimulated
activation signature ISG15+, IFI6+).

Overall, the scArches joint embedding was dominated by nuanced biological variation, e.g., macrophage
subtypes even when these subtypes were not annotated in reference datasets (e.g., activated TRAMs
from patients with moderate COVID-19 or a patient with lung tumor). Although disease states were
absent in the reference data, scArches successfully separated these states from the healthy reference,
and even preserved disease-specific variation patterns. Hence, we found that disease-to-healthy
integration with scArches met all three criteria for successful integration.

Discussion

We introduced architectural surgery, a straight-forward approach for transfer learning, reusing neu-
ral network models by adding input nodes and weights and then fine-tuning those. Architectural
surgery can extend any deep learning-based data integration method to enable decentralized ref-
erence updating, facilitate model reuse, and provide a framework for learning from reference data.
With our scArches implementation of this idea for single cell transcriptomics, we reduce the com-
plexity of the data integration process and thus allow models to scale to millions of cells and enable
model sharing via a model database.

In applications, we find that joint latent representations of the query and reference data allow the
discovery of rare biological states in the query dataset while facilitating the transfer of knowledge
from reference to query. Specifically, we demonstrated how the integration of whole-species atlases
enables the transfer of cell type annotations from a reference mouse atlas to a query atlas across 24
organs and 155 cell types. We further showed that COVID-19 query data can be mapped on top of
a healthy reference while retaining variation among both disease and healthy states.

The reduction in model training complexity by architectural surgery leads to both an increase in
speed as well as improved usability, since mapping a query dataset to a reference requires no further
hyperparameter optimization. With scArches, one can therefore use pretrained neural network
models without computational expertise or much, if any, GPU power to map e.g., disease data onto
stored reference networks prepared from independent or aggregated tissue atlases. We make use of
these features by providing a model database, where pretrained models are made publicly available
and can be uploaded and downloaded.

An important step in using scArches is the choice of reference model. Reference building is still an
unsolved problem in scRNA-seq analysis [7]. Yet, even using our imperfect reference models (see
Supplementary Note 1), we can investigate the similarity between cell types across species or
contextualize COVID-19 patient data with a healthy reference. In order to maintain optimal query
integration, it is important to keep the reference model up to date. Crucially, scArches can be used
with any reference built via a generative model. By promoting the sharing of reference models via
our Zenodo repository we enable users to map their data onto the latest updates provided by the
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community.

Model sharing in combination with reference mapping via scArches allows users to create custom
reference atlases by updating public ones, and paves the way for automated and standardized anal-
yses of single cell studies. In our opinion, model sharing is a crucial next step in the dissemination
of single cell genomics methods. Especially for human data, it is often difficult to share expression
profiles due to data protection regulations. Indeed, a recent Human Cell Atlas study that aggregated
31 published and unpublished human lung datasets to study the distribution of SARS-CoV-2 entry
gene expression across donors [40] was limited to 3 genes and few covariates due to difficulties in
sharing especially unpublished data. With scArches, users can get an overview of the whole dataset
to validate harmonized cell type annotation despite being limited to sharing only three genes. By
sharing a pretrained neural network model that can be locally updated, international consortia can
generate a joint embedding without requiring access to the full gene sets.

We envision two major directions for further application and development. Firstly, scArches can be
applied to generate context-specific large-scale disease atlases. Large disease reference datasets are
increasingly becoming available [50–52]. By mapping between disease references, we can assess the
similarity of these diseases at the level of single cells and cell types and thus inform drug repurposing
studies. The suitability of model organisms for disease research can be investigated by mapping
between the relevant species-specific disease reference atlases. For example, projecting mouse single-
cell tumor data on a reference human patient tumor atlas can help to identify accurate tumor models
that include desired molecular and cellular properties of the microenvironment observed in patients.
Secondly, the approach can be readily extended to assemble multimodal single-cell reference atlases
in order to include epigenomic [53], chromosome conformation [54], proteome [55] and spatially
resolved measurements.

