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Abstract  

Tree-based   diversity   measures   incorporate   phylogenetic   or   phenotypic   relatedness   into  
comparisons   of   microbial   communities.   This   improves   the   identification   of   explanatory   factors  
compared   to   tree-agnostic   diversity   measures.   However,   applying   tree-based   diversity  
measures   to   metagenome   data   is   more   challenging   than   for   single-locus   sequencing   ( e.g.,    16S  
rRNA   gene).   The   Genome   Taxonomy   Database   (GTDB)   provides   a   genome-based   reference  
database   that   can   be   used   for   species-level   metagenome   profiling,   and   a   multi-locus   phylogeny  
of   all   genomes   that   can   be   employed   for   diversity   calculations.   Moreover,   traits   can   be   inferred  
from   the   genomic   content   of   each   representative,   allowing   for   trait-based   diversity   measures.  
Still,   it   is   unclear   how   metagenome-based   assessments   of   microbiome   diversity   benefit   from  
incorporating   phylogeny   or   phenotype   into   measures   of   diversity.   We   assessed   this   by  
measuring   phylogeny-based,   trait-based,   and   tree-agnostic   diversity   measures   from   a   large,  
global   collection   of   human   gut   metagenomes   composed   of   33   studies   and   3348   samples.   We  
found   phylogeny-   and   trait-based   alpha   diversity   to   better   differentiate   samples   by  
westernization,   age,   and   gender.   PCoA   ordinations   of   phylogeny-   or   trait-based   weighted  
UniFrac   explained   more   variance   than   tree-agnostic   measures,   which   was   largely   a   result   of  
these   measures   emphasizing   inter-phylum   differences   between    Bacteroidaceae    ( Bacteroidota )  
and    Enterobacteriaceae    ( Proteobacteria )   versus   just   differences   within    Bacteroidaceae  
( Bacteroidota ).   The   disease   state   of   samples   was   better   explained   by   tree-based   weighted  
UniFrac,   especially   the   presence   of   Shiga   toxin-producing    E.   coli    (STEC)   and   hypertension.   Our  
findings   show   that   metagenome   diversity   estimation   benefits   from   incorporating   a  
genome-derived   phylogeny   or   traits.  
 

Importance  

Estimations   of   microbiome   diversity   are   fundamental   to   understanding   spatiotemporal  
changes   of   microbial   communities   and   identifying   which   factors   mediate   such   changes.  
Tree-based   measures   of   diversity   are   widespread   for   amplicon-based   microbiome   studies   due  
to   their   utility   relative   to   tree-agnostic   measures;   however,   tree-based   measures   are   seldomly  
applied   to   shotgun   metagenomics   data.   We   evaluated   the   utility   of   phylogeny-,   trait-,   and  
tree-agnostic   diversity   measures   on   a   large   scale   human   gut   metagenome   dataset   to   help   guide  
researchers   with   the   complex   task   of   evaluating   microbiome   diversity   via   metagenomics.  

Introduction  

Sequencing-based   assessments   of   microbiome   diversity   are   fundamental   to   the   field   of  
microbiome   science.   For   instance,   16S   rRNA   gene   and   metagenomic   sequence-based  
estimations   of   human   gut   microbiome   diversity   have   shown   substantial   differences   among  
individuals   due   to   disease   state,   diet,   exercise,   hygiene,   and   antibiotic   usage    (Sommer   and  
Bäckhed,   2013) .   The   choice   of   diversity   measure   can   be   critical,   as   exemplified   in   many   studies  
where   only   diversity   assessments   that   incorporated   microbial   phylogenetic   relatedness   were  
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discriminatory,   while   tree-agnostic   diversity   measurements   could   not   distinguish   between  
groupings    (Bassett    et   al. ,   2015;   Obregon-Tito    et   al. ,   2015;   Vogt    et   al. ,   2017;   Torres    et   al. ,   2018) .  
Without   incorporating   a   phylogeny,   all   microbes   in   a   community   are   treated   as   equally   related  
( i.e. ,   a   star   phylogeny),   so   within-genus   differences   in   species   composition   are   weighted   the  
same   as   compositional   differences   spanning   multiple   phyla   or   domains    (Matsen,   2015) .   Closely  
related   species   are   often   phenotypically   similar   and   occupy   comparable   niches;   therefore,   a  
measure   of   diversity   that   incorporates   phylogenetic   information   can   indirectly   assess   functional  
overlap   among   microbial   communities    (Lozupone   and   Knight,   2008) .   Such   an   approach   is   quite  
powerful,   considering   that   the   majority   of   microbes   remain   uncultured,   and   that   the   common  
approach   of   16S   rRNA   gene   sequencing   can   only   provide   coarse   inferences   of   phenotype   due  
to   the   lack   of   taxonomic   resolution    (Hugerth   and   Andersson,   2017;   Louca,   Doebeli   and   Parfrey,  
2018) .   Still,   trait-based   assessments   of   microbiome   diversity   that   focused   on   a   few   key  
phenotypes   have   been   employed   with   great   effect   in   some   circumstances    (Ortiz-Álvarez    et   al. ,  
2018;   Guittar,   Shade   and   Litchman,   2019) .   More   generally,   phylogeny-based   measures   of  
within-sample   and   between-sample   diversity   (alpha   and   beta   diversity,   respectively)   have  
become   commonplace   for   microbiome   studies   relying   on   16S   rRNA   sequencing    (Lozupone   and  
Knight,   2008;   Hamady,   Lozupone   and   Knight,   2010) .  

