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Abstract   
Inherited   genetic   variation   contributes   to   individual   risk   for   many   complex   diseases   and   is   
increasingly   being   used   for   predictive   patient   stratification.    Recent   work   has   shown   that   genetic   
factors   are   not   equally   relevant   to   human   traits   across   age   and   other   contexts,   though   the   
reasons   for   such   variation   are   not   clear.    Here,   we   introduce   methods   to   infer   the   form   of   the   
relationship   between   genetic   risk   for   disease   and   age   and   to   test   whether   all   genetic   risk   factors   
behave   similarly.    We   use   a   proportional   hazards   model   within   an   interval-based   censoring   
methodology   to   estimate   age-varying   individual   variant   contributions   to   genetic   risk   for   24  
common   diseases   within   the   British   ancestry   subset   of   UK   Biobank,   applying   a   Bayesian   
clustering   approach   to   group   variants   by   their   risk   profile   over   age   and   permutation   tests   for   age   
dependency   and   multiplicity   of   profiles.    We   find   evidence   for   age-varying   risk   profiles   in   nine   
diseases,   including   hypertension,   skin   cancer,   atherosclerotic   heart   disease,   hypothyroidism   
and   calculus   of   gallbladder,   several   of   which   show   evidence,   albeit   weak,   for   multiple   distinct   
profiles   of   genetic   risk.   The   predominant   pattern   shows   genetic   risk   factors   having   the   greatest   
impact   on   risk   of   early   disease,   with   a   monotonic   decrease   over   time,   at   least   for   the   majority   of   
variants   although   the   magnitude   and   form   of   the   decrease   varies   among   diseases.    We   show   
that   these   patterns   cannot   be   explained   by   a   simple   model   involving   the   presence   of   
unobserved   covariates   such   as   environmental   factors.   We   discuss   possible   models   that   can   
explain   our   observations   and   the   implications   for   genetic   risk   prediction.     
  

Author   summary   
The   genes   we   inherit   from   our   parents   influence   our   risk   for   almost   all   diseases,   from   cancer   to   
severe   infections.    With   the   explosion   of   genomic   technologies,   we   are   now   able   to   use   an   
individual’s   genome   to   make   useful   predictions   about   future   disease   risk.    However,   recent   work   
has   shown   that   the   predictive   value   of   genetic   information   varies   by   context,   including   age,   sex   
and   ethnicity.    In   this   paper   we   introduce,   validate   and   apply   new   statistical   methods   for   
investigating   the   relationship   between   age   and   genetic   risk.    These   methods   allow   us   to   ask   
questions   such   as   whether   risk   is   constant   over   time,   precisely   how   risk   changes   over   time   and   
whether   all   genetic   risk   factors   have   similar   age   profiles.    By   applying   the   methods   to   data   from   
the   UK   Biobank,   a   prospective   study   of   500,000   people,   we   show   that   there   is   a   tendency   for   
genetic   risk   to   decline   with   increasing   age.    We   consider   a   series   of   possible   explanations   for   
the   observation   and   conclude   that   there   must   be   processes   acting   that   we   are   currently   
unaware   of,   such   as   distinct   phases   of   life   in   which   genetic   risk   manifests   itself,   or   interactions   
between   genes   and   the   environment.   
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Introduction   
Many   studies   have   demonstrated   the   potential   utility   of   using   genetic   risk   factors   for   predicting   
individual   risk   of   common   diseases,   ranging   from   heart   disease    (Ripatti   et   al.,   2010;   Rossouw,   
2002)    to   breast   cancer    (Mavaddat   et   al.,   2015)    and   auto-immune   conditions    (Cotsapas   et   al.,   
2011) .    Genetic   risk   coefficients   can   be   estimated   from   cross-sectional   genome-wide   association   
studies,   which   estimate   enrichment   of   common   genetic   variants   among   clinically-ascertained   (or   
sometimes   self-reported)   cases.    Genome-wide   scores,   typically   referred   to   as   polygenic   risk   
scores   (PRS),   are   usually   constructed   as   linear   combinations   of   individual   variant   effects,   
though   there   is   considerable   variation   in   how   variants   are   selected   for   inclusion   and   how   
coefficients   are   estimated    (Choi   et   al.,   2020) .    Nevertheless,   validation   on   independent   data   sets   
has   demonstrated   odds-ratios   for   PRSs   that   are   comparable   to   established   risk   factors,   both   
lifestyle-related    (Mosley   et   al.,   2020)    and   monogenic    (Khera   et   al.,   2018) ,   thus   providing   an   
impetus   for   their   adoption   within   health   management,   both   at   individual   and   population   levels;   
though   see    (Mosley   et   al.,   2020) .   
  