In summary, we have shown that architectural surgery leverages transfer learning to enable model
reuse. With the increasingly common availability of reference atlases for many tissues and species,
we expect scArches to enable users to easily integrate new experiments on top of those references,
reusing embeddings and annotations.

Code availability

The software is available at https://github.com/theislab/scarches. The code to reproduce the
results of this paper is also available at https://github.com/theislab/scarches-reproducibility.

Data availability

All of the datasets analyzed in this manuscript are public and published in other papers. We have
referenced them in the manuscript and they are downloadable at https://github.com/theislab/
scArches-reproducibility.
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Methods

scArches

Architecture surgery

Our method relies on a concept known as transfer learning. Transfer learning is an approach where
weights from a model trained on one task are taken and used as weight initialization or fine-tuning
for another task. We introduce an Architecture Surgery, a strategy to apply transfer learning in the
context of conditional generative models and single-cell data. Our proposed method is general and
can be used to perform transfer learning on both conditional variational autoencoders (CVAEs) and
Conditional Generative Adversarial Nets (CGANs) [56].

Let us assume we want to train a reference CVAE model with a d dimensional dataset (x ∈ IRd)
from n different studies (s ∈ IRn). We further assume that the bottleneck z with layer size is k
(z ∈ IRk). Then, an input for a single cell i will be x′ = x·s, where x and s are the d-dimensional gene
expression profile and n dimensional one-hot encoding of study labels respectively. The · symbol
denotes the row-wise concatenation operation. Therefore, the model receives a (d+ n)-dimensional
and (k+n)-dimensional vectors as inputs for encoder and decoder, respectively. Assuming m query
datasets, the target model will be initialized with all the parameters from the reference model. To
incorporate m new study labels, we add m new dimensions to s in both the encoder and decoder
networks. We refer to these new added study labels as s′. Next, the m new randomly initialized
weight vectors are also added to the first layer of the encoder and decoder. Finally, we fine-tune the
new model by only training the weights connected to the last n+m dimensions of x′ that correspond
to the condition labels. Let us assume that p and q are the number of neurons in the first layer
of the encoder and decoder, then during the fine-tuning only (n +m) × (p + q) parameters will be
trained. Let us parameterize the first layer of the encoder and decoder part of the scArches as f1
and g1, respectively. Let us further assume that ReLU activations are used in the layers. So the
equations for f1 and g1 are:

f1(x, s, s
′;φx, φs, φs′) = max(0, φTxx+ φTs s+ φTs′s

′) (1)

g1(z, s, s
′; θz, θs, θs′) = max(0, θTz z + θTs s+ θTs′s

′) (2)
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Therefore, the gradients of f and g with respect to φs′ and θs′ are:

∇φs′f1 =
{

0 if φTxx+ φTs s+ φTs′s
′≤0

s′ o.w. (3)

∇θs′g1 =
{

0 if θTz z + θTs s+ θTs′s
′≤0

s′ o.w. (4)

Finally, since all the other weights except φs′ and θs′ are frozen, we only compute the gradient of
the scArches’s cost function with respect to φs′ and θs′ :

∇φs′LscArches(x, s, s
′; θ, φ) = ∇f1LscArches(x, s, s′;φ) ∗ ∇φs′f1(x, s, s

′;φx, φs, φs′) (5)

∇θs′LscArches(x, s, s
′; θ, φ) = ∇g1LscArches(z, s, s′; θ, φ) ∗ ∇θs′g1(x, s, s

′; θz, θs, θs′) (6)

Transfer Variational autoencoders

Variational autoencoders (VAE) were shown to learn the underlying complex structure of data. The
trVAE builds upon VAE [57] framework with a motivation for providing a solution for the variational
inference using neural networks to maximize the following equation:

pθ(X | S) =
∫
pθ(X | Z, S)pθ(Z | S)dZ, (7)

where X is a random variable representing the model’s input, S a random variable indicating various
conditions, θ the neural network parameters, and pθ(X | Z, S) the output distribution that we sample
Z to reconstruct X. In the following we exploit notations from [28] and a tutorial from [58]. We
approximate the posterior distribution pθ(Z|X,S) using the variational distribution qφ(Z|X,S) that
is approximated by a deep neural network parameterized with φ:

LCV AE(X,S;φ, θ) = log pθ(X | S)− α ∗DKL(qφ(Z|X,S)||pθ(Z|X,S)) =
Eqφ(Z|X,S)[log pθ(X | Z, S)]− α ∗DKL(qφ(Z|X,S)||pθ(Z|S)). (8)

Where θ = {θ′, θz, θs} and φ = {φ′, φx, φs} are parameters of decoder and encoder, respectively. On
the left-hand side, we have the log-likelihood of the data and an error term that depends on the
capacity of the model.The right hand side of 8 is also known as the evidence lower bound (ELBO).
Conditional variational autoencoder (CVAE) [59] is an extension of VAE framework in which S 6= ∅.
Following the proposed method by Lotfollahi et al.[27], we use the representation of the first layer
in the decoder, which is regularized by maximum mean discrepancy [60]. For the implementation,
we use multi-scale RBF kernels defined as:

k(x, x′) =

l∑
i=1

k(x, x′, γi) (9)

where k(x, x′, γi) = e−γi‖x−x
′‖2 and γi is a hyper-parameter.

We will parameterize the encoder and decoder part of scArches as fφ and gθ, respectively. So the
networks fφ and gθ will accept inputs x, s and z, s, respectively. Let us distinguish the first (g(1)θz ,θs

)

and the remaining layers (g(2)θ′ ) of the decoder network gθ = g
(2)
θ′ ◦ g

(1)
θz ,θs

. Therefore, we can define
the following MMD cost function:

LMMD(X,S;φ, θz, θs) =

#studies∑
i 6=j

`MMD(g
(1)
θz ,θs

(fφ(XS=i, i), i), g
(1)
θz ,θs

(fφ(XS=j , j), j)) (10)
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where:

`MMD(X,X
′) =

1

N2
0

N0∑
n=1

N0∑
m=1

k(xn, xm) +
1

N2
1

N1∑
n=1

N1∑
m=1

k(x′n, x
′
m)−

2

N0N1

N0∑
n=1

N1∑
m=0

k(xn, x
′
m) (11)

We used the notation XS=i for the samples drawn from i-th study distribution in the training data.
Finally, the trVAE’s cost function is:

LtrV AE(X,S;φ, θ) = LCV AE(X,S;φ, θ)− β ∗ LMMD(X,S;φ, θz, θs) (12)

The gradients of the trVAE’s cost function with respect to φs and θs are:

∇φsLtrV AE(X,S; θ, φ) = ∇φsLCV AE(X,S; θ, φ)− β ∗ ∇φsLMMD(X,S;φ, θz, θs). (13)

∇θsLtrV AE(X,S; θ, φ) = ∇θsLCV AE(X,S; θ, φ)− β ∗ ∇θsLMMD(X,S;φ, θz, θs). (14)

So LtrV AE can be optimized using stochastic gradient ascent with respect to φs and θs since all the
other parameters are frozen.

Model sharing

We currently support an API to upload and download model weights and data (if available) using
Zenodo. Zenodo is a general-purpose open-access repository developed to enable researches to share
datasets and software. We have provided step-by-step guides to whole pipeline from training and
uploading models to download, update the model and further share them. These tutorials can be
found in scArches github repository (https://github.com/theislab/scarches).

Evaluation metrics

The evaluation metrics and their definition in the current paper were taken from the work by Xu et
al. [30]. In all of the experiments for the batch-removal evaluation, k was set to 15 for KNN-graph
calculation.