As   the   cost   of   sequencing   has   declined,   shotgun   metagenomics   has   risen   in   popularity  
relative   to   single-locus   sequencing,   as   metagenomics   provides   a   great   wealth   of   information,  
including   i)   accurate   species-level   taxonomic   classification   and   abundance   estimation,   ii)  
information   on   gene   and   metabolic   pathway   content,   and   iii)   the   ability   to   assemble   genes   and  
metagenome-assembled   genomes   (MAGs)    (Lu    et   al. ,   2017;   Parks    et   al. ,   2017;   Franzosa    et   al. ,  
2018) .   Recent   work   has   shown   that   shallow   sequencing   depths   can   provide   similar   or   greater  
coverage   of   microbial   diversity   compared   to   16S   rRNA   sequencing    (Hillmann    et   al. ,   2018) .  
However,   generating   a   phylogeny   from   shotgun   metagenome   data   is   inherently   challenging,  
since   read   sequences   originate   from   all   genomic   locations   instead   of   a   single   locus    (Kembel    et  
al. ,   2011) .   Various   methods   exist   for   extracting   16S   rRNA   gene   sequences,   other   single   loci,   or  
multi-locus   data   from   metagenome   reads   ( e.g.,    EMIRGE,   MATAM,   AMPHORA2,   PhyloSIFT,   and  
MetaPhlAn2),   but   this   excludes   much   of   the   data,   limiting   the   detection   sensitivity   for   less  
common   taxa    (Miller    et   al. ,   2011;   Segata    et   al. ,   2012;   Wu   and   Scott,   2012;   Darling    et   al. ,   2014;  
Pericard    et   al. ,   2018) .   Alternatively,   assembling   MAGs   enables   the   construction   of   multi-locus  
phylogenies   from   all   assembled   genomes,   but   a   very   high   sequencing   depth   is   required   to  
assemble   even   the   majority   of   taxa   in   a   diverse   microbial   community   like   in   soil   or   the   human  
gut.   Another   approach   is   to   map   all   reads   to   a   database   of   entire   genomes   ( e.g.,    GenBank   or  
RefSeq),   which   increases   the   amount   of   reads   classified   relative   to   single-   or   multi-locus  
approaches,   but   such   databases   generally   lack   careful   curation   of   genome   assembly   quality,   a  
standardized   taxonomy,   and   multi-locus   phylogenies   for   all   reference   genomes    (Parks    et   al. ,  
2018) .   

We   recently   created   a   pipeline   for   generating   custom   metagenome   profiling   databases  
from   the   Genome   Taxonomy   Database   (GTDB)    (Parks    et   al. ,   2018;   de   la   Cuesta-Zuluaga,   Ley  
and   Youngblut,   2019) ,   which   is   a   comprehensive   database   of    Bacteria    and    Archaea    genomes,  
that   not   only   provides   a   coherent   microbial   taxonomy   based   on   genome   relatedness,   but   it   also  
includes   multi-locus   genome   phylogenies   for   the   reference   species.   Therefore,   one   can   map   all  
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reads   to   the   GTDB   reference   genomes   in   order   to   infer   species-level   abundances   ( e.g.,    with  
Kraken2)   and   then   utilize   a   genome   phylogeny   of   reference   species   for   calculating   alpha   and  
beta   diversity    (Wood,   Lu   and   Langmead,   2019) .   Importantly,   the   multi-locus   genome   phylogeny  
will   almost   definitely   be   more   robust   and   better-resolved   than   a   phylogeny   inferred   from   small,  
hypervariable   regions   of   the   16S   rRNA   gene,   or   even   the   full-length   gene   sequence    (Maiden    et  
al. ,   1998) .   Using   species-level   reference   genomes   also   enables   trait   inference   directly   from   the  
loci   present   in   each   genome,   which   is   a   task   that   state-of-the-art   classifiers   can   perform  
accurately,   at   least   for   certain   common   phenotypes   such   as   cell   morphology,   anaerobiosis,  
spore   formation,   and   utilization   of   certain   carbohydrates    (Weimann    et   al. ,   2016) .   Trait  
relatedness   can   then   be   represented   in   a   tree   format   by   hierarchical   clustering   of   genomes  
based   on   trait   presence/absence   to   produce   a   dendrogram.  

While   promising,   this   approach   of   species-level   metagenome   profiling,   followed   by  
phylogeny-   or   trait-based   diversity   calculation   has   not   been   robustly   assessed   and   compared   to  
tree-agnostic   approaches   that   are   often   used   for   shotgun   metagenome   studies.   We   therefore  
applied   this   methodology   to   a   large,   global   human   gut   metagenome   collection,   comprising   33  
datasets   and   3348   samples.   We   found   that,   in   comparison   to   tree-agnostic   measures,   both  
phylogeny-   and   trait-based   measures   of   alpha   and   beta   diversity   improved   our   ability   to  
discriminate   metagenome   samples   based   on   westernization,   disease   status,   age,   and   gender.  

Methods  

Data   Retrieval  

We   retrieved   publicly   available   human   gut   metagenomes   from   the   Sequence   Read  
Archive   (SRA)   between   December   2019   and   February   2020   (Table   S1).   Sample   metadata   was  
obtained   from   the   curatedMetagenomicData   v.1.17.0   Bioconductor   package    (Pasolli    et   al. ,  
2017)    and   included   according   to   the   following   criteria:   i)   shotgun   metagenomes   sequenced  
using   the   Illumina   HiSeq   platform   with   a   median   read   length   >95   bp;   ii)   with   available   SRA  
accession;   iii)    labeled   as   adults   or   seniors,   or   with   a   reported   age   ≥18   years;   iv)   without   report  
of   antibiotic   consumption   ( i.e .,   no   or   NA);   v)   without   report   of   pregnancy   ( i.e. ,   no   or   NA);   vi)  
non-lactating   women   ( i.e .,   no   or   NA);   vii)   without   report   of   gangrene,   pneumonia,   cellulitis,  
adenoma,   colorectal   cancer,   arthritis,   Behcet's   disease,   cirrhosis   or   inflammatory   bowel   disease.  
Only   forward   reads   were   downloaded   and   further   processed.   The   final   dataset   was   composed  
of   3348   samples   from   33   studies.  

