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Abstract: In plants, chromatin accessibility – the primary mark of regulatory DNA – is 13 
relatively static across tissues and conditions. This scarcity of accessible sites that are 14 
dynamic or tissue-specific may be due in part to tissue heterogeneity in previous bulk 15 
studies. To assess the effects of tissue heterogeneity, we apply single-cell ATAC-seq 16 
to A. thaliana roots and identify thousands of differentially accessible sites, sufficient to 17 
resolve all major cell types of the root. However, even this vast increase relative to bulk 18 
studies in the number of dynamic sites does not resolve the poor correlation at 19 
individual loci between accessibility and expression. Instead, we find that the entirety 20 
of a cell's regulatory landscape and its transcriptome each capture cell type identity 21 
independently. We leverage this shared information on cell identity to integrate 22 
accessibility and transcriptome data in order to characterize developmental 23 
progression, endoreduplication and cell division in the root. We further use the 24 
combined data to characterize cell type-specific motif enrichments of large 25 
transcription factor families and to link the expression of individual family members to 26 
changing accessibility at specific loci, taking the first steps toward resolving the direct 27 
and indirect effects that shape gene expression. Our approach provides an analytical 28 
framework to infer the gene regulatory networks that execute plant development. 29 
 30 
Introduction 31 
 32 

Single-cell genomics allows an unbiased sampling of cells during development, 33 
with the potential to reveal the order and timing of gene regulatory and gene 34 
expression events that specify cell identity and lineage. An ideal system to test the 35 
ability of single-cell genomics to provide novel insights into development is the 36 
Arabidopsis thaliana root: along its longitudinal axis, a single, radially-symmetric root 37 
captures developmental trajectories for several radially-symmetric cell types. 38 
Approaches in this organism have included single-cell RNA-seq to transcriptionally 39 
profile individual root cell types along this developmental axis1–6 and with respect to 40 
their ploidy.  41 
 42 
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Studies of chromatin accessibility in samples enriched for specific plant cell 43 
types have revealed: (i) the existence of cell type-specific regulatory elements; (ii) the 44 
relative scarcity of such elements compared to their prevalence in animals or humans; 45 
(iii) the expected enrichment of transcription factor binding sites within these elements; 46 
and (iv) a higher frequency of dynamic regulatory elements upstream of 47 
environmentally-responsive genes than constitutively expressed genes.7,8 Although the 48 
correlation between chromatin accessibility and nearby gene expression is generally 49 
weak in both plants and animals,9 this correlation improves for regulatory elements that 50 
show dynamic changes in chromatin accessibility, for example in response to an 51 
environmental stimulus or developmental signal.7,9–11 In contrast to animals, however, 52 
the majority of chromatin-accessible sites in plants show little change across tissues, 53 
conditions, or even genetic backgrounds, raising the possibility that cell and tissue 54 
identity is less rigidly engrained in the chromatin landscape in plants than in animals.7 55 
Alternatively, cell type-specific regulatory elements and gene expression in plants may 56 
have been obscured by tissue heterogeneity in bulk tissue studies. 57 

 58 
Cell type-specific chromatin-accessible landscapes are also of interest for 59 

addressing other fundamental biological questions. General transcription decreases 60 
along a cell type’s developmental trajectory while expression of cell type-specific 61 
genes increases,2,12,13 in agreement with Waddington’s predictions on epigenetic 62 
landscapes.14 In the A. thaliana root, the increasing maturity of certain cell layers is 63 
accompanied by endoreduplication. The presence of additional gene copies may 64 
contribute to the observed increase in the expression of cell type-specific genes; 65 
alternatively, the initial gene copies may increase their transcription. Although 66 
endoreduplication is a common mechanism to regulate cell size and differentiation in 67 
plants and some human and animal tissues,15–17 the influence of this phenomenon on 68 
gene regulation and expression has been largely overlooked. In plants, 69 
endoreduplication generally enhances transcription,17,18 in particular of cell wall-related 70 
genes19 and genes encoding ribosomal RNA,20 hinting at a role for this process in 71 
driving increased translation. 72 

 73 
Here, we provide the first single-cell resolution maps of open chromatin in the A. 74 

thaliana root to address the issue of tissue heterogeneity and to detect likely 75 
endoreduplication events. We use a droplet-based approach to profile over 5000 nuclei 76 
for chromatin accessibility and identify 8000 regulatory elements that together define 77 
most cell types of the root. We describe an analytical framework that links patterns of 78 
open chromatin with transcriptional states to predict the identity, function and 79 
developmental stage of individual cells in the A. thaliana root. We integrate the single-80 
cell ATAC-seq (scATAC-seq) data with published single-cell RNA-seq (scRNA-seq) 81 
profiles of the same tissue to obtain automated annotations of cells in our scATAC-seq 82 
data. Using the integrated dataset, we link individual cells from our scATAC-seq data 83 
with their nearest neighbors in scRNA space to define relative developmental 84 
progression, level of endoreduplication and the genes differentially expressed in these 85 
nearest neighbors. This approach allows the identification of three distinct 86 
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developmental states of endodermis cells that had escaped detection using scRNA-87 
seq alone. Using scATAC-seq data integrated scRNA-seq data, we predict individual 88 
members of large transcription factor families that play a role in epidermis 89 
development, pinpointing individual regulatory events that link peak accessibility and 90 
transcription factor expression in these cells. The combination of binding motifs, 91 
transcription factor expression and chromatin accessibility provides a basis for 92 
predicting the gene regulatory events that underlie development. 93 