K-nearest neighbor purity

This metric works by constructing two similarity matrices for the first batch using the euclidean
distance on the latent representation: one matrix only includes the cells from the first batch and
the other one from cells in both batches. Next, we report the average ratio of the intersection of
knn-graph from each similarity matrix over their union. Similarly, we calculate the same value for
the next batch and finally report mean of these two values.

Entropy of batch mixing

This metric works by constructing a fix similarity matrix for the cells. The entropy of mixing in a
region of cells with c batches is defined as:

E =
c∑
i=1

pilog(pi), (15)
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Where pi is defined below as:

pi =
# cells with batch i in the region

# cells in the region
(16)

Next, we define U , a uniform random variable on the cell population. Let, BU be frequencies of 15
nearest neighbors for the cell U in batch x. We report entropy of this variable and then average
across T = 100 measurements of U.

Datasets

Brain data

The mouse brain dataset is a collection of four publicly available scRNA-seq mouse brain studies[1,
31–33], where additional information on cerebral regions was provided. We obtained the raw count
matrix from Rosenberg et al.[32] from GEO accession ID GSE110823, the annotated count matrix
from Zeisel et al.[33] from http://mousebrain.org (file name L5_all.loom , downloaded on 9/9/2019),
and the count matrices per cell type from Saunders et al.[31] from http://dropviz.org (DGE by Re-
gion section, downloaded on 30/8/2019). FACS-sorted mouse brain tissue data (myeloid and non-
myeloid cells, including annotation file annotations_FACS.csv) from Tabula Muris were obtained
from https://figshare.com (retrieved 14/2/2019).
We harmonized cluster labels via fuzzy string matching and attempted to preserve the original anno-
tation as far as possible. Specifically, we annotated 10 major cell types (neuron, astrocyte, oligoden-
drocyte, oligodendrocyte precursor cell, endothelial cell, brain pericyte, ependymal cell, olfactory en-
sheathing cell, macrophage and microglia). In the case of Saunders et al.[31], we facilitated the addi-
tional annotation data table for 585 reported cell types (annotation.BrainCellAtlas_Saunders_version_

2018.04.01.txt retrieved from http://dropviz.org on 30/8/2019). Among those, some cell types were
annotated as ‘endothelial tip’, ‘endothelial stalk’ and ‘mural’. We examined the subset of the Saun-
ders et al. dataset as follows: We used Louvain clustering (default resolution parameter 1.0) to
clusters, followed by gene expression profiling via rank_genes_groups function in scanpy. Using
marker gene expression, we assigned microglia (C1qa), oligodendrocytes (Plp1), astrocytes (Gfap,
Clu) and endothelial cells (Flt1) to the subset.
Finally, we applied scran normalization[61] and log(counts+ 1) to transform the count matrices. In
total, the dataset consists of 978, 734 cells.

Pancreas

Five publicly available pancreatic islet datasets [62–66], with a total number of 15,681 cells in raw
count matrix format were obtained from the Scanorama [36] dataset, which has already assigned its
cell types using batch corrected gene expression by Scanorama [36]. The Scanorama dataset were
downloaded from here. In the preprocessing step, the raw count datasets were normalized and log
transformed by scanpy preprocessing methods. The preprocessed data were used directly for the
pipeline of scArches.

HCL

Human Cell Landscape (HCL) dataset was obtained from here. Raw count matrix data for all tissues
were aggregated. A total number of 277,909 cells were selected and processed using scanpy python
package. The data was normalized using size factor normalization such that every cell has 10,000
counts and then log transformed. Finally, 5,000 highly variable genes were selected as per their
average expression and dispersion. We used the processed data directly for training the scArches at
the pretraining phase.

MCA

Mouse cell atlas (MCA) dataset was obtained from here. Raw count matrix data for all the tissues
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were aggregated together. A total number of 150,126 cells were selected and processed using the
scanpy python package. Homologous genes were selected using BioMart 100 before merging with
HCL data. The data were normalized together with HCL as explained before.