Sequence   processing   and   taxonomic   profiling  

We   used   the   bbtools   “bbduk”   command   and   Skewer   v0.2.2     (Jiang    et   al. ,   2014)    to   trim  
adapters   and   quality-filter   raw   sequences.   The   “bbmap”   command   from   bbtools   was   used   to  
remove   human   reads   mapping   to   the   human   genome   hg19   assembly.   We   created   quality  
reports   for   each   step   using   fastqc   v0.11.7   (https://github.com/s-andrews/FastQC)   and   multiQC  
v.1.5a    (Ewels    et   al. ,   2016) .   Filtered   reads   were   subsampled   to   1   million   reads   per   sample   and  
used   to   obtain   taxonomic   profiles   using   Kraken2    (Wood,   Lu   and   Langmead,   2019)    and   Bracken  
v2.2    (Lu    et   al. ,   2017) .   Custom   databases   of   Bacteria   and   Archaea   were   created   using   Struo  
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v0.1.6    (de   la   Cuesta-Zuluaga,   Ley   and   Youngblut,   2019)    and   based   on   the   Genome   Taxonomy  
Database   (GTDB),   Release   89.0   (“GTDB-r89”;   available   at  
http://ftp.tue.mpg.de/ebio/projects/struo/)    (Parks    et   al. ,   2018) .  

Genome   phylogeny  

The   GTDB-r89   “Arc122”   and   “Bac120”   multi-locus   phylogenies   were   obtained   from   the  
GTDB   ftp   server   ( https://data.ace.uq.edu.au/public/gtdb/data/releases/release89/ ).   The   ape   R  
package   was   used   to   merge   the   trees   and   prune   them   to   the   23,360   species   in   the  
Struo-generated   GTDB-r89   metagenome   profiling   database.   

Trait   inference   

We   generated   a   Python   v3   implementation   of   traitar    (Weimann    et   al. ,   2016)    and   used   it  
to   predict   traits   for   all   genomes   ( https://github.com/nick-youngblut/traitar3 ),   with   majority-rules  
(phypat+PGL   model)   used   for   classifying   trait   presence/absence.   We   used   the   vegan   R  
package    (Oksanen    et   al. ,   2012)    to   apply   the   Jaccard   dissimilarity   metric   to   the   binary  
traits-per-genome   matrix   in   order   to   create   a   distance   matrix   of   trait   relatedness   among  
genomes.   This   distance   matrix   was   clustered   via   the   UPGMA   algorithm   to   create   a   dendrogram,  
which   was   used   for   tree-based   alpha   and   beta   diversity   metrics.  

Congruence   of   the   genome   phylogeny   and   trait   similarity  

Global   congruence   of   the   genome   phylogeny   and   trait   similarity   dendrogram   was  
assessed   via   phytools::cospeciation   with   100   permutations   for   the   null   model.   Local   congruence  
( i.e.,    per-clade)   was   assessed   via   Procrustes   superimposition   (vegan::procrustes)   comparing  
the   genome   phylogeny   patristic   distance   matrix   versus   the   Jaccard   distance   matrix   used   to  
generate   the   trait   similarity   dendrogram.   Due   to   memory   limitation   issues   with   the   standard  
approach   for   converting   a   phylogeny   to   a   patristic   distance   matrix   in   R   ( i.e.,    the   “cophenetic”  
function   in   the   ape   R   package   can   only   process   trees   with   fewer   than   ~13,000   tips),   we   instead  
ran   the   procrustes   analysis   on   1000   randomly   pruned   subtrees   of   1000   tips   each   and   used   the  
mean   residuals   across   all   permutations   for   each   taxon.  

Alpha   diversity  

We   calculated   tree-agnostic   (species   richness   and   Shannon   index)   and   tree-based  
(Faith’s   Phylogenetic   Diversity:   Faith’s   PD)   alpha   diversity   measures.   Species   richness   and  
Shannon   index.   All   tree-agnostic   measures   were   calculated   with   the   vegan   R   package  
(vegan::diversity),   and   Faith’s   PD   was   calculated   with   PhyloMeasures::pd.query.   The   lme4   and  
lmerTest   R   packages   were   used   to   fit   linear   mixed   effects   models   with   dataset   as   random   effect  
and   other   variables   as   fixed   effects;    F -tests   and    P -values   were   determined   via   the  
Satterthwaite's   method   (ANOVA   Type   II   sum   of   squares).   We   adjusted    P -values   for   multiple  
comparisons   using   the   Benjamini-Hochberg   method.  
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Beta   diversity   analyses  

Tree-agnostic   weighted   and   unweighted   intersample   distances   (Bray-Curtis   dissimilarity  
and   Jaccard   index)   were   calculated   using   the   vegan   R   package   (vegan::vegdist),   while  
tree-based   metrics   (weighted   and   unweighted   UniFrac)   were   calculated   with   rbiom::unifrac.  
Principal   coordinates   analysis   (PCoA)   was   applied   to   each   distance   matrix   via   stats::cmdscale.  
We   used   the   vegan::envfit   function   to   assess   correlations   of   species   abundances   to   each   PCoA.  
PERMANOVA   was   performed   with   vegan::adonis2   (999   permutations;   marginal   effects   of   terms  
assessed).   We   assessed   PCoA   ordination   similarity   via   Procrustes   superimposition   (999  
permutations).  