 94 
Results 95 
 96 
scATAC-seq identifies known root cell types 97 
 98 

We first asked if ATAC-seq profiles at the single-cell level were capable of 99 
capturing known root cell types. We profiled 5283 root nuclei, at a median of 7290 100 
unique ATAC inserts per nucleus. A high fraction of these inserts occurred in one of the 101 
22,749 open chromatin peaks (FRIP score = 0.71) based on pseudo-bulk peak calling 102 
(Cellranger v3.1, 10X Genomics); this fraction is similar to that seen in high-quality bulk 103 
accessibility studies (Figure S1A, S1B).9 Furthermore, the scATAC assay detected 104 
1794 peaks that not been observed at appreciable levels in bulk ATAC-seq. We used 105 
UMAP dimensionality reduction of the peak by cell matrix to build a two-dimensional 106 
representation grouping of cells with similar accessibility profiles (Figure 1A). 107 
Subsequent cluster assignment by Louvain community detection identified nine 108 
distinct cell clusters.21 Across all cells, we identified 4389 peaks (ranging from 307 – 109 
1993 per cell type) with significant differential accessibility, suggesting that around 110 
20% of all accessible sites contain some information on cell type (Supplementary 111 
Table 1). Though only 16% (707/4,389) of cell type-specific peaks were found to be 112 
distal, or greater than 400 base pair from the nearest gene, this was greater than the 113 
fraction expected by chance. Only 9.4% (2,159/22,749) of all peaks were distal, 114 
suggesting that these distal peaks are slightly (1.7x) enriched for regulatory sites that 115 
define cell identity. To assign cell type annotations to each of these clusters, we 116 
generated “gene activity” scores that sum all ATAC inserts within each gene body and 117 
400 bp upstream of its transcription start site. This approach rests on the assumption 118 
that a chromatin-accessible site in the compact A. thaliana genome tends to be 119 
associated with regulation of its most proximal gene.22 While this assumption may not 120 
hold universally, gene activity scores offer the advantage of allowing a direct 121 
comparison to bulk ATAC-seq and single-cell RNA-seq datasets through a matched 122 
feature set. In this way, we identified genes whose accessibility signal specifically 123 
marks each cell cluster. We visualized peaks with cell type-specific accessibility by 124 
grouping cells of a similar type and “pseudo-bulking” their insert counts at each 125 
position in the genome (Figure 1B). Bulk and cell type-specific ATAC signal is similar 126 
to those obtained in prior whole tissue and cell type enrichment-based ATAC-seq 127 
studies for the root (Figure S1B, S1C, S1D).11  128 
 129 
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We used comparisons to tissue-specific genes that were identified from single-130 
cell RNA-seq studies of the A. thaliana root to assign a cell type to each cluster defined 131 
by ATAC markers from “gene activity” scores.2,5,6 We identified 210 genes with unique 132 
accessibility patterns across all cell types (Supplementary Table 2); FRIP scores, 133 
fragment lengths, and total read counts did not vary greatly across cell types (Figure 134 
S1E, S1F, S1G). For each cell type, the median number of genes with tissue-specific 135 
accessibility was 20 (range 5 to 53) (Figure 1C). This small number of genes is 136 
consistent with earlier studies that show few open chromatin sites that define cell type 137 
identity in A. thaliana.7,23 Although thousands of differentially accessible sites have been 138 
found across tissue types,7 accessibility differences between more closely related cell 139 
types remains largely unexplored, with the exception of root hair vs non-hair, in which 140 
few differences were found.7,11 These differences, uncovered using a cell-enrichment 141 
based technology,11 were replicated in the epidermal cells identified in our scATAC 142 
assay (Figure S1C, S1D). For three cell clusters (959 cells, or 18% of cells), we could 143 
not identify a coherent set of a markers and therefore could not annotate them (grey 144 
points, Figure 1A). However, all other cell clusters were manually annotated and 145 
corresponded to the major cell layers of the root (Figure S2A): outer layers including 146 
epidermis cortex, and a precursor of endodermis and cortex (ec pre); endodermal 147 
layers comprised of three distinct types (endo 1, 2, and 3); and the stele comprised of 148 
two main types along with a phloem type (stele phloem). Several traditional marker 149 
genes were used to facilitate annotation of root cell types (Figure S2B-D), as were 150 
marker genes identified in previous scRNA-seq studies (Supplementary Table 3). In 151 
general, scATAC marker genes did not show a strong overlap with RNA-based marker 152 
genes. Endodermis cells were an exception, as several of their scATAC marker genes 153 
(AT3G32980, AT1G61590, AT1G14580, AT3G22600, AT5G66390) were also found to 154 
be marker genes in single-cell RNA-seq studies.24 While this lack of overlap makes 155 
annotation more challenging, it is consistent with the reported weak correlation of 156 
chromatin accessibility with gene expression.23,25 Moreover, the finding that expression 157 
levels are not precisely predicted by nearby accessible sites suggests that accessibility 158 
can add orthogonal information about cell identity to further stratify cell types into 159 
distinct sub-types. 160 

 161 
Sequences motifs of transcription factor families associate with cell type-specific 162 
sites of open chromatin  163 

 164 
Accessibility at regulatory sites is driven by transcription factor binding and 165 

modification of local chromatin.26 We examined if any of the cell type-specific 166 
accessible sites were associated with the presence of transcription factor binding 167 
motifs. To do so, we used a set of representative motifs for all A. thaliana transcription 168 
factor families and nearly every individual transcription factor27 to tally these motif 169 
counts within all 21,889 peaks in the full scATAC-seq dataset to build a peak-by-motif 170 
matrix. As each peak can be described in terms of its relative accessibility in each of 171 
the identified cell types, we performed a linear regression for each motif to test for 172 
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significant association of accessibility and motif presence. Relative accessibility values 173 
were calculated by first pseudo-bulking all peak counts by cell type and then 174 
normalizing these cell type-specific peak accessibility scores to a background peak 175 
accessibility of all cells pooled together. By testing the association of motif counts and 176 
cell type-specific accessibility, we identified transcription factor binding motifs whose 177 
presence was correlated with higher accessibility in each cell type. However, because 178 
motif sequence content for individual transcription factors is redundant, we computed 179 
means across each transcription factor family. 180 

 181 
We found significant associations with motifs from at least one transcription 182 

factor family in all cell types (Figure 1D). For example, relative chromatin accessibility 183 
in epidermal cells was strongly associated (q-values ranging from 1e-24 to 1e-133) 184 
with the presence of motifs from the WRKY transcription factor family; this family 185 
includes TTG2, which, along with TTG1 and GL2, has important roles in atrichoblast 186 
fate in the epidermis.28 Furthermore, the effects of each motif family on relative 187 
accessibility was sufficient to hierarchically cluster cell types according to broad tissue 188 
classes (Figure 1D). Based on similarities in motif associations, hierarchical clustering 189 
grouped all stele clusters (1, 2, and 11), epidermis and cortex (clusters 0 and 3), two 190 
endodermis clusters (4 and 10), and another endodermis cluster with epidermal 191 
precursor cells (clusters 7 and 8). That motif associations alone can distinguish among 192 
clusters and group similar ones together provides independent verification of the cell 193 
type-specific nature of the chromatin-accessible sites detected in the scATAC-seq 194 
data.  195 

 196 
Integration of scATAC-seq and scRNA-seq data improves cell type annotation  197 
 198 

Because scATAC-seq data both identified known root cell types and provided 199 
novel cell identity assignments not identifiable through scRNA-seq, we addressed 200 
whether combining these two datasets results in additional insights than what could be 201 
gained from either alone. We first addressed whether both data types could be 202 
embedded in the same low-dimensional space in a manner that maintains the cell 203 
identities defined by both scATAC-seq and scRNA-seq. Such embedding assumes 204 
that the underlying cell identities represented in each dataset are similar. Although the 205 
root tissue sampled for our scATAC-seq experiment was not identical to that used in 206 
previous scRNA-seq experiments, we expected that the same major cell types were 207 
sampled in both experiments. Moreover, the data generated by both methods share 208 
“gene” as a feature, i.e. accessibility near or within a given gene; expression of a given 209 
gene. 210 