One   aspect   of   genetic   risk   estimation   that   has   received   relatively   little   attention   is   the   role   of   age  
in   modulating   effects.    Several   studies   have   identified   variants   that   influence   age-at-onset   for   
diseases   including   type   1   diabetes    (Ide   et   al.,   2002)    ,   Alzheimer’s   disease    (Wollmer   et   al.,   2003)   
and   multiple-sclerosis    (Moutsianas   et   al.,   2015) .    Often,   variants   identified   are   the   same   as   
those   affecting   lifetime   risk.    Similarly,   individuals   with   high   PRS   risk   tend   to   have   earlier   
age-at-onset   than   those   who   have   low   genetic   risk,   but   nevertheless   get   the   disease    (Harbo   et   
al.,   2014;   Nalls   et   al.,   2015)    and   genetic   analyses   of   quantitative   traits   including   blood   pressure,   
lipid   levels   and   BMI   have   identified   genetic   variants   whose   effect   size   changes   with   age   
(Dumitrescu   et   al.,   2011;   Lasky-Su   et   al.,   2008;   Mostafavi   et   al.,   2020;   Shi   et   al.,   2009;   Simino   et   
al.,   2014) .    These   results   raise   the   possibility   that   genetic   risk   factors   may   play   larger   or   smaller   
roles   in   influencing   risk   of   disease   during   different   age   intervals.    However,   the   longitudinal   
analysis   of   disease   risk   has   to   account   appropriately   for   the   selection   bias   that   arises   in   
age-stratified   analyses;   even   under   a   time-invariant   proportional   hazards   model,   those   entering   
the   disease   state   earliest   will   tend   to   be   those   with   the   highest   burden   of   risk   factors.   This   can   
be   particularly   problematic   when   not   all   risk   factors   are   measured,   as   hidden   risk   factors   will   act   
to   apparently   dilute   risk   over   time,   a   phenomenon   typically   referred   to   as   frailty   in   the   
epidemiological   modelling   literature    (Aalen,   1988;   Govindarajulu   et   al.,   2011;   Lin   et   al.,   1998) .   
  

Here,   we   address   two   open   questions   in   the   analysis   of   longitudinal   genetic   risk   for   common   
disease.    First,   we   introduce   a   method   to   infer   the   nature   of   the   relationship   between   age   and   
genetic   risk   for   individual   variants   that   is   appropriate   for   censored   data   such   as   that   available   
from   biobanks.   Because   the   information   available   for   single   variants   is   relatively   weak,   we   use   a   
Bayesian   clustering   approach   to   identify   sets   of   variants   that   show   similar   profiles   of   risk   with   
age.   On   applying   the   method   to   data   from   the   UK   Biobank   on   24   common   diseases,   our   primary   
finding   is   that,   in   agreement   with   previous   observations,   where   we   find   evidence   for   non-uniform   
risk   profiles,   genetic   factors   most   strongly   influence   risk   of   early   disease.    However   the   
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quantitative   nature   of   the   relationship   between   genetic   risk   and   age   varies   among   diseases   and,   
for   some,   we   find   evidence   for   multiple,   distinct   profiles   of   age-varying   risk.   Second,   we   consider   
whether   observed   patterns   can   potentially   be   explained   by   the   presence   of   unmeasured   risk   
factors.    To   achieve   this,   we   fit   parametric   models   that   accommodate   unmeasured   variation   in   
risk   to   age-varying   incidence   and   use   these   models   to   predict   the   drop-off   in   apparent   genetic   
risk   that   could   be   attributed   to   frailty.    We   find   that   the   observed   drop-off   in   risk   has   a   
qualitatively   different   profile   from   that   expected   from   simple   models   of   frailty.    Rather,   our   
observations   argue   for   greater   biological   complexity,   such   as   genetic   risk   primarily   affecting   
developmental   phases   in   the   evolution   of   individual   liability   or   the   presence   of   interactions   
among   risk   variants   and   environment.   

Results   

Data   preparation   
We   used   the   genotype   data,   individual   information   and   Hospital   Episode   Statistics   (HES)   data   
from   409,694   individuals   of   British   Isles   ancestry   in   the   UK   Biobank   dataset    (Bycroft   et   al.,   
2018) .   We   identified   24   disease-specific   ICD-10   codes   (Table   1;   Table   S1)   with   a   prevalence   >   
0.5%   and   for   which   at   least   20   independent   associated   variants   were   identified   using   the   
TreeWAS   model    (Cortes   et   al.,   2020) .    For   each   ICD-10   code,   we   combined   the   primary   and   
secondary   diagnosis   from   the   full   HES   data   set.   We   used   the   starting   date   of   the   first   episode   
that   records   the   disease   diagnosis   to   compute   age   for   first   disease   onset   (the   difference   
between   onset   date   to   the   month   of   birth   rounded   to   the   nearest   year).   The   age   at   observation   
endpoint   is   recorded   as   either   the   age   of   individuals   at   the   last   update   of   the   data   set   (here   
2018-02-14)   or   the   age   of   death   if   a   death   event   is   recorded.   We   used   eight   age   intervals   of   five   
years   each.     
  