 

General   data   analysis  

General   data   processing   was   performed   with   the   tidyverse   package   in   R.   The   ggplot2  
package   was   used   for   generating   all   plots.   All   code   used   for   this   work   is   available   on   GitHub   at  
https://github.com/leylabmpi/global_metagenome_diversity .   

Data   availability  

The   genome   phylogeny,   trait   tables   for   each   species-genome   representative,   and   trait  
dendrograms   are   available   at    http://ftp.tue.mpg.de/ebio/projects/struo/GTDB_release89/ .   

Results  

Dataset   summary  

Our   combined   human   gut   metagenome   dataset   consisted   of   33   studies   and   a   total   of  
3348   samples   from   3011   individuals   after   filtering   by   required   metadata   fields   and   an   adequate  
number   of   reads   following   quality   control   (101   ±   163   s.d.   samples   per   study;    Figure   S1A).   The  
percent   of   metagenome   reads   classified    to   our   custom   GTDB-r89   Kraken2   database   was   high  
(mean   of   80%),   and   generally   lowest   for   non-westernized   populations   (Figure   S1B).   

Broad-scale   incongruences   between   trait   and   phylogenetic   similarity  

To   assess   alpha   and   beta   diversity   based   on   phenotypic   similarity,   we   inferred   the  
presence/absence   of   67   traits   for   each   reference   genome   in   our   Kraken2   database   (Figure   1A).  
We   quantified   the   degree   of   congruence   between   phylogeny-   and   trait-based   relatedness   of   all  
species   (taxonomy   defined   by   the   GTDB),   in   order   to   assess   whether   each   would   reveal  
different   patterns   of   alpha   and   beta   diversity.   Congruence   was   measured   via   Procrustes  
superimposition,   in   which   larger   incongruences   between   phylogenetic   and   trait   similarity   among  
taxa   will   produce   larger   Procrustes   residuals.   We   found   that   the   congruence   between   trait   and  
phylogenetic   similarity   differed   greatly   across   phyla   (Figure   1B).   The   bacterial   phyla  
Dependentiae ,    Fusobacteriota ,   and    Verrucomicrobiota_A    were   the   most   congruent   between   trait  
and   phylogenetic   similarity,   while   most   of   the   archaeal   phyla,   including   the    Crenarcheota ,  
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Thermoplasmatota ,   and    Nanoarchaeota    were   the   most   incongruent.   Notably,    Crenarcheota  
were   also   found   in   a   recent   study   to   be   especially   variable   in   phenotypes,   as   defined   by   overlap  
in   clusters   of   orthologous   groups   (COG)   functional   categories    (Royalty   and   Steen,   2019) .  
Firmicutes    and    Proteobacteria    showed   the   greatest   variance   in   congruence,   with   many   highly  
incongruent   outlier   species   in   both   phyla.   An   inspection   at   the   family   level   revealed   that   the  
Firmicutes    outliers   belonged   to    Enterobacteriaceae ,   while   the    Mycoplasmoidaceae    and  
Metamycoplasmataceae    families   were   the   largest   outliers   in    Proteobacteria    (Figure   S2).  
Euryarchaeota    trait-phylogeny   congruence   was   relatively   high   for   an   archaeal   phylum;   however,  
the    Methanosphaera    genus   comprised   many   highly   incongruent   outliers.   Large   differences  
between   phylogeny   and   phenotype   in   these   families   may   be   due   to   high   phenotypic   plasticity  
relative   to   core   genome   evolutionary   rates.   Overall,   our   findings   show   that   trait   and   phylogenetic  
similarities   are   only   partially   congruent   and   would   thus   likely   describe   different   aspects   of  
microbiome   diversity   when   applied   to   tree-based   diversity   measures.   

More   variance   is   explained   by   alpha   diversity   measures   incorporating   phylogenetic   or   trait  
relatedness  

We   calculated   alpha   diversity   for   all   3348   metagenome   samples   with   four   measures:   the  
number   of   observed   taxa,   the   Shannon   Index,   and   Faith’s   Phylogenetic   Diversity   (Faith’s   PD)  
with   either   the   genome   phylogeny   (“PD_phy”)   or   a   dendrogram   depicting   trait   relatedness  
(“PD_trt”).   We   note   that   all   metagenomes   were   subsampled   to   1   million   reads   prior   to  
metagenome   profiling   and   thus   alpha   diversity   estimates   should   not   be   biased   by   sampling  
depth.   Both   PD_phy   and   PD_trt   clearly   separated   metagenome   samples   based   on  
westernization   status,   while   such   a   separation   was   less   discernible   when   using   the   Shannon  
Index   or   number   of   observed   species   (Figure   2A).   When   assessing   samples   with   westernization  
status,   age,   and   gender   metadata   ( n    =   1843),   we   also   found   that   PD_phy   and   PD_trt   more  
clearly   differentiate   groups   along   each   variable   (Figure   2B).   Indeed,   linear   mixed   effects   models  
produced   substantially   higher   and   lower    F -values   and    P -values,   respectively,   for   PD_phy   and  
PD_trt   in   regards   to   westernization   status,   age,   and   gender   (Figure   2C).    F -values   were   also  
slightly   higher   for   BMI   when   filtering   the   dataset   to   just   samples   with   all   required   metadata   ( n    =  
918;   Figure   2C).   PD_phy    F -values   were   consistently   higher   for   age   and   especially   for  
westernization   compared   to   PD_trt.   Indeed,   the   number   of   phyla   per   sample   was   substantially  
higher   for   non-westernized   individuals   versus   westernized   (Figure   S3A),   while   no   substantial  
difference   was   seen   for   the   number   of   genera   (Figure   S3B).   This   finding   indicates   that   coarse  
taxonomic   groups   differ   substantially   by   westernization   status,   which   would   be   emphasized   via  
a   phylogenetic   measure   of   diversity.   While   the   boxplots   hinted   at   a   substantially   greater  
differentiation   between   westernized   and   non-westernized   males   versus   when   comparing  
females   (Figure   S3B),   we   did   not   find   a   significant   interaction   between   gender   and  
westernization   for   any   diversity   measure   ( P    >   0.1).  