COVID-19

COVID-19 dataset along its meta-deta were downloaded from here and here. The data set that used
in this paper includes n = 62, 469 cells. Lung [46–48], PBMCs [43–45] and bone marrow [42] were
later merged with COVID-19 samples. The data was normalized using scanpy and 2000 HVGs were
selected for training the model.

Tabula Muris Senis

Tabula Muris Senis dataset with GSE132042 as the GEO accession number is publicly available
from here. The dataset contains 356,213 cells with cell type, tissue, and method annotation. We
normalized the data using size factor normalization with 10,000 counts for each cell. Then, we log+1
transformed the dataset and selected 5000 highly variable genes as per their average expression and
dispersion. All the preprocessing steps were done using the scanpy [67] python package. In this
study, we used a combination of sequencing technology and time point as batch covariates.

Benchmarks

We ran PCA with 10 principal components on the final results of Seurat, Scanorama, Liger, and
mnnCorrect compare them to models which had latent representation.

• Harmony:
We used the HarmonyMatrix function from the harmony package. We provided the function
with a PCA matrix with 10 principal components on the gene expression matrix.

• Scanorama:
We used the correct_scanpy function from the scanorama package with default parameters.

• Seurat:
We applied Seurat as the walkthrough with default parameters.

• Liger:
We used the Liger method as the walkthrough. We used k=20, lamda=5, and resolution=0.4
with other default parameters. We only scaled the data since we had already preprocessed the
data.

• Conos:
We followed the Conos tutorial from here. Unlike the tutorial we used our own prepro-
cessed data for better comparisons. We used the PCA space with parameters k=30, k.self=5,
ncomps=30, matching.method=’mNN’, and metric=’angular’ to build the graph. We set the
resolution to 1 to find communities. Finally we saved the corrected psudo-PCA space with 10
components.

• mnnCorrect:
We used the mnnCorrect function from the scran package with default parameters.

• scVI:
We trained the scVI with symmetric architecture, having two hidden layers with 128 neurons
each. This architecture yielded a better result than one hidden layer default architecture.
Other parameters were set as default.
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Cell-type annotation

To classify the labels for the query dataset, We trained a weighted KNN classifier on the latent space
representation of reference dataset. For each query cell c, we extracted its k nearest neighbors (Nc).
We computed the standard deviation of the nearest distances:

stdc,Nc =

√∑
n∈Nc (dist(c, n))

2

k
(17)

Where dist(c, n) is the euclidean distance of the query cell c and its neighbors n in the latent space.
Then, we applied the Gaussian kernel to distances using:

Dc,n,Nc = e
− dist(c,n)

(2/stdc,Nc
)2 (18)

Next, we computed the probability of assigning each label y to the query cell c by normalizing across
all the adjusted distances using:

p(Y = y|X = c,Nc) =

∑
i∈Nc I(y

(i) = y) ∗Dc,ni,Nc∑
j∈Nc Dc,nj ,Nc

, (19)

where y(i) is the label of i-th nearest neighbor. Finally, we calculated the uncertainty u for each cell
c in the query dataset using its set of closest neighbors in the reference dataset (Nc). We defined
the uncertainty uc,y,Nc for a query cell c with label y, and Nc as its set of nearest neighbors as:

uc,y,Nc = 1− p(Y = y|X = c,Nc) (20)

We reported cells with more than 50% uncertainty as unknown in order to detect out-of-distribution
cells with new labels, which do not exist in the training data. Therefore, we labeled each cell c in
the query dataset as follows:

ŷ′c = argmin
y

uc,y,Nc (21)

ŷc =

{
ŷ′c if uc,ŷ′c,Nc≤0.5
unknown o.w.