Age-profiles   for   genetic   risk   scores   
To   first   demonstrate   that   age-varying   genetic   risk   is   a   common   feature   of   complex   disease   we   
estimated   genetic   risk   coefficients   through   logistic   modelling   of   a   training   case-control   study   
(across   all   ages)   and   then   assessed   the   efficacy   of   a   combined   genetic   risk   score   to   differentiate   
between   cases   and   controls   within   each   age   group   in   an   independent   testing   set   (see   Methods,   
Fig   1   and   Fig   S1).    For   many   diseases,   and   notably   those   identified   later   as   having   statistically   
significant   evidence   for   non-uniform   genetic   risk   profiles,   we   found   a   typically   decreasing   risk   
profile.    For   example,   the   odds-ratio   for   the   90th   percentile   of   GRS   for   I25.1   “atherosclerotic   
heart   disease   of   native   coronary   artery”   drops   from   3.63   in   the   youngest   age   group   to   1.77   in   
the   eldest.    We   also   note   while   some   disorders,   such   as   E78.0   “pure   hypercholesterolemia”,   
show   a   very   dramatic   decrease   in   risk   between   the   youngest   age   groups,   others,   such   as   a   I10   
“essential   (primary)   hypertension”,   show   a   much   more   gradual   decline.    These   results   suggest   
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that   the   relationship   between   genetic   risk   and   age   varies   among   diseases   and   may   indeed   vary   
among   variants,   and   motivates   a   more   principled   approach   to   the   analysis   of   such   data.   
  

Statistical   inference   of   age-varying   genetic   risk   with   multiple   
variant   categories   
To   estimate   age-specific   effects   of   variants   we   divided   age   into   eight   age   intervals   and   used   an   
interval-censoring   approach   in   which   the   hazard   rate   for   the   risk   factor   is   estimated   by   
comparing   those   whose   first   disease   event   occurs   during   the   interval   in   question   to   those   who   
have   a   non-disease   censoring   event   during   the   interval   (such   as   death   from   a   different   disease,   
or   drop-out   from   the   study   for   reasons   unrelated   to   disease)   along   with   those   who   have   neither   
a   disease   nor   a   censoring   event   during   the   interval   (Fig   2).    For   a   given   variant,   we   estimated   
the   effect   size   and   its   standard   error   for   each   interval   using   a   proportional-hazards   approach,   
matching   additional   covariates   such   as   date   of   birth,   sex,   BMI   and   40   genetic   principal   
components   (see   Methods).    Effect   sizes   for   individual   SNPs   were   estimated   in   both   univariate   
and   multivariate   settings   (see   below).    Because   estimated   variant-interval   coefficients   have   high   
uncertainty,   we   used   a   Bayesian   clustering   approach   to   estimate   latent   profiles   of   age-specific   
genetic   risk,   encouraging   smoothness   of   profiles   through   spline   functions.    Finally,   to   test   for   
deviations   from   homogeneity   of   risk   over   age,   and   to   test   for   the   presence   of   multiple   
age-specific   risk   profiles,   we   used   a   permutation   strategy.    Full   details   of   the   methods   are   given   
in   the   Methods   and   Analytical   Note.   
  

To   evaluate   the   methodology   under   the   assumptions   of   the   fitted   model,   we   used   stochastic   
simulation,   varying   the   number   of   distinct   profiles   and   their   departure   from   uniformity.    We   first   
considered   a   likelihood   ratio   test   (LRT)   approach,   fitting   a   linear   model   for   risk   profiles   over   age.   
Under   realistic   assumptions   about   the   magnitude   of   effect   sizes   and   number   of   associated   
variants   we   found   that   the   multivariate   approach   is   well-calibrated   in   its   rejection   of   the   null   
model   of   uniformity   (i.e.   when   effect   sizes   are   constant   over   time   the   LRT   test   has   a   false   
positive   rate   of   0.048   at   P   ≤   0.05).   When   effect   sizes   are   the   same   for   all   variants   but   these   
change   by   at   least   0.6%   per   year   (either   increasing   or   decreasing),   our   approach   has   over   90%   
power   to   reject   uniformity   (Fig   3A).    When   quadratic   polynomials   were   used   to   capture   a   wider   
range   of   possible   risk   profiles,   we   found   that   the   LRT   was   less   well   calibrated   under   the   null   
(false   positive   rate   of   0.0725   at   P   ≤   0.05;   Fig   3A),   hence   we   adopted   a   permutation   strategy   for   
analysing   empirical   data.   When   applying   the   quadratic   model   to   data   simulated   under   a   linear   
profile,   we   find   a   good   match   between   true   and   inferred   profiles   (Fig   3B).   
  