To   resolve   how   the   choice   of   diversity   measure   influenced   per-clade   estimations   of  
diversity,   we   applied   our   mixed   effects   model   analysis   on   alpha   diversity   calculated   for   each  
individual   family   (Figure   S4).   For   all   diversity   measures,   the    Bacteroidales    family   F082   was   most  
strongly   associated   with   westernization   status,   and   the   strength   of   association   was   very  
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consistent   among   measures.   In   contrast,   most   of   the   other   families   associated   with  
westernization   differed   in   their   strength   among   the   diversity   measures   (Figure   S4A).   For  
instance,   the   association   of    Treponemataceae    was   substantially   weaker   for   the   Shannon   Index  
versus   either   tree-based   measure.   This   inconsistency   among   diversity   measures   was   also  
observed   for   associations   between   family-level   diversity   and   gender   or   age.    Akkermansiaceae  
had   the   strongest   association   with   gender,   but   only   for   Faith’s   PD   based   on   trait   similarity  
(Figure   S4B),   suggesting   functional   differentiation   at   fine   taxonomic   levels.   Notably,  
Methanobacteriaceae    alpha   diversity   was   most   strongly   associated   with   age,   along   with  
Butyricicoccaceae ,   but   the   association   strength   was   much   lower   when   measuring   diversity   via  
PD_phy   versus   PD_trt   or   the   Shannon   index   (Figure   S4C).   These   examples   show   that   fine  
taxonomic   level   diversity   estimations   can   differ   substantially   depending   on   which   aspects   of  
diversity   are   emphasized:   phylogenetic   relatedness,   trait   relatedness,   or   neither.  
 

More   variance   is   explained   by   beta   diversity   measures   incorporating   phylogenetic   or   trait  
relatedness  

We   calculated   beta   diversity   on   all   metagenome   samples   with   6   metrics:   Bray   Curtis,  
Jaccard,   and   UniFrac   in   all   four   combinations   of   unweighted   and   weighted   with   either   a   genome  
phylogeny   or   trait-similarity   dendrogram.   Principal   coordinate   analysis   (PCoA)   revealed   that  
substantially   more   variance   was   explained   by   the   top   principle   coordinates   (PCs)   for   both  
phylogeny-based   weighted   UniFrac   (“w-unifrac_phy”)   and   trait-based   weighted   UniFrac  
(“w-unifrac_trt”)   (Figure   3).   This   was   especially   apparent   for   w-unifrac_phy,   with   50%   variance  
explained   by   PC1   alone,   while   only   15.4   and   9.3%   variance   was   explained   by   PC1   for  
Bray-Curtis   and   Jaccard,   respectively   (Figure   3B).   In   contrast   to   weighted   UniFrac,   both  
unweighted   UniFrac   measures   showed   similar   amounts   of   variance   explained   relative   to  
Bray-Curtis   and   Jaccard.   When   summing   across   the   top   5   PCs   (Figure   3C),   w-unifrac_phy  
explained   79.1%   of   the   variance,   which   is   more   than   twice   that   of   Bray-Curtis   (38.2%)   and   more  
than   three   times   as   much   as   Jaccard   (23.8%).   The   summed   percent   variance   explained   by  
w-unifrac_trt   was   also   substantially   higher   (53.3%)   than   Bray-Curtis   and   Jaccard.  

We   investigated   why   w-unifrac_phy   and   w-unifrac_trt   explained   so   much   more   variance  
by   correlating   species   abundances   with   each   of   the   top   three   PCs   (Figure   4A).   
The   analysis   revealed   that   the   top   w-unifrac_phy   and   w-unifrac_trt   PCs   most   strongly  
differentiates   samples   based   on   the   abundances   of   species   belonging   to    Lachnospiraceae  
( Firmicutes_A ),    Bacteroidaceae    ( Bacteroidota ),   and    Enterobacteriaceae    ( Proteobacteria ).   In  
contrast,   Bray-Curtis   and   Jaccard   most   strongly   discern   samples   differing   in   species   just   within  
Bacteroidaceae    ( Bacteroidota) .   Specifically,   the   top   PCs   for   Bray-Curtis   and   Jaccard   correlate  
strongly   with   the    Bacteroidaceae    genera:    Bacteroidetes ,    Bacteroidetes_B ,   and    Prevotella  
(Figure   S5).   Unlike   the   weighted   UniFrac   measures,   both   unweighted   UniFrac   measures   lacked  
a   strong   correlation   with    Enterobacteriaceae ,   but   they   did   uniquely   discern    Oscillospiraceae  
( Firmicutes_A )   and    Ruminococcaceae    ( Firmicutes_A ).   