}
(22)

Hyperparameters

model loss architecture Z α β η dropout batchnorm clip grad

scArches trVAE MSE [128, 20] 10 0.001 20 1000 0.05 × 5
scArches CVAE NB [128, 128] 10 0.0002 0 1 0.1

√
3

scArches trVAE SSE [128, 64, 20] 15 0.0001 50 1 0.1 × 10

Table 1 | scArches detailed hyper-parameters

16



1 Supplementary Note 1

The importance of choosing the right reference

To contextualize query data from COVID-19 patients, we generated a healthy reference dataset
from lung, PBMCs, and bone marrow immune and epithelial cells. These tissues were chosen as
they contain similar cell types and thus may help to contextualize the cells that we find in the
COVID-19 patient data. Given that the focus of this paper is not optimal reference building, we
merged these datasets using a previously well-evaluated model class (NB CVAE from scVI [28])
[7]. However, evaluating the results of mapping the COVID-19 query data into the reference model
is complicated by a lack of harmonized cell type labels (e.g., some datasets have cells labeled T
cells, while others separate into T cell subtypes) and the quality of the reference. These aspects are
particularly complicated for the data from the Human Cell Landscape [4], which have coarse labels
and do not integrate well with the rest of the data (Supplementary Figures 8,10). For example,
cells with the label "T" from Liao et al seem to be CD4+ T cells (see violin plot in Supplementary
Figure 10), but have the same label as T cells without CD4 or CD8 expression from the HCL
dataset (Supplementary Figure 10). Indeed, our integration shows that query "T" cells map to
CD4+ T cells, while the "T" cells form the HCL separate by tissue and fail to integrate into the
reference. Without the effect of the HCL dataset, T cells clearly separate into CD4+ and CD8+
expressing cells across tissues and unharmonized labels. Overall, our simple reference contained
sufficient relevant cells to cache the effect of the poor HCL reference. However, this may not always
be the case for references used to contextualize query data. Thus, choosing the appropriate reference
is of critical importance for reference mapping using scArches.
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Supplementary Figure 1 | Robustness assessment for out-of-distribution cell types. (a) UMAP
representation of the pretrained model with reference pancreas datasets (CelSeq, inDrop, Fluidgram C1)
while Alpha and Gamma cells are absent in the data. (b-c) Iterative integration of two query data (SS2,
CelSeq2) containing alpha and gamma cells by transferring weights from the reference model containing no
alpha cells.
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Supplementary Figure 2 | The scArches applied on simulated data. (a) UMAP representation of
the simulated reference data with seven batches and five different cell types. (b) Pretraining of the model on
the reference data. (c) The simulated query data with two batches. (d) Mapping the query to the reference.
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Supplementary Figure 3 | Trainable parameters comparison. The number of trainable parameters
for the transfer learning models and trVAE as the baseline non-transfer learning alternatives. The vertical
axis shows the number of trainable parameters in log-scale while the horizontal axis depicts different data
sets.
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Supplementary Figure 4 | Visualisation of integrated data to compare batch-correction perfor-
mance for mouse brain. Force Atlas 2 (Conos) and UMAP (all other methods) representations for brain
cells after integration.
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Supplementary Figure 5 | Visualisation of integrated data to compare batch-correction perfor-
mance for human pancreas. Force Atlas 2 (Conos) and UMAP (all other methods) representations for
pancreas cells after integration.
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Supplementary Figure 6 | Metric comparison across different size of neighborhood (k) from
high to low resolution.
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Supplementary Figure 7 | UMAP plots of major mammalian cell types across mouse and
human.

Supplementary Figure 8 | UMAP plots for all cell types present in integrated query and
reference data in COVID-19.
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Supplementary Figure 9 | Relationship of monocyte-derived macrophages (MoMs) and mono-
cytes in COVID-19 patients compared to a healthy reference. (a) cancer cells enriched with CXLC5
from donor 2 in the Travaglini et al. dataset. (b) PAGA graph for monocyte and macrophage populations.
Each node represents a cell state whose edge weights (represented as line thickness) quantify the connectivity
between groups.

Supplementary Figure 10 | Overlap of T cell labels of all studies. Resolving T cell labels in to
CD8+ T and CD4+ T cells in HCL [4] and COVID-19 datasets.
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