To   simulate   multiple   cluster   profiles,   we   modelled   10%   of   the   variants   as   having   a   shared   linear   
slope   (the   remainder   being   constant   over   age)   and   used   a   LRT   to   assess   the   evidence   for   
multiple   risk   profiles.    Here,   we   found   that   a   4%   per   year   change   in   risk   was   required   to   achieve   
90%   power   (at   P   ≤   0.05)   to   detect   multiple   clusters   (Fig   3C).    Under   the   null   (all   variants   have   a   
constant   profile)   the   test   has   a   false   positive   rate   of   0.063   for   the   linear   and   0.088   for   the   
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quadratic   polynomial   fitting   at   P   ≤   0.05.    When   using   the   quadratic   model   to   fit   risk   profiles   we   
find   a   good   match   between   true   and   inferred   profiles   (Fig   3D).    We   therefore   conclude   that   the   
approach   has   sufficient   power   to   detect   deviations   from   constant   profiles   and   provide   unbiased   
estimates   of   risk   profiles   in   data   sets   of   comparable   size   and   complexity   to   the   UK   Biobank.   
When   analysing   multiple   diseases   we   used   a   FDR   approach   to   correct   for   multiple   testing.   

Application   to   common   diseases   in   the   UK   Biobank   
To   formally   consider   evidence   for   a   non-linear   relationship   between   genetic   risk   and   age   for   the   
24   diseases   in   Table   1,   we   applied   the   novel   methods   outlined   above.    When   effects   for   variants   
are   estimated   jointly   and   fitted   to   a   linear   latent   profile,   we   identified,   through   permutation,   nine   
diseases   with   evidence   (P   <   0.05)   of   a   departure   from   uniform   genetic   risk   over   age   (Table   1).   
These   are:   C44.3   “other   and   unspecified   malignant   neoplasm   of   skin   of   other   and   unspecified   
parts   of   face”;   C44.5   “unspecified   malignant   neoplasm   of   skin   of   trunk”;   E03.9   “hypothyroidism,   
unspecified”;   E78.0   “pure   hypercholesterolemia”;   I10   “essential   (primary)   hypertension”;   I20.9   
“angina   pectoris,   unspecified”;   I25.1   “atherosclerotic   heart   disease   of   native   coronary   artery”;   
I25.2   “Old   myocardial   infarction”   and;   K80.2   “calculus   of   gallbladder   without   cholecystitis”.   All   
diseases   have   Q   <   0.1   after   FDR   analysis.   To   model   non-linearity   we   compared   polynomial   and   
cubic   spline   models   with   different   degrees   of   freedom   (Fig   S3)   and   selected   the   quadratic   
polynomial   model   using   likelihood   ratio   tests.   No   additional   diseases   were   identified   as   having   
non-constant   risk   profiles   when   fitting   a   quadratic   polynomial   and   only   four   of   the   original   nine   
(E78.0,   I10,   I25.1   and   C44.5)   remain   significant   (Table   1).    However,   we   find   one   additional   
disease   (I20.0   “unstable   angina”)   and   three   of   the   above   diseases   (C44.3,   E78.0   and   I25.1)   
show   evidence   for   more   than   one   age-related   risk   profile   (P   <   0.05;   Table   1,   though   only   I25.1   
has   Q   <   0.1).     
  