To   help   illustrate   these   clade-level   differences   among   the   beta   diversity   measures,   we  
mapped   the   abundances   of   these   focal   clades   onto   each   PCoA   ordination.   As   denoted   by   our  
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correlation   analysis,    Bacteroidaceae    was   highly   abundant   at   both   ends   of   PC1   for   Bray-Curtis  
and   Jaccard,   while   its   abundance   was   lowest   at   the   center   of   the   PC   (Figure   4B).   Conversely,  
Bacteroidaceae    was   only   highly   abundant   on   one   side   of   PC1   for   both   w-unifrac_phy   and  
w-unifrac_trt.   In   contrast   to    Bacteroidaceae ,    Enterobacteriaceae    was   only   detectable   in   350  
samples,   with   only   28   samples   having   >1%   abundance   (Figure   4C).   w-unifrac_trt   best  
partitioned   the   samples   with   high   versus   low   levels   of    Enterobacteriaceae    (Figure   4A   &   4C),  
while   w-unifrac_phy   also   partitioned   these   samples   well,   especially   along   PC2.   Plotting  
Lachnospiraceae ,    Oscillospiraceae ,   and    Ruminococcaceae    abundances   on   the   PCoA  
ordinations   did   confirm   the   correlation   analysis,   in   which    Lachnospiraceae    abundance   correlates  
rather   well   with   PC1   and   PC2   of   all   ordinations,   while   the    Oscillospiraceae    and  
Ruminococcaceae    abundances   best   correlate   the   the   top   PCs   for   both   unweighted   UniFrac  
measures   (Figure   S6).  

We   also   correlated   alpha   diversity   with   the   PCoA   PCs   but   found   substantially   weaker  
associations   (R 2    <   0.21   for   all   measures).   Still,   gradients   of   diversity   are   somewhat   apparent  
across   the   ordinations,   regardless   of   the   diversity   measure   (Figure   S7).  

To   determine   how   well   each   beta   diversity   measure   partitions   individuals   by   age,   gender,  
BMI,   westernization,   and   disease   states,   we   performed   PERMANOVA   with   each   measure   on   all  
samples   with   the   requisite   metadata   ( n    =   1413).   Although   all   model   variables   were   significant  
due   to   the   large   sample   size   ( P    <   0.001),   the   effect   sizes   varied   considerably   for   disease   state  
and   westernization   (Figure   5).   Most   notably,   w-unifrac_phy   had   an   R 2    for   disease   state   that   was  
about   twice   that   of   Bray-Curtis   or   Jaccard   (0.082   versus   0.041   and   0.025,   respectively).   Plotting  
the   location   of   each   metagenome   sample   from   each   disease   category   on   PC1   illustrated   how  
Bray-Curtis   and   Jaccard   largely   relegate   most   samples   with   each   disease   state   to   the   same   half  
of   PC1,   while   “healthy”   samples   span   the   entire   PC   (Figure   5B).   In   contrast,   the   UniFrac  
measures,   especially   the   weighted   versions,   partition   the   various   disease   states   into   different  
regions   along   the   entire   length   of   the   PC.   

To   directly   quantify   the   differences   in   how   each   beta   diversity   measure   partitioned  
samples   in   each   disease   category,   we   performed   pairwise   Procrustean   superposition   analyses  
between   each   beta   diversity   measure.   Large   Procrustes   residuals   for   a   disease   state   indicate  
that   the   relative   positions   of   samples   in   that   grouping   differ   greatly   between   the   two   PCoA  
ordinations.   Procrustes   residuals   were   highest   for   Shiga   toxin-producing    E.   coli    (STEC)   and  
hypertension   disease   states   when   comparing   the   UniFrac   measures   to   Bray-Curtis   or   Jaccard  
(Figure   S8).   STEC   was   also   moderately   divergent   between   the   trait-based   and  
phylogeny-based   UniFrac   measures   (both   weighted   and   unweighted).   This   discrepancy  
between   diversity   measures   reflects   the   incongruence   between   phylogeny-   and   trait-based  
relatedness   among    Enterobacteriaceae    species   (Figure   S2).  

Discussion  

Shotgun   metagenomics   will   continue   to   increase   in   popularity   as   the   cost   of   sequencing  
declines   and   methods   for   processing   and   interpreting   metagenomic   data   continue   to   develop.   A  
major   challenge   is   to   fully   harness   the   heterogeneous   sequence   data   generated   by  
metagenomics,   which   is   vastly   more   complex   than   16S   rRNA   gene   sequences   or   other  
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single-locus   datasets.   Measuring   community   diversity   from   such   heterogeneous   data   is   not  
straight-forward,   and   it   is   often   unclear   what   measures   of   diversity   are   most   appropriate   for  
metagenome   data.   Here,   we   have   assessed   a   method   of   microbiome   diversity   measurement   by  
using   metrics   that   incorporate   a   multi-locus   phylogeny   or   a   large   set   of   traits   inferred   from  
reference   genomes   to   species-level   abundance   profiles   mapped   against   species-level   genome  
representatives   from   the   GTDB.   Our   method   is   not   computationally   demanding,   generalizable   to  
a   wide   range   of   microbiome   studies,   and   flexible   in   regards   to   which   tree-based   measures   and  
which   traits   are   used.  

We   have   shown   that   our   tree-based   diversity   measures   explained   more   variance,   both   in  
regards   to   overall   inter-sample   diversity   and   diversity   among   individuals   differing   in  
westernization,   age,   gender,   and   disease   status   (Figures   2   &   3).   While   BMI   seemed   to   be  
slightly   better   explained   by   phylogeny-   and   trait-based   measures,   the   difference   was   too   small  
to   be   conclusive.   Interestingly,   westernization   was   substantially   better   explained   by   the  
phylogeny-based   alpha   diversity   measure   relative   to   all   other   measures,   while   this   pattern   was  
not   observed   for   beta   diversity.   These   results   suggest   that   while   overall   phylogenetic   diversity   is  
greater   for   non-westernized   individuals,   there   is   enough   broad-scale   phylogenetic   overlap  
between   individuals   to   appear   highly   similar   in   a   direct   comparison.  