  211 
We used the anchor-based multimodal graph alignment tool from the Seurat 212 

package to find nearest-neighbor scRNA-seq matches for each cell in the scATAC-seq 213 
data.29,30 In short, the tool identifies representative features (shared “anchor” genes in 214 
our case) in each dataset and looks for underlying correlation structure of those 215 
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features to group similar cells in a co-embedded space. We plotted all cells within the 216 
resulting co-embedded space with cell type labels from each dataset separately. Cells 217 
derived from scRNA-seq and scATAC-seq experiments were well mixed (Figure 2A). 218 
Moreover, we found that cells of the same type were co-localized independent of the 219 
source data (Figure 2B, 2C), though some separation by data type was apparent, likely 220 
owing to the imputation step of dataset integration.29 This result suggests that RNA and 221 
ATAC signals, which are only poorly correlated in bulk studies, are capable of grouping 222 
cell identities when determined in individual cells of a complex tissue. We further used 223 
this co-embedded space to refine our earlier manual cell type annotations by 224 
transferring labels of neighboring scRNA cells onto the scATAC cells (Figure S3A, 225 
S3B); while most of these labels matched, the greatest number of mismatches was 226 
seen in endodermis sub-type 1. The transferred labels matched our manual 227 
annotations, and, in the case of epidermal cells, allowed us to separate a single 228 
scATAC cluster into hair and non-hair cells (Figure 2A, Figure S3A, S3B). Furthermore, 229 
this co-embedded space was additionally used to transfer quantitative metrics and 230 
gene expression values derived from scRNA-seq data (Figure S3C). The three distinct 231 
scATAC clusters that were assigned an “endodermis” label with this approach are a 232 
striking example of scATAC data yielding, within a single cell type, greater stratification 233 
of “types” than the generally richer scRNA data. 234 
 235 
Epidermal cell layers show increased levels of endoreduplication 236 
 237 

In contrast to scRNA-seq data, scATAC-seq data can provide insight into DNA 238 
copy number and its impact on gene regulation. DNA copy number is of special 239 
relevance in the A. thaliana root, as each cell layer undergoes different rates of 240 
endoreduplication.19 In a diploid cell, a single accessible locus tends to show 1 or 2 241 
transposition events. In polyploid cells with higher DNA copy number, a single 242 
accessible locus could show 4, 8, or even 16 transpositions. Therefore, cells containing 243 
a large number of peaks with >1 transposition event are likely to represent 244 
endoreduplicated cells. To identify such cells, we classified each cell by the mean 245 
number of cuts it contained per peak and examined the distribution of this metric, 246 
accounting for differences in total UMI counts (see Methods), to draw a threshold 247 
above which cells were classified as likely endoreduplicated (Figure S4A, S4B). We 248 
found the expected trend of higher endoreduplication in the outermost cell files, with 249 
reduced prevalence in the stele (Figure S4C).  250 

 251 
We then used a second method to identify endoreduplicated cells with a 252 

transcriptional signature. Instead of relying on the number of transpositions in the 253 
accessibility data directly, we instead leveraged the dataset integration described 254 
above (Figure S3C) to transfer scRNA-seq-based annotations to the cells in our 255 
scATAC experiment. To identify endoreduplicated cells in scRNA-seq data, we used a 256 
published set of marker genes for ploidy to generate signature scores for 2n, 4n, 8n 257 
and 16n ploidies.19 With these scores, we predicted endoreduplicated cells by 258 
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calculating, for each cell, the ratio of the 8n signature relative to the diploid signature. 259 
Similar to the accessibility-based metric, this transcription-based approach identified 260 
endoreduplicated root cells in the expected pattern, with higher fractions in the 261 
epidermis cell layer and diminished levels in the stele (Figure S4D, S4E). We found 262 
these two methods of identifying endoreduplicated cells to be concordant (Figure 263 
S4F), but because the accessibility-based classification was less quantitative, we used 264 
the transcriptionally-based metric in subsequent analyses. This metric captured an 265 
abundance of tetraploid xylem cells in the stele (Figure S4E), consistent with previous 266 
findings.19 267 
 268 
scATAC-seq captures three distinct endodermis types representing different 269 
developmental stages 270 
 271 

We dissected the three endodermis clusters in greater detail using three 272 
approaches: (i) by identifying differentially accessible sites among sub-types; (ii) by 273 
aligning these sub-types to scRNA-seq data that have been annotated for 274 
endoreduplication and developmental progression; and (iii) by determining differentially 275 
expressed genes in the nearest-neighbors to each of these endodermis sub-types in 276 
scRNA-seq space (Figure 3A).  277 
 278 

We identified few differentially accessible genes (adjusted p-value < 0.05 and at 279 
least 2-fold change in accessibility) in each endodermis sub-type: 25 for the first sub-280 
type, 24 for the second, and 17 for the third (Figure 3A). The low number of associated 281 
genes precluded gene set enrichment analyses, but genes uniquely accessible in sub-282 
type 1 included transcription factors MYB85 (AT4G22680) and NAC010 (AT1G28470) 283 
as well as genes involved in suberization (FAR1, FAR4, FAR5).31 Endodermis sub-type 284 
2 showed increased accessibility at HIPP04 (AT1G2900), encoding a heavy metal-285 
associated protein, ANAC038 (AT2G24430), and phenylpropanoid metabolism genes.32 286 
Endodermis sub-type 3 showed strong accessibility at the BLUEJAY (AT1G14580) 287 
locus encoding a C2H2 transcription factor implicated in endodermis differentiation 288 
(Figure 3B),33 as well as MYB122 (AT1G74080) and other genes for phenylpropanoid 289 
biosynthesis (PER22, PER32, PER72, BGLU32).32 We addressed whether these 290 
differentially-accessible genes show different expression patterns in endodermis cells 291 
in scRNA-seq space by mapping expression of each gene onto a subclustered set of 292 
endodermis cells combined from several scRNA-seq studies of the A. thaliana root.2–6 293 
The small set of marker genes identified for each scATAC sub-type showed no 294 
consistent expression pattern in the scRNA-seq data (Figure S5A), suggesting that 295 
other features distinguished these three sub-types. 296 
 297 

Structure within two-dimensional embeddings of scRNA-seq and scATAC-seq 298 
data derived from developing tissues is often associated with differences in 299 
developmental progression or other asynchronous processes like the cell cycle. 300 
Furthermore, root tissue has the unique feature of being highly endoreduplicated, 301 
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which could also account for differences among the sub-types. To assess whether the 302 
endodermal sub-types were associated with these features, we added annotations for, 303 
developmental progression, endoreduplication and cell cycle to the combined root 304 
scRNA-seq data and used data integration (as in Figure 2) to test whether cells from 305 
the endodermal sub-types were associated with any of these features (Figure S3C).  306 
 307 

We assessed developmental progression with two orthogonal methods: (i) 308 
correlation with published bulk expression data taken along longitudinal sections of the 309 
root;1 and (ii) a modified measure of loss in transcriptional diversity (see Methods), 310 
which correlates strongly with developmental progression in a large number of scRNA-311 
seq datasets, including of the Arabidopsis root.2,34 We found that the developmental 312 
progression metric as measured by loss in transcriptional diversity was strongly 313 
associated with the orthogonal correlation-based classification in cells derived from 314 
scRNA-seq alone (Figure S5B).34 For each cell of the endodermal sub-types, we 315 
calculated the average developmental progression of its 25 nearest neighbors among 316 
root scRNA-seq cells (Figure S5C, S5D and found, assigning this average to each 317 
scATAC endodermis cell, a trend of developmental progression among the endodermis 318 
sub-types (Figure 3C). This result was robust to changes in the number of neighbors 319 
used to identify similar cells from scRNA-seq data (Figure S5E). This trend was the 320 
same if we calculated the developmental progression metric based on scATAC-seq 321 
data alone (Figure S5F), though the correlation to the transcriptional metric was weak 322 
overall (Figure S5G).34 Cells from sub-type 1 were the least developed, while cells from 323 
sub-type 3 tended to co-occur with the most mature endodermal cells in the co-324 
embedded graph (Figure 3C). We conclude that the three endodermal sub-types 325 
primarily represent cells of differing developmental progression and that differences in 326 
chromatin accessibility are able to capture this stratification of endodermis maturity. 327 
 328 

Developmental progression in the root is associated with increased ploidy 329 
through endoreduplication.19 Using the transcriptional-based metric for 330 
endoreduplication described above, we examined the predicted ploidy of orthogonally-331 
classified cells derived from scRNA-seq (Figure S5H) and from the nearest RNA-seq 332 
neighbors of each endodermis sub-type (Figure S5I). We found that the younger 333 
endodermis sub-type 1 cells had mostly 2n neighbor cells, while the more mature sub-334 
types 2 and 3 had mostly endoreduplicated neighbor cells, with similar levels in each 335 
(Figure 3D). 336 
 337 

To better understand the differing transcriptional and chromatin accessibility 338 
patterns among endodermis sub-types, we analyzed differentially expressed genes 339 
from each endodermis sub-type. The early endodermis type, which is not yet 340 
endoreduplicated, showed an enrichment of genes (Supplementary Table 4) involved 341 
in Casparian strip formation (CASP3, CASP5) and wax biosynthesis (HHT1). The 342 
intermediate sub-type 2 also showed enrichment for genes involved in Casparian strip 343 
formation (CASP3, CASP4, CASP5, GSO1), as well as mechanosensitive ion channels 344 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2020.07.17.204792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.204792
http://creativecommons.org/licenses/by-nc/4.0/


 
   
 

9 
   
 

(MSL4, MSL6, MSL10) (Supplementary Table 5). The most advanced endodermis 345 
sub-type 3 showed enrichment for stress responses and metabolism of toxic 346 
compounds, kinase activity, and aquaporin water channels (Supplementary Table 6), 347 
consistent with this mature endodermis cell type modulating water permeability via 348 
aquaporins as well as through suberization.35 We also identified putative regulators of 349 
these stages by looking for transcription factors among the genes that showed 350 
specificity for each endodermis cluster. The earlier endodermis type showed a single 351 
upregulated transcription factor, ERF54, while the intermediate sub-type showed 14 352 
upregulated transcription factors, including KNAT7, SOMNUS, and HAT22. MYB36, 353 
which was found expressed in the later endodermis type, activates genes involved in 354 
Casparian strip formation and regulates a crucial transition toward differentiation in the 355 
endodermis.36 Because MYB36 regulates early steps of endodermis differentiation,3,36 356 
this result suggests that some more mature endodermis types may be absent in these 357 
data, perhaps due to technical differences in their ability to be lysed during nuclear 358 
extraction (see Methods). 359 

 360 
We used a list of known cell-cycle marker genes (Arabidopsis.org) to generate a 361 

signature score marking proliferating cells. This signature score identified cycling cells 362 
in other cell types, such as early epidermis cells near the quiescent center (Figure S6A, 363 
S6B) in a meta-analysis of previously published scRNA-seq data. However, when this 364 
signature score was transferred to the scATAC-seq endodermis clusters by the nearest 365 
neighbor procedure described in Figure S3C, we observed no differences 366 
corresponding to each endodermis sub-type (Figure S6C). We conclude that cell cycle 367 
does not distinguish the endodermis sub-types. 368 

 369 
Overall, the combined information gained from transcriptional signatures of 370 

developmental progression and endoreduplication highlights the importance of 371 
integrating both open chromatin and transcriptional profiling to identify cell types or 372 
cell states that may have otherwise been obscured in a single data type. 373 

 374 
Predicting regulatory events using integrated scRNA and scATAC data 375 

 376 
We previously identified transcription factor binding motifs that were enriched at 377 

cell type-specific peaks in the root (Figure 1D). While individual motifs may be 378 
associated with binding and activation by transcription factors, a sequence-level 379 
analysis cannot distinguish among the many members of plant transcription factor 380 
families that share near-identical sequence preferences. For example, WRKY family 381 
motifs were highly enriched among epidermis and cortex accessible sites, but this 382 
family contains >50 individual genes. In order to narrow down this list of genes to a few 383 
possible candidates, we leveraged our nearest-neighbor annotation approach (Figure 384 
S3C) to examine expression levels of all WRKY family transcription factors in the 385 
scATAC data (Figure 4A). Overall, we found that the majority of WRKY members 386 
showed expression in the epidermis, cortex or epidermal precursor cells (Figure 4A), 387 
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though some members showed stele-specific expression. To identify the most likely 388 
members to bind the abundance of motifs in epidermis-specific peaks, we ranked 389 
these genes by their specificity in the epidermis. The top four most epidermis specific 390 
genes, WRKY75, WRKY9, WRK6, and TTG2 (Figure 4A), have documented roles in 391 
root development.28,37–39 TTG2 showed strong specificity for the epidermis, but we also 392 
predict expression in some cortex and precursor cells (Figure 4B). Two key interacting 393 
factors of TTG2 that also contribute to epidermis development, GL2 and TTG1,40,41 394 
showed epidermis expression and had correlated patterns (Pearson correlation with 395 
TTG2 across cells for GL2 = 0.91, and TTG1 = 0.47) across all cells (Figure S7A, S7B). 396 

 397 
Given the important role of TTG2 in specification of atrichoblast fate in the 398 

epidermis, we examined the consequences of its expression on accessibility of 399 
individual peaks. Inference of individual regulatory events, particularly those involving 400 
transcription factors, has long been a goal of studies that profile accessibility at 401 
regulatory sites in bulk tissue. The varied cell states revealed by single-cell profiling 402 
data, even those within a cell type, allow higher-resolution inference of these events. 403 
To identify accessible sites that showed altered accessibility as a function of 404 
transcription factor expression, we used a linear regression approach. We identified 405 
617 peaks that showed significant (q-value < 0.05) associations with TTG2 expression 406 
levels (Supplementary Table 7). To visualize these associations using scATAC data, 407 
we pseudo-bulked epidermis, cortex, and c/e precursor cells into four equal-sized bins 408 
based on their level of TTG2 expression (Figure 4C). We observed peaks whose 409 
accessibility increases (Figure 4C, top and lower-left panels) and decreases (Figure 410 
4C, lower-right panel) in cells with increasing levels TTG2 expression. Most significant 411 
associations were positive, such that increased TTG2 expression led to increased peak 412 
accessibility (Figure 4D). Using DAP-seq data for TTG2, we examined whether peaks 413 
with either positive or negative associations contain TTG2 binding sites.27 Positive 414 
associations occurred whether or not a WRKY binding motif was present in the 415 
associated peak (Figure 4C, 4D), suggesting that the role of WRKY transcription 416 
factors in specification of the epidermis likely requires both direct and indirect 417 
regulatory events. Of peaks with significant (q-value < 0.05) positive associations with 418 
TTG2 expression, 80% of these contained a WRKY binding motif, while only 38% of 419 
the peaks with negative associations contained a binding motif (Figure 4D). Overall, 420 
this analysis identifies transcription factors and putative target sites that constitute 421 
regulatory events important for specifying cell types; these genes and regulatory sites 422 
are good candidates for further functional studies. 423 
 424 
Discussion 425 
 426 

By profiling chromatin accessibility in the A. thaliana root at single-cell 427 
resolution, we assessed cell types, developmental stages, the transcription factors 428 
likely driving these stages and DNA copy number changes. We assigned over 5,000 429 
root cells to tissues and cell types, demonstrating that these assignments are 430 
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concordant with single-cell transcriptomic studies. These results answer an unresolved 431 
question in plant gene regulation: does the paucity of dynamic open chromatin sites 432 
seen in bulk profiling experiments represent an accurate reflection of uniform gene 433 
regulation in A. thaliana or does it reflect a confounding effect of bulk studies? We 434 
found that distinct root cell types show unique patterns of open chromatin sites, with 435 
approximately 1/3 of all accessible sites showing cell type-specific patterns. This 436 
estimate greatly exceeds the earlier estimates from bulk studies of only 5-10% of 437 
accessible sites showing tissue- or condition-specificity,9 presumably due in part to 438 
tissue heterogeneity. 439 

 440 
Although this single-cell ATAC study discovered many more dynamic accessible 441 

sites, the correlation between dynamic accessibility and gene expression in single cells 442 
remained poor, reminiscent of the equally poor correlation seen in bulk studies. These 443 
data types would be integrated more faithfully in a true co-assay experiment.25,42 444 
Technical differences in nuclei versus cell-based assays, size selection, developmental 445 
stage, and sequencing depth may also contribute to differences between scRNA and 446 
scATAC datasets. While increasing the depth of our ATAC signal per cell may alleviate 447 
some of this noise, we argue that the poor correlation between chromatin accessibility 448 
and gene expression is not a function of data quality. Instead, we propose that this 449 
weak correlation reflects the complex nature of regulatory processes underlying 450 
development, and the differential aspects of regulation captured in scATAC-seq and 451 
scRNA-seq data, which were notably divergent in the scATAC-specific endodermis 452 
sub-types. Although the correlation of chromatin accessibility and gene expression is 453 
weak at the level of individual loci, either the entirety of a cell’s regulatory landscape or 454 
its transcriptome can independently capture its cell identity. It is this feature that allows 455 
joint co-embedding of both data types and the use of scRNA-seq data to annotate 456 
scATAC cells.  457 

 458 
Thus, while the patterns of both chromatin accessibility and gene expression 459 

contain information on cell identity and development, the relationships between these 460 
patterns are not well-ordered or parsimonious. For the many cells belonging to a 461 
distinct cell type, gene expression results from direct and indirect regulatory events 462 
involving tens or hundreds of transcription factors and chromatin remodelers that do 463 
not necessarily act in concert. For any individual locus, then, the expectation that 464 
average accessibility predicts average expression breaks down. Without a simple one-465 
to-one model to explain regulatory output, we are left with significant heterogeneity 466 
within and between cell types, and a subset of convergent expression or accessibility 467 
patterns that define cell type specificity. Alternative explanations for the discrepancy in 468 
accessibility and expression include: (1) maintenance of cell identity requires that a 469 
cell’s accessibility and expression profile stably reflect the convergent pattern for that 470 
cell type only a fraction of the time; and/or (2) cells have multiple accessibility and 471 
expression patterns that are sufficient to maintain cell identity and together constitute 472 
the convergent patterns we observe. In both scenarios, the heterogeneity in cell type 473 
specification will be buffered by factors outside chromatin accessibility or gene 474 
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expression, such as spatial location in tissue, metabolic determinants of cell function or 475 
developmental age.  476 
 477 

We posit that scATAC-seq data combined with scRNA-seq data will ultimately 478 
resolve these alternatives by enabling mechanistic models of gene regulatory 479 
networks. scATAC-seq data alone are sufficient to identify the full set of accessible 480 
sites in the Arabidopsis genome, and examination of the transcription factor motifs 481 
within these sites can enable predictions of regulatory networks. However, many plant 482 
transcription factor families are large, some containing over fifty members that 483 
recognize near identical motifs. Thus, the accessibility data must be integrated with 484 
single-cell expression data that capture cell type-specific expression of transcription 485 
factors in order to narrow down the most probable transcription factors that are 486 
enacting individual regulatory events. The simple regression framework provided in this 487 
work is only a small step toward more complicated models that capture other relevant 488 
sources of heterogeneity. Building higher resolution models of key regulatory events 489 
will require the expression level of individual transcription factors in a cell type, the 490 
accessibility of individual peaks in this cell type and the presence of binding motifs 491 
corresponding to the relevant transcription factors. Theoretically, a comprehensive 492 
capture of cell states with both open chromatin and transcriptional profiling will allow 493 
the ordering of gene regulatory events and the larger scale ordering of regulatory 494 
programs that underlie development. The ability to take single-cell measurements over 495 
distinct developmental stages will also increase the sampling of key regulatory events. 496 
Ultimately, achieving the goal of building models of gene regulatory events underlying 497 
development will require ever larger datasets to fully capture the range of possible cell 498 
states. 499 
 500 
In the future, single-cell studies of more complex plant tissues in crops and other 501 
species will necessitate larger numbers of profiled cells and higher numbers of cuts per 502 
cell. Deeper coverage in future datasets should enhance our ability to detect rare cell 503 
types and more confidently predict copy number from accessibility data alone. In this 504 
way, approaches that maximize the number of cells profiled at low cost, such as 505 
single-cell combinatorial indexing,43 will be critical. Annotation in future studies will also 506 
present a substantial challenge if a rich literature and genomic analyses, including 507 
single-cell transcriptome profiles, are not available. Nevertheless, as shown in this 508 
proof-of-principle study of the well-characterized A. thaliana root, the knowledge 509 
gained should eventually allow us to manipulate gene expression and organismal 510 
phenotype in a targeted manner. 511 
 512 
 513 
Methods 514 
 515 
Plant Material 516 
Genotype: Arabidopsis thaliana ecotype Col-0 INTACT line UBQ10:NTF::ACT2:BirA 517 
(available from ABRC, stock CS68649). Growth conditions: LD (16h light/8h dark), 22C, 518 
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∼100 μmol m2s, 50% RH. Sample: whole roots, harvested 12 days after germination, 519 
from seedlings grown vertically on MS + 1% sucrose, atop filter paper (to facilitate root 520 
harvesting).  521 
 522 
Nuclei Isolation and scATAC-seq  523 
Nuclei were isolated following a modified version of the protocol described in Giuliano 524 
et al., 1988, as follows:  1g of roots was split in two batches of 0.5g, and each batch 525 
chopped with a razor blade in 1 ml of Buffer A (0.8M sucrose, 10mM MgCl2, 25mM 526 
Tris-HCl pH 8.0 and 1x Protease Inhibitor Tablet).44 Extracts were combined, final 527 
volume increased to 5ml with  Buffer A, and incubated on ice for 10min, with gentle 528 
swirling. The combined extract was filtered through miracloth, passed through a 26ga 529 
syringe five times and re-filtered through a 40um cell strainer (BD Falcon). After 530 
centrifugation at 2,000g 5min, the pellet was resuspended in 1ml Buffer B (0.4M 531 
sucrose, 10mM MgCl2, 25mM Tris-HCl pH 8.0, 1x Protease Inhibitor Tablet, 1% Triton 532 
X - 100) and loaded atop a  2-step 25/75 Percoll gradient ( 1 volume  25% Percoll in 533 
Buffer B over 1 volume  75% Percoll in Buffer B).  After centrifugation at 2,500g for 534 
15min, nuclei were collected either at the 25/75 interface or in the subjacent 75 535 
fraction, washed with 5 vols of Buffer B and recovered by centrifugation at 1,700g for 536 
5min. The nuclei pellet was resuspended in 100ul Buffer B + 1% BSA and any nuclei 537 
clumps broken down by pipetting up and down multiple times. Nuclei yield with this 538 
protocol was ~ 94,000 nuclei per gram of roots (fresh weight).  539 
scATAC-seq libraries were built using the 10x Genomics Chromium Single Cell ATAC 540 
Solution platform, following manufacturer’s recommendations. Before transposition, 541 
nuclei were spun 5min at 1,500g and resuspended in 10x Genomics Diluted Nuclei 542 
Buffer, at a concentration of 3,200 nuclei/ul. 5ul of nuclei suspension were used for 543 
transposition (16,000 nuclei being the maximum input recommended for 10x 544 
Chromium, and 10,000 nuclei being the expected recovery). 545 
 546 
Combining and processing of root scRNA-seq data 547 
Samples were processed using the CellRanger v1.2.0 pipeline from 10X Genomics, 548 
including updated filtering of “halflet” cells that emerge due to multiply-barcoded 549 
droplets. 550 
 551 
Integration of scRNA and scATAC data 552 
The R package Seurat version 3.1.5 was used to align and co-embed the scATAC-seq 553 
data with scRNA-seq data published by Ryu et al. 2019, and to transfer cell type labels 554 
from the scRNA data to the scATAC data.30,45  555 
 556 
The standard workflow and default parameters as described in the Seurat vignette 557 
“PBMC scATAC-seq Vignette” (satijalab.org/seurat/v3.1/atacseq_integration_vignette) 558 
were used with the exception that all features (genes) were used when identifying 559 
transfer anchors and performing the co-embedding rather than a set of “variable” 560 
features as used in the vignette. Briefly this workflow is as follows:  561 
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An anchor set was established with the function FindTransferAnchors() linking the two 562 
datasets. Cell type annotations were transferred from the scRNA-seq data to the 563 
scATAC data using the function TransferData(). Imputed RNA-seq count data was 564 
generated for the scATAC cells, again using the TransferData() function. The imputed 565 
RNA data was then merged with the true scRNA-seq dataset and embedded in 2D 566 
UMAP space using Seurat functions.29  567 
 568 
A co-embedding was performed with a super-set of previously pubished scRNA-seq 569 
data.2,3,5 In the co-embedded space the scATAC-seq were found to be most closely 570 
co-located with data from root tips.5 Based on this observation co-embedding was 571 
performed with solely with root tip dataset.5 572 
 573 
Nearest neighbor analysis for transcriptional characterization of cells identified in 574 
scATAC assay 575 
 576 
To annotate cells from the scATAC-seq assay with transcriptional features, we used 577 
average feature values from the nearest RNA neighbors in our co-embedded data 578 
(Figure 2A). In short, the ‘distances’ package in R was used to extract cell labels for 579 
the 25 nearest neighbors of each scATAC cell. For a feature of interest (individual gene 580 
expression, cell-cycle signature score, endoreduplication signature score, 581 
developmental progression signature), we calculated the mean expression from the 25 582 
scRNA cells, and assigned that mean score to each ATAC cell (Figure S3C).  583 
 584 
Endoreduplication signatures  585 
 586 
We identified endoreduplicated cells using two different approaches, the first using 587 
scRNA data, and the second using scATAC data. In the first approach (as in Figure 588 
3D, Figure S4D, S4E, Figure S5B, S5I), validated sets of endoreduplication markers 589 
for 2N, 4N, and 8N cells were used to identify endoreduplicated cells in the scRNA 590 
data.19 We used the nearest neighbor approach described above to transfer this 591 
transcriptional signature to scATAC cells. The average expression of each gene group 592 
was computed for each individual cell, and subsequently averaged per cluster to 593 
generate cell type-specific levels of each ploidy signature. To identify clusters that 594 
were more likely to be endoreduplicated, rather than typical diploid cells, we examined, 595 
for each cluster, the ratio of the endoreduplicated signatures (4N or 8N) relative to the 596 
diploid (2N) signature. Clusters with a higher ratio are more likely to represent 597 
endoreduplicated cells. In the second approach (as in Figure S4A-C), the number of 598 
transposition events derived from scATAC data were used directly to identify 599 
endoreduplicated cells. We assumed that cells containing higher than average cuts per 600 
peak were more likely to be endoreduplicated, as the cut counts for a single peak in a 601 
diploid cell should rarely be above two. A peak with a cut count >2 may indicate an 602 
extra copy of the locus present in that cell. To identify cells more likely to be 603 
endoreduplicated, then, we examined the distribution of cuts per peak for all cells, but 604 
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found this metric was strongly correlated with total UMIs per cell. To account for 605 
contribution total UMIs per cell, we used the relationship between the cuts/feature and 606 
total UMIs per cell to compute a Loess model fit (Figure S4B). We then used residuals 607 
of this model as a metric to identify cells that have higher cuts/feature than would be 608 
expected based on their total UMIs. We set an arbitrary threshold of >1 SD in the 609 
distribution of each cell’s deviation from the fit line, and defined endoreduplicated cells 610 
as those beyond the threshold (Figure S4B). For each cell, a binary designation of 611 
endoreduplication was applied based on whether the cell crossed this threshold.  612 
 613 
Transcriptional diversity metric for developmental progression 614 
 615 
Using the general premise that the number of unique genes expressed (transcriptional 616 
complexity) tends to be reduced across the developmental trajectory of a cell type as it 617 
moves from earlier to later stages,13 we devised a metric to approximate relative 618 
differences in developmental progression among cells. Measuring the number of 619 
unique genes expressed is distinct from measuring the number of UMIs or transcripts 620 
captured per cell, which can vary across cell types. To account for differential recovery 621 
of UMIs across cells in the transcriptional complexity measure, we modeled as a Loess 622 
fit the relationship between total UMIs captured and the number of unique genes 623 
expressed per cell. With this fit, we identified cells that have many more or fewer 624 
unique genes expressed than would be expected for cells over a range of captured 625 
UMIs. Developmental progression for each cell was defined as the residual of each 626 
point in this fit, allowing separation of earlier cells (more unique genes expressed than 627 
would be expected for a given number of captured UMIs) from later cells (fewer unique 628 
genes expressed than would be expected for a given number of captured UMIs). 629 
 630 
Motif analysis 631 
 632 
Position weight matrices from the comprehensive DAP-seq dataset27 were used as 633 
input into FIMO46 to search for significant matches for each individual TF motif 634 
(adjusted p-value threshold < 1e-5) in each of the scATAC peaks. With the output of 635 
this motif scan, we generated a matrix that tallied counts of each individual motif within 636 
each peak. Each individual motif in the DAP-seq dataset27 has an associated TF family, 637 
and the counts per peak were averaged by family. To identify motifs whose counts 638 
were significantly associated with cell type-specific accessibility, we first generated, for 639 
each peak, a relative accessibility score by taking the mean accessibility of that peak in 640 
each cell cluster relative to the overall accessibility of that peak in all clusters. Next, we 641 
used a linear regression framework within Monocle347 to identify individual motifs 642 
whose counts showed strong positive or negative correlations with the cell type-643 
specific accessibility score in each cell cluster. The effect size of each motif’s 644 
contribution to cell type-specific accessibility is given as the 𝛽of the linear regression, 645 
shown as a mean across all transcription factors in the same family. 646 
 647 
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 648 
Data Availability 649 

An R object containing all accessibility and predicted expression data for each cell has 650 
been deposited to Dryad (accession number pending).  651 

Code Availability 652 

We have provided R markdown files with code blocks sufficient to complete the 653 
primary processing of the data, generation of scATAC and scRNA co-embedding, 654 
analysis of motifs, and identification of transcription-factor mediated regulatory events. 655 
(Github repository link pending). 656 
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Figure 1. scATAC-seq identifies known root cell types. 
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Figure 1. scATAC-seq identifies known root cell types. (A) UMAP dimensionality 
reduction plot of root cells using peak-level scATAC data. Cells are colored according 
to Louvain clusters, and broad tissue types are indicated with transparent shading. (B) 
Pseudo-bulked peak tracks generated by combining ATAC data from all cells within a 
cluster. Each column represents a single locus in the genome that shows cell type-
specific accessibility; each row represents a cell type, and each column shows an 
example marker peak for each type. Colors match those in previous panel. A cluster 
residing between the epidermis and endodermis clusters, with expression of markers 
from both cell types (Figure S2B, S2C) was given the label ‘c/e pre’ (precursor of 
cortex/endodermis, second row), and epidermis was shortened to ‘epi’. (C) Dotplot 
showing marker genes for each cell type cluster. Each column represents a single 
gene’s activity score, the summed accessibility of its gene body and promoter 
sequence (-400bp from transcription start site). The color of each dot indicates the 
magnitude of accessibility and the size of each dot represents the fraction of cells in 
each cell type showing accessibility at that gene. (D) Heatmap showing the predicted 
effect, across all peaks, of motifs from each Arabidopsis transcription factor family on 
cell type-specific accessibility. Darker shades of red indicate that presence of the motif 
is correlated with increased accessibility in that cell type, whereas shades of blue 
indicate that the motif is anti-correlated with accessibility. The mean effect all 
transcription factors within a given family are shown as rows, and each column 
represents a cell type. 
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Figure 2. scATAC-seq data can be integrated with scRNA-seq data to identify cell types.
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Figure 2. scATAC-seq data can be integrated with scRNA-seq data to identify cell 
types. (A) UMAP co-embedding of root scATAC cells alongside root scRNA cells.5 
Cells are colored by broad tissue type, with scATAC cells colored in lighter shades and 
scRNA cells in darker shades. (B) UMAP from (A), but showing only cells from the 
scATAC-seq experiment; (C) shows only cells from the scRNA-seq experiment. 
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Figure 3. scATAC-seq identifies distinct sub-types of endodermal cells.
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Figure 3. scATAC-seq identifies distinct sub-types of endodermal cells. (A) Violin 
plots showing specific patterns of accessible genes that mark each endodermal sub-
type. Two examples are given for each endodermal sub-type, with gene-level 
accessibility scores indicated for all other cell types. (B) UMAP of all cells colored by 
accessibility of the BLUEJAY gene, which marks endodermal type 3; corresponding 
violin plot for this gene in lower left panel in (A). (C) Boxplot showing an increase in 
median developmental progression of each endodermal sub-type, as determined by 
average transcriptional complexity in the nearest 25 scRNA neighbors of each scATAC 
cell in the co-embedded representation from Fig. 2A; right inset shows UMAP of 
endodermal cells with each cell colored by the average developmental progression of 
its scRNA neighbors, mirroring the gradual increase seen in left panel. (D) Boxplot 
showing an increase in median levels of endoreduplication across endodermal sub-
types, ascertained as in (C), but instead using a gene expression signature of 
endoreduplication; right inset shows UMAP of endodermal cells with each cell colored 
by the average endoreduplication score of its scRNA neighbors, with highest levels 
seen in endodermal sub-types 2 and 3.  
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Figure 4. Prediction of candidate regulatory transcription factors from integrated scATAC 
and scRNA data.
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Figure 4. Prediction of candidate regulatory transcription factors from integrated 
scATAC and scRNA data. (A) Dotplot heatmap showing predicted expression of all 
WRKY family transcription factors across all cells. The color of each dot indicates the 
magnitude of predicted expression of each gene and the size of each dot represents 
the fraction of cells in each cell type showing expression at that gene; genes (rows) are 
ordered by the specificity of their epidermis expression. (B) UMAP plot of cells derived 
from scATAC experiment, but colored by predicted expression of an epidermis-specific 
WRKY transcription factor, TTG2. (C) Pseudo-bulked accessibility tracks of epidermis 
peaks whose accessibility showed a significant association with predicted TTG2 
expression. Cells with higher TTG2 expression are shown in lighter shades. All panels 
show examples of significant (q < 0.05) positive associations of TTG2 expression with 
peak accessibility, with exception of the lower right panel. The presence or absence of 
a WRKY binding motif is indicated below each peak. (D) Barplot showing fraction of 
WRKY binding motifs in peaks of the epidermis, cortex, and pre-cursor type that 
showed significant association with TTG2 expression. Peaks whose accessibility 
showed positive associations with expression are labelled as “opening”; those with 
negative associations are labeled as “closing.” 
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Supplementary Figure 1. Quality of scATAC-seq data is comparable to bulk ATAC-seq data.
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Supplementary Figure 1. Quality of scATAC-seq data is comparable to bulk 
ATAC-seq data. (A) Scatterplot where each point represents peaks defined in the 
scATAC data. The x-axis shows the total cutcount within those peaks in bulk ATAC-
seq and the y-axis shows the total cutcount within those peaks in scATAC-seq. Point 
density is indicated by increasing shades of red. (B) Example genomic region showing 
bulk ATAC accessibility (green) and pseudo-bulked scATAC accessibility (brown). 
Gene models are indicated above. (C) Boxplots showing peaks from scATAC assay in 
bins of increasing accessibility from an alternative, cell type-enriched ATAC 
approach;11 peaks with low root hair cell-specific accessibility are in the leftmost bin, 
while those with the greatest root hair cell-specific accessibility are in the rightmost bin 
(n > 300 for all bins). Root hair-specific accessibility was defined as peak accessibility 
in INTACT-derived root hair cells relative to a bulk ATAC sample. The y-axis in the left 
panel denotes epidermis-specific accessibility determined from the scATAC 
experiment, defined by the accessibility of those peaks in epidermal cells relative to 
accessibility when all cell types are grouped (simulating a “bulk” sample). The y-axis in 
the right panel denotes the relative accessibility in stele cells as a control. (D) Identical 
to (C), except that peaks are grouped by relative accessibility in root non-hair cells, 
determined by an alternative cell type-enriched ATAC approach.11(E) Read recovery per 
cell: Left panel shows relationship between total reads recovered per cell (x-axis) and 
reads in peaks (y-axis). Areas with higher point density are shown as in (A). Right panel 
shows boxplots of total number of reads in peaks recovered for each cell type. (F) 
ATAC quality per cell: Left panel shows the overall distribution of fraction of reads in 
peaks (FRIP) across all cells, right panel shows distribution of FRIP scores for each cell 
type. (G) Read length distributions for all fragments separated by cell type.  
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Supplementary Figure 2. Accessibility and predicted expression levels of traditional marker 
genes in major cell layers of the root.
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Supplementary Figure 2. Accessibility and predicted expression levels of 
traditional marker genes in major cell layers of the root. (A) Schematic showing the 
major cell layers of the Arabidopsis root, colored as in Figure 1. (B) Marker gene plots 
for epidermis-specific genes showing accessibility (top) and predicted expression 
levels (bottom). Common and systematic gene names are indicated above. (C) As in 
previous panel, showing QC (AGL42), cortex (WOX5), and endodermis (SCR) markers. 
(D) As in previous panels, showing stele (WOL and MYB46) and phloem (SUC2 and 
APL) markers. 
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Supplementary Figure 3. Co-embedding of scATAC and scRNA data allows validation of cell type 
labels and annotation by RNA-derived features.
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Supplementary Figure 3. Co-embedding of scATAC and scRNA data allows 
validation of cell type labels and annotation by scRNA-derived features. (A) 
Confusion matrix showing the correspondence of manual cell annotations (x-axis) with 
those derived from the label-transfer from RNA to ATAC cells (y-axis). (B) UMAP of 
scATAC cells as in Fig. 1A, but cells are colored by the cell type label predicted from 
annotations of scRNA nearest neighbors. These cell type labels broadly match those 
predicted by manual annotation, and separate the epidermis cluster into hair and non-
hair cells. (C) Workflow schematic for annotation of scATAC-cells with transcriptional 
data. The 25 nearest RNA neighbors from each ATAC cell in the co-embedded graph 
(Figure 2A) were identified, and average expression of individual genes and signatures 
scores were computed and assigned to each scATAC cell. 
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Supplementary Figure 4. Approaches for identifying endoreduplicated cells in both scATAC 
and scRNA-seq data. 
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Supplementary Figure 4. Approaches for identifying endoreduplicated cells in 
both scATAC and scRNA-seq data. (A) UMAP plot of root scATAC cells, each 
colored based on whether that cell surpasses a threshold level of cuts per site. Red 
denotes cells predicted as having undergone endoreduplication. (B) Scatterplot 
showing the relationship between total UMIs per cell (x-axis) and cuts per peak (y-axis); 
this relationship was captured in a Loess fit (black line), which was used to determine a 
threshold for cells with higher cuts per peak than expected based on their total UMIs 
(cells colored in blue, see Methods for more detail). (C) Barplot showing the fraction of 
cells in each type that showed putative endoreduplication, as determined by the 
threshold drawn in (B). In general, outer cell layers showed higher fractions of 
endoreduplicated cells, while cell layers of the stele showed lower levels. (D) UMAP of 
root scRNA cells, each colored based on the expression level of a transcriptional 
signature for endoreduplication, as determined by a ratio of expression levels in genes 
previously determined as enriched in 8n cells over those enriched in 2n cells.19 (E) A 
known instance of endoreduplication in the stele, tetraploid xylem19, is identified by a 
metric similar to (D), except that cells are colored by signature for 4n cells (ratio of 4n-
specific genes to 2n-specific genes). (F) Boxplot showing the transcriptional-signature-
based endoreduplication metric compared to a binary classification of 
endoreduplication cells using scATAC data. scATAC cells with high levels of cutcounts 
at a single locus (suggesting endoreduplication, as in A-C) were analyzed in the co-
embedded graph with scRNA-seq cells to calculate the average level of the 
endoreduplication signature among each scATAC cell’s 25 nearest neighbors. The 
overall trend shows that the cutcount-based classification of endoreduplication is 
consistent with the transcriptional-signature-based metric (one-sided student’s t-test p 
< 1E-14). 
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Supplementary Figure 5. Characterization of endodermal sub-types with 
combined scATAC and scRNA-seq data. (A) UMAP of endodermal cells from 
multiple scRNA-seq studies, with previously-determined developmental stages 
highlighted.2 Inset shows variable expression patterns of genes with accessibility 
patterns specific to endodermal sub-type 3 in the scATAC data. (B) Boxplot showing 
that developmental progression scores are consistent with previously described 
annotations of developmental progression (early, middle, late) of the endodermis (all 
comparisons significant in one-sided students t-test p <1E-14).2 (C) Subset of co-
embedded UMAP from Figure 2A showing only endodermal cells; 25 nearest RNA 
neighbors for each endodermal type are indicated in shades of green. (D) As in (C), but 
shows RNA neighbor cells colored by transcription-based developmental progression 
metric. (E) Boxplots showing data from Figure 3C, with average developmental 
progression computed with different numbers of nearest neighbors. Above each plot, 
the number of neighboring cells (nn) from the scRNA-seq data used to predict 
developmental progression of each scATAC endodermal cell is shown. The relative 
differences in predicted developmental progression is insensitive to the number of 
nearest neighbors used in the procedure. (F) Boxplots showing levels of accessible 
genes (analogous to transcriptional complexity metric from Fig. 3C, only computed as 
total number of accessible genes rather than total number of transcribed genes). The 
overall trend remained the same, with progressive loss of complexity in the later 
endodermal types (significant for sub-type 1 vs 3, one-sided student’s t-test p-value = 
0.0032, not significant for other comparisons), but the ATAC-based metric showed less 
sensitivity than the RNA-based one. (G) Scatterplot showing poor correlation (PCC = 
Pearson correlation coefficient) of ATAC-based developmental progression score and 
the RNA-based score. (H) Boxplot as in (B), showing transcription-based 
endoreduplication scores (y-axis) for cells annotated for endodermal developmental 
stages by a previous scRNA-seq experiment (early and middle comparison not 
significant [ns], middle and late comparison, one-sided students t-test p <1E-14). (I) As 
in (D), with RNA neighbor cells colored by transcription-based endoreduplication 
metric.  
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Supplementary Figure 6. Dividing cells are present in the root, but do not distinguish 
endodermis sub-types
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Supplementary Figure 6. Dividing cells are present in the root, but do not 
distinguish endodermis types. (A) Boxplots showing levels of a cell-cycle signature in 
each scRNA-seq root cell type. (B) UMAP plot of combined root scRNA-seq studies 
with each cell colored by its expression the cell-cycle signature.32 (C) Cell-cycle 
signature predicted from nearest neighbors of endodermis types (as in Figure 3C, 3D) 
shows that proliferation is not a strongly distinguishing feature between the sub-types.  
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Supplementary Figure 7.  Identifying transcription factors involved in tissue specification.
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Supplementary Figure 7. Identifying transcription factors involved in tissue 
specification. (A) UMAP of scATAC cells colored by predicted expression level of 
epidermal specification factor GL2. (B) UMAP of scATAC cells colored by predicted 
expression level of epidermal specification factor TTG1. 
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