As   in   the   genetic   risk   score   analysis,   a   common   feature   of   the   estimated   risk   profiles   over   age   is   
a   trend   towards   smaller   effect   sizes   with   increasing   age   (Fig   4A-D).    For   example,   for   I25.1,   we   
find   posterior   of   effect   size   drops   by   50%   from   45   years   old   to   75   years   old   and   for   C44.5   we   
find   the   posterior   drops   by   58%   over   the   same   interval.   (Table   S2).    Where   diseases   may   have   
multiple   risk   profiles   (Fig   4E-F),   at   least   one   of   these   is   also   typically   decreasing   with   age.   
Profiles   for   all   24   diseases   are   shown   in   Fig   S4   and   Fig   S5.    We   find   no   compelling   examples   of   
increasing   risk   over   age.    These   results   are   consistent   with   the   effects   of   genetic   risk   factors   to   
have   a   larger   impact   on   the   risk   of   early   disease    (de   Miguel-Yanes   et   al.,   2011;   Mostafavi   et   al.,   
2020) ,   rather   than   late   disease,   though   it   is   important   to   note   that   the   absolute   rate   of   disease   
typically   increases   with   age   for   all   diseases   studied   here.    Estimates   of   genetic   risk   profiles   
(under   a   model   of   one   variant   class)   are   provided   in   Table   S3.   
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The   impact   of   unobserved   risk   factors   
One   possible   explanation   for   the   decreasing   impact   of   genetic   risk   is   the   presence   of   
unobserved   risk   factors.    For   any   causal   covariate   of   interest,   the   presence   of   unmeasured   and   
causally-associated   uncorrelated   covariates   has   the   effect   of   generating   (at   the   population   level)   
additional   variability   in   hazard   rates,   centred   on   the   effect   size.    Such   heterogeneity,   historically   
referred   to   as   frailty   in   epidemiology    (Govindarajulu   et   al.,   2011) ,   has   the   potential   to   induce   bias   
in   effect   sizes   over   time,   somewhat   remarkably   even   if   independent   of   the   covariate   of   interest,   
due   to   the   increased   rate   at   which   individuals   with   high   unmeasured   risk   enter   into   a   disease   
state.    Over   time,   those   individuals   with   a   risk-increasing   covariate,   but   who   do   not   have   the   
disease,   will   become   enriched   for   a   protective   background.    Frailty   will   thus   tend   to   lead   to   an   
underestimate   of   true   effect   sizes   in   older   populations   and,   consequently,   can   even   lead   to   
biased   effect   size   estimates   (typically   underestimates)   in   regression   analysis   of   the   entire   cohort   
(Lin   et   al.,   1998) .   To   demonstrate   the   impact   of   such   covariates   we   repeated   the   simulations   
under   a   constant   risk   profile,   but   multiplied   individual   risk   by   an   unobserved   factor   that   is   
generated   from   a   gamma   distribution   (Fig   S1A).   We   find   that   our   test   for   age-dependence   has   a   
false   positive   rate   of   above   0.05   if   the   variance   in   risk   is   greater   than   0.1   of   the   mean   (Fig   S1B).   
  

To   investigate   the   extent   to   which   unmeasured   genetic   factors   might   be   responsible   for   the   
diminishing   of   risk   over   time   we   first   compared   the   results   of   univariate   and   multivariate   
analyses   of   the   variants   analysed   here   (Fig   5A).     We   found   that   results   were   essentially   
identical   under   the   two   approaches,   suggesting   that   genetically-arising   frailty   cannot   explain   the   
pattern.    We   next   attempted   to   estimate   general   parameters   of   frailty   using   incidence   data   from   
the   UK   Biobank   by   fitting   a   parametric   model   in   which   the   underlying   disease   incidence   
(baseline   hazard   rate)   increases   in   proportion   to   age   as   a   power   function   of   age,   but   where   
there   is   a   distribution   of   rates   within   the   population,   parameterised   as   a   gamma   distribution   with   
a   mean   of   one   and   an   unknown   variance    (Aalen,   1988;   Vaupel   et   al.,   1979) ;   see   Methods   and   
Analytical   Note.    Estimates   of   parameters   are   provided   in   Table   S4,   along   with   the   significance   
value   for   a   goodness-of-fit   test   for   the   inferred   model.    We   find   substantial   variation   across   
diseases   in   the   inferred   parameters.    For   example,   the   baseline   hazard   rate   of   K80.2   “calculus   
of   gallbladder   without   cholecystitis”   is   estimated   to   increase   proportional   to   age   to   the   power   of   
1.9,   but   with   substantial   frailty   (scale   parameter   =   1.87,   goodness-of-fit   P   =   0.93;   Fig   5B).    In   
contrast,   the   baseline   hazard   rate   of   C44.3   “other   and   unspecified   malignant   neoplasm   of   skin   
of   other   and   unspecified   parts   of   face”   is   estimated   to   increase   more   rapidly   with   age   (power   of   
3.58),   but   with   lower   frailty   (scale   parameter   =   0.94;   P   =   0.76).   It   should   be   noted   that   the   simple   
parametric   model   can   be   rejected   at   P   <   0.01   for   only   one   (J45.9,   “other   and   unspecified   
asthma”)   of   the   24   disorders,   with   the   main   discrepancy   being   a   reduction   in   incidence   among   
the   eldest   UK   Biobank   participants   compared   to   the   fitted   model,   which   may   potentially   be   
explained   by   selection   bias   in   recruitment   and   competing   risks   of   multi-morbidity.    We   note   that   
the   estimated   magnitude   of   frailty   is   typically   sufficient   to   lead   to   an   elevated   false   positive   rate   
of   the   test.   
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Previous   work   has   demonstrated   that   the   magnitude   of   the   diluting   impact   of   frailty   on   effect   
sizes   in   longitudinal   models   can   be   predicted   using   the   incidence   and   frailty   distribution   
parameters    (Aalen,   1988) ;   notably   the   implied   effect   size   at   a   given   age   is   reduced   by   a   factor   
proportional   to   the   prevalence   at   that   age   multiplied   by   the   variance   of   frailty   distribution;   see   
Methods.    We   therefore   compared   inferred   (univariate)   curves   for   genetic   variants   against   that   
implied   by   the   fitted   frailty   model   (Fig   5C).    In   17   of   the   24   diseases   we   find   that   while   the   
estimated   frailty   predicts   a   decreasing   genetic   effect   size   with   age,   the   observed   decrease   both   
starts   earlier   and   is   of   a   larger   magnitude   than   expected   (Fig   S8;   Fig   S9).    Importantly,   the   
estimated   effect   size   tends   to   decrease   substantially   even   when   the   prevalence   of   the   disease   
is   very   low.    We   therefore   conclude   that,   even   after   accounting   for   independent   unmeasured   
factors   that   influence   disease   risk,   genetic   risk   decreases   with   age.   