We   additionally   showed   that   phylogeny   and   trait-based   diversity   measures   were   more  
explanatory   than   tree-agnostic   measures   due   to   how   each   underscored   different   aspects   of  
community   diversity   (Figure   4).   Bray-Curtis   and   Jaccard   emphasized   compositional   differences  
within   the    Bacteroidaceae ,   which   is   a   prevalent   and   relatively   abundant   clade   in   the   human   gut.  
Instead,   both   the   phylogeny   and   trait-based   measures   accentuated   differences   between  
Enterobacteriaceae   and   Bacteroidaceae ,   which   not   only   belong   to   different   phyla,   but   also   the  
former   is   much   less   prevalent   than   the   latter.   This   emphasis   on    Enterobacteriaceae    by   the  
tree-based   diversity   measures   likely   explains   why   the   disease   state   that   differed   most   between  
PCoA   ordinations   was   Shiga   toxin-producing    E.   coli    (Figure   S8).   The   same   may   be   true   for   the  
presence   of   hypertension,   which   was   the   second-most   different   between   PCoA   ordinations,   as  
the    Enterobacteriaceae    genus    Klebsiella    has   been   found   to   overgrow   in   hypertensive   individuals  
(Li    et   al. ,   2017) .   Of   course,   this   increased   emphasis   on    Enterobacteriaceae    by   the   tree-based  
measures   is   just   the   most   prominent,   and   as   we   observed   for   our   family-level   assessment   of  
alpha   diversity,   many   clades   can   differ   in   their   apparent   diversities   depending   on   the   measure  
used.  

In   almost   all   circumstances,   phylogeny-based   diversity   was   more   explanatory   than   when  
incorporating   trait   relatedness.   Our   assessment   of   congruence   between   phylogenetic   and  
trait-based   similarity   showed   why   these   diversity   measures   would   differ.   For   instance,   the   lower  
explanatory   power   of   trait-based   diversity   in   regards   to   disease   state   can   be   attributed   to   the  
incongruence   between   trait   and   phylogeny   for   many   species   in   the    Enterobacteriaceae    family  
(Figures   5   &   S2)   or   possibly   to   the   choice   of   traits   included   (Figure   1).   While   we   did   use   a   large  
number   of   traits   relative   to   other   recent   trait-based   studies   of   microbial   community  
spatiotemporal   diversity    (Ortiz-Álvarez    et   al. ,   2018;   Guittar,   Shade   and   Litchman,   2019) ,   they  
are   likely   just   a   minor   subset   of   all   relevant   phenotypes.   Traits   could   be   defined   more   abstractly  
as   COG   functional   categories,   KEGG   pathways,   or   other   broad   classifications   of   gene   function,  
which   may   generalize   better   to   novel   microbial   genetic   diversity   compared   to   using   a   trait  
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classifier   trained   on   a   subset   of   all   known   microbial   species    (Royalty   and   Steen,   2019) .  
However,   broad   and   generalized   demarcations   of   function   may   obscure   particular   traits   that   are  
most   strongly   varying   across   the   spatiotemporal   gradient   of   interest.   One   could   choose  
particular   functional   categories,   like   the   gut-brain   modules   defined   in   a   recent   study   for  
understanding   microbial   functional   interaction   with   mental   health    (Valles-Colomer    et   al. ,   2019) ,  
although   the   expert   knowledge   required   to   make   such   targeted   selections   is   often   lacking   for  
many   systems.  

We   must   note   that   our   method   of   predicting   traits   based   on   the   presence   of   loci  
presumably   produced   false   negatives   for   poorly   studied   clades   in   which   novel   genetic  
mechanisms   generate   the   same   phenotypes.   Given   that   the   gut   microbiome   is   dominated   by   a  
few   relatively   well-studied   clades    (Lloyd-Price    et   al. ,   2017) ,   the   impact   of   false   negatives   was  
likely   small   for   our   trait-based   weighted   UniFrac   measure   but   may   have   been   higher   for  
unweighted   UniFrac.   Still,   both   phylogeny-   and   trait-based   unweighted   UniFrac   were   less  
explanatory   than   their   weighted   counterparts,   suggesting   that   inaccuracies   in   our   trait  
classification   approach   were   negligible.   Advances   in   machine   learning   models   for   predicting  
gene   annotations,   protein   structure   and   interactions,   and   metabolic   pathways   will   improve  
classification   of   specific   microbial   phenotypes,   especially   when   generalizing   to   novel   genetic  
diversity    (Celesti    et   al. ,   2018;   Bileschi    et   al. ,   2019) .  

While   our   findings   demonstrate   the   potential   benefit   of   incorporating   phylogeny   or  
function   based   on   genome   representatives   of   each   reference   species,   much   is   still   unknown  
about   how   best   to   implement   these   approaches   across   highly   varied   microbiome   studies.  
Function-based   diversity   measures   may   prove   to   be   highly   advantageous   for   studies   of  
microbial   community   succession,   as   some   studies   have   demonstrated    (Ortiz-Álvarez    et   al. ,  
2018;   Guittar,   Shade   and   Litchman,   2019) .   Microbiomes   with   high   numbers   of   uncultured  
species   such   as   seafloor   sediments   may   benefit   from   using   a   more   generalized   measure   of  
traits   like   COG   functional   categories    (Orsi,   2018) .   We   recommend   a   focus   on   phylogeny-based  
diversity   measures   for   shotgun   metagenomics   data   in   cases   where   the   most   informative   traits  
are   unknown,   since   phylogenetic   information   will   be   relevant   for   most   if   not   all   systems,   and   it  
will   allow   for   direct   cross-study   comparisons   of   microbial   diversity.  
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Figure   legends  

Figure   1 .    Similarity   between   phylogenetic   and   trait-based   relatedness   differs   substantially  
among   phyla.    A)   Traits   inferred   from   each   genome   representative   of   each   species,   shown   as  
the   percent   of   all   genomes   in   the   phylum   (left)   or   the   total   for   all   phyla   (right).   The   numbers   next  
to   each   column   in   the   right   plot   denote   the   x-axis   values.   B)   The   boxplots   show   Procrustes  
residuals   for   each   genome,   grouped   by   phylum.   Higher   Procrustes   residuals   indicate   more  
incongruence   between   phylogenetic   and   trait-based   relatedness.   For   clarity,   only   phyla   with   ≥10  
genomes   are   shown.   
 