Discussion   
Genetic   factors   influence   lifetime   risk   for   common   and   complex   diseases   through   modulating   a   
large   number   of   molecular,   cellular   and   tissue   phenotypes,   many   of   which   are   also   likely   to   be   
affected   by   acute   exposure   and   persistent   environment    (Bønnelykke   &   Ober,   2016;   Corominas   
et   al.,   2014;   Stranger   et   al.,   2017) .    Despite   such   complexity,   remarkable   progress   has   been   
made   in   identifying   factors,   both   genetic   and   non-genetic,   that   influence   risk,   each   of   which   may   
only   have   a   small   effect,   but   which,   in   aggregate,   have   substantial   and   clinically   relevant   
predictive   value    (Gandal   et   al.,   2016;   Jostins   &   Barrett,   2011;   Manolio,   2013) .    To   date,   relatively   
little   attention   has   been   paid   to   the   extent   to   which   risk   prediction   can   be   improved   by   allowing   
genetic   risk   to   be   modulated   by   context,   such   as   age,   sex   and   environment,   though   see    (Favé  
et   al.,   2018;   Mühlenbruch   et   al.,   2013) .    Here,   we   set   out   to   measure   how   one   specific   aspect   of   
individual   context,   namely   age,   has   a   modulating   effect   on   genetic   risk.    For   example,   whether   
there   are   windows   during   which   genetic   risks   are   particularly   relevant   to   disease   and,   
conversely,   other   windows   in   which   genetics   plays   a   lesser   role.    The   methods   introduced   here   
provide   a   flexible   framework   in   which   to   address   this   question,   as   well   as   considering   
heterogeneity   among   diseases   and   classes   of   variants.   
  

By   applying   the   methods   to   data   from   the   UK   Biobank,   we   have   identified   four   aspects   of   the   
relationship   between   age   and   genetic   risk.    First,   we   have   shown   that   for   many   diseases,   but   
certainly   not   all,   there   is   statistical   support   for   a   non-constant   relationship   between   age   and   the   
influence   of   genetic   risk.    Second,   in   such   cases,   genetic   risk   has   the   greatest   effect   at   earlier   
ages,   though   the   magnitude   and   form   of   the   drop-off   varies   among   diseases.    This   result   agrees   
with   and   generalises   earlier   reports   carried   out   using   approaches   that   do   not   address   the   
selection   biases   inherent   in   stratified   analysis   of   longitudinal   data.    (Aalen,   1988;   Mostafavi   et   al.,   
2020;   Vaupel   et   al.,   1979)     Third,   there   is   relatively   little   evidence   for   different   groups   of   variants   
having   substantially   different   relationships   between   age   and   risk;   where   we   identify   weak   
evidence   for   multiple   classes,   the   differences   are   in   terms   of   the   magnitude   of   the   downward   
slope.    Fourth,   the   drop-off   in   risk   with   age   cannot   be   ascribed   to   hidden   variation   in   
unmeasured   risk   factors,   though   as   discussed   below,   this   may   reflect   the   presence   of   biological   
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processes   that   are   poorly   captured   through   the   widely-used   proportional-hazards   model.    We  
note   that   the   drop-off   in   impact   of   genetic   risk   factors   does   not   mean   that   they   are   not   relevant   
in   predicting   later   disease,   which   is   typically   when   most   diseases   occur.    Rather,   our   results   
imply   that   the   factor   by   which   genetic   risk   factor   increases   risk   above   baseline   for   someone   in   
their   40s   may   be   exponentially   higher   than   for   an   equivalent   person   in   their   late   70s   (Table   S5).   
For   example,   the   factor   by   which   being   in   the   highest   decile   of   genetic   risk   for   I25.1   
“atherosclerotic   heart   disease   of   native   coronary   artery”   increases   incidence   over   baseline   
between   45   to   50   years   old   is   6.62,   compared   to   only   2.4   between   70   to   75   years   old.     
  

What   biological   processes   could   lead   to   a   diminished   influence   of   genetic   risk   over   time?   
Genetic   risk   factors,   unlike   environmental   ones,   are   present   from   birth,   while   non-genetic   risk   
factors   tend   to   accumulate   and   evolve   over   time.   Such   a   difference   could   lead   to   a   reduced   
impact   of   genetics   over   time   if   genetic   risk   primarily   influences   developmental   pathways,   while   
non-genetic   risk   affects   separate   and   later-impacting   pathways,   such   as   those   involved   in   adult   
homeostasis   (Fig   6A).    However,   there   are   several   contexts   where   genetic   and   non-genetic   risk   
are,   at   least   in   part,   mediated   by   the   same   factor,   such   as   the   impact   of   LDL   cholesterol   on   
cardiovascular   disease.    In   such   cases,   statistical   interactions   between   genetic   factors   and   the   
environment   (or   potentially   among   genetic   risk   factors)   could   have   a   diluting   effect   on   genetic   
risk   in   a   manner   similar   to   frailty   (Fig   6B).    Here,   an   interaction   means   that   the   combined   effects   
of   the   genetic   and   non-genetic   risk   factors   is   worse   than   expected   from   their   independent   
contributions.    Biologically,   such   an   interaction   could   arise   from   threshold   models   of   
homeostasis   (meaning   the   system   can   buffer   only   up   to   a   certain   level   of   challenge),   though   
many   other   biological   processes   could   potentially   lead   to   statistical   interactions   at   the   population   
level.    Proportional   hazards   models,   which   assume   that   risk   factors   multiply   an   underlying   
hazard   rate,   cannot   capture   such   time-varying   influences.    Generalised   risk   processes   such   as   
threshold   models    (Duggirala   et   al.,   1997)    provide   a   potentially   richer   framework   for   modelling   
such   effects.   
  

Whatever   the   cause   of   age-varying   genetic   risk,   our   results   have   several   implications   for   the   use   
of   genetic   risk   factors   in   the   genetic   analysis   and   prediction   of   disease   risk.    Most   obviously,  
genetic   risk   prediction   for   early   disease   is   likely   to   be   more   effective   than   for   later   disease.   For   
most   of   the   diseases   studied   here,   the   inference   of   a   single   age-profile   does   mean   that   the   rank   
order   of   genetic   risk   for   an   individual   is   stable   over   time.   However,   it   implies   that   integrated   
prediction   from   genetic   and   non-genetic   risk   factors    (Aschard   et   al.,   2012;   Kraft   et   al.,   2007;   
Thomas,   2010)    will   have   to   consider   the   evolving   contribution   of   genetics   over   age.    For   
diseases   with   multiple   age   profiles,   even   the   rank   order   of   genetic   risk   among   individuals   could   
change   over   time.    Finally,   because   contexts   beyond   age,   such   as   sex   and   environment,   
modulate   genetic   risk    (Mostafavi   et   al.,   2020;   Ober   et   al.,   2008;   Thomas,   2010) ,   each   of   these   
will   induce   its   own   age-specific   profiles.    As   a   consequence,   effective   genetic   prediction   will   
most   likely   be   driven   by   empirical   models   that   can   benefit   from   access   to   large   and   
well-measured   populations,   such   as   population-scale   biobanks.   
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Materials   and   Methods   
Full   technical   details   are   given   in   the   Methods   and   Analytical   Note.     

Data   preparation   
We   use   the   genotype   data,   basic   demographic   data   and   Hospital   Episode   Statistics   
(HES)   data   from   409,694   individuals   of   British   Isles   ancestry   in   the   UK   Biobank   dataset    (Bycroft   
et   al.,   2018) .   31   ICD-10   codes   were   identified   with   a   prevalence   above   5%   and   for   which   at   
least   20   independent   associated   variants   were   previously   identified   using   the   TreeWAS   model   
(Cortes   et   al.,   2020) .   Of   these,   we   analysed   24   that   correspond   to   specific   disease   conditions   
(as   opposed   to   procedures)   and   that   have   sex-   and   age-distributions   compatible   with   our   
framework.    These   are   listed   in   Table   1.   For   each   ICD-10   code,   we   combined   the   primary   and   
secondary   diagnoses   from   the   HES   data.   We   used   the   starting   date   of   the   first   episode   that   
records   the   disease   diagnosis   to   define   the   age   of   disease   onset,   which   is   calculated   as   the   
difference   between   onset   date   to   the   month   of   birth   (due   to   data   privacy,   we   only   have   access   to   
birth   information   specified   to   year   and   month).    The   onset   age   is   rounded   to   whole   years.    For   
each   ICD-10   code,   only   the   first   recorded   diagnosis   of   each   individual   was   used.   For   the   
population   under   observation,   we   also   computed   the   age   at   observation   endpoints,    which    is   
either    the    age    of    individuals    at    the    last    update    of    the    data    set    (here   2018-02-14)   or   the   
age   of   death   if   a   death   event   is   recorded.    We   categorised   the   disease   onset   age   into   8   age   
intervals,   the   first   and   last   of   which   are   “before   45    years   old”   and   “after   75   years   old”,   with   
5-year   intervals   in   between.   
  

We   then   constructed   interval   censored   data   sets   for   the   selected   disease.   Each   age   interval   is   
an   observation   window   of   all   healthy   (alive   and   without   onset   of   target   disease)   individuals   who   
survived   past   the   starting   point   of   the   interval.   Onset   of   disease   and   exiting   the   study   (death   or   
no   further   records   available)   are   recorded   as   “case"   and   “censored"   events   respectively.   Events   
happening   after   this   interval   are   considered   right-censored   at   the   end   of   the   interval.   We   then   
performed   case-control   matching   over   the   sub-population   observed   within   each   interval   in   two   
steps.   First,   we   divided   the   sub-population   into   a   disease   group   and   a   control   group.   The   
disease   group   are   those   who   have   disease   onset   within   the   interval,   and   the   control   set   are   
those   who   do   not,   including   individuals   who   have   disease   onset   after   the   age   interval,   so   long   
as   they   remain   healthy   before   the   endpoint   of   the   interval.   This   is   what   the   term   
“interval-censored"   means.   In   survival   analysis,   the   control   groups   are   called   “censored",   and   
the   age   at   the   “censoring"   event   is   also   needed   for   unbiased   estimation.   If   a   censoring   event   is   
observed   within   the   age   interval   (i.e.   the   age   of   a   death   record   or   the   last   update   in   the   UK   
Biobank   is   before   the   age   interval   end   point),   we   used   the   age   at   the   censoring   event.   If   an   
individual   does   not   have   an   event   record   within   the   age   interval,   we   take   their   age   at   the   end   of   
the   interval,   regardless   of   their   future   events.   Second,   for   each   case   in   the   disease   group,   we   
pick   four   nearest   neighbors   (without   replacement)   from   the   control   group,   matching   sex,   BMI,   
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year   of   birth   and   40   genetic   principle   components.   The   covariates   are   available   within   the   UK   
Biobank   data   set,   over   which   we   computed   the   principle   components   across   the   British   Isles   
ancestry   population.    We   then   compute   the   Euclidean   distance   of   the   principle   components   to   
find   the   nearest   neighbors   in   the   population.     

Estimating   age-dependency   of   genetic   risk   score   in   prediction   
The   SNPs   of   interest   are   obtained   through   prior   TreeWas   analysis,   where   we   select   variants   
that   have   Bayes   factors   (BF)   ≥   5   (BF   is   computed   for   a   single   variant's   effect   over   the   TreeWas   
model)   and   posterior   probability   (PP)   ≥   0.99   for   target   diseases    (Cortes   et   al.,   2017) .   We   further   
filtered   the   set   of   SNPs   to   ensure   LD-independence   (loci   kept   with   absolute   Pearson   correlation   
coefficient   smaller   than   0.2).     
  

To   assess   whether   the   collective   effect   of   risk   variants,   as   captured   by   a   combined   genetic   risk   
score   (or   polygenic   risk   score   -   PRS),   showed   profiles   of   age-varying   risk,   we   used   the   
case-control   matching   procedure   described   above   with   five-fold   cross-validation,   keeping   20%   
of   case-control   pairs   for   each   age   interval   as   test   sets,   and   estimating   effect   sizes   for   the   
selected   variants   in   the   remaining   80%   of   case-control   pairs   using   multivariate   logistic   
regression   (including   age,   sex   and   40   genetic   