Figure   2.    Phylogeny-   and   trait-based   alpha   diversity   better   differentiate   samples   across   key  
factors.    A)   Boxplots   of   alpha   diversity   metrics   calculated   for   all   samples   ( n    =   3348)   in   all  
datasets   ( n    =   33),   grouped   by   westernization   status.   “(phy)”   denotes   that   the   genome   phylogeny  
was   used   to   calculate   Faith’s   PD,   while   “(trt)”   means   that   a   dendrogram   of   trait   similarity   was  
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used   for   the   calculation.   B)   Boxplots   of   alpha   diversity   metrics   calculated   for   all   samples   in  
which   gender   and   age   metadata   were   available   ( n    =   1843)   in   all   datasets   ( n    =   17),   grouped   by  
westernization   of   individuals.   C)   Linear   mixed   effects   model   results   for   assessing   the  
association   between   alpha   diversity   and   population   characteristics   while   accounting   for  
inter-dataset   batch   effects.   The   labels   above   each   bar   denote    P -values.   Age   was  
log2-transformed,   and   BMI   Box-Cox   transformed.   The   left   facet   is   on   all   samples   ( n    =   3348)   in  
all   datasets   ( n    =   33).   The   middle   facet   is   filtered   to   samples   that   have   data   on   gender   and   age  
(number   of   samples   =   1843;   number   of   studies   =   17).   The   right   facet   is   filtered   to   samples   that  
have   data   on   gender,   age,   and   BMI   (number   of   samples   =   918;   number   of   studies   =   11).  
 
Figure   3.     More   variance   explained   when   incorporating   taxon   abundance   along   with  
phylogenetic-   or   trait-based   relatedness.    Principal   coordinate   analysis   (PCoA)   ordinations   for   all  
samples   across   all   datasets   ( n    =   3348),   colored   by   dataset   and   faceted   by   the   beta-diversity  
metric   used   (“bray”   =   Bray-Curtis;   “jaccard”   =   Jaccard;   “unifrac_phy”   =   unweighted   UniFrac  
utilizing   the   genome   phylogeny;   “unifrac_trt”   =   unweighted   UniFrac   utilizing   a   dendrogram  
depicting   trait-similarity;   “wunifrac_phy”   =   “unifrac_phy”,   but   using   weighted   UniFrac;  
“wunifrac_trt”   =   “unifrac_trt”,   but   using   weighted   UniFrac).   The   percentages   in   each   facet   label  
are   the   percent   variance   explained   for   the   first   two   PCs.   B)   The   percent   variance   explained   by  
the   top   five   PCs   for   each   ordination   shown   in   A).   C)   The   summed   percent   variance   explained   by  
the   top   five   PCs   for   each   ordination   shown   in   A),   with   values   above   each   bar   denoting   the   y-axis  
value.  
 
Figure   4.     Phylogeny-   and   trait-based   beta-diversity   metrics   emphasize   inter-sample   differences  
in   certain   taxa   that   are   not   emphasized   by   star-phylogeny   measures.    A)   Correlations   between  
individual   species   (points)   and   the   top   3   PCs   in   the   PCoA   ordinations   shown   in   Figure   3.   The  
x-axis   denotes   the   direction   of   the   correlation   along   the   PC   ( i.e.,    where   the   taxon   abundance   is  
highest),   and   the   y-axis   denotes   the   effect   size.   For   clarity,   only   species   with   the   top   20   highest  
effect   sizes   across   all   beta   diversity   metrics   are   shown.   The   PCoA   ordinations   shown   in   B)   and  
C)   are   the   same   as   in   Figure   3,   but   samples   are   colored   by   the   abundance   of   the  
Bacteroidaceae    family   ( Bacteroidota    phylum)   and    Enterobacteriaceae    ( Proteobacteria    phylum),  
respectively.   Note   that   abundance   is   not   log10-transformed   in   C),   and   point   size   also   represents  
abundance   in   order   to   emphasize   the   few   samples   with   relatively   high    Enterobacteriaceae  
abundances,   and   all   grey   points   indicate   samples   completely   lacking    Enterobacteriaceae .   
 
Figure   5.     UniFrac-based   beta   diversity   better   explains   disease   status   across   the   metagenome  
dataset.    A)   Variance   explained   for   each   covariate   in   PERMANOVA   models   ( n    =   1413)   applied   to  
each   distance   matrix   as   shown   in   PCoA   plots   in   Figure   3.   B)   The   position   of   each   sample  
(grouped   by   disease   state)   on   PC1   for   each   PCoA   of   each   beta   diversity   measure   as   shown   in  
Figure   3.   Note   that   for   the   tree-agnostic   approaches,   most   disease   states   fall   into   the   same,  
constrained   range;   however,   the   UniFrac-based   approaches   (especially   weighted   UniFrac)  
generate   more   separation   among   disease   groups   (“STEC”   =   Shiga   toxin-producing    E.   coli ;  
“T2D”   =   Type   2   diabetes;   “ACVD”   =   atherosclerotic   cardiovascular   diseases;   “CMV”   =  
Cytomegalovirus   disease,   “IGT”   =   impaired   glucose   tolerance).   All   terms   in   each   PERMANOVA  
model   were   significant   (number   of   permutations   =   9999;    P    <   0.001).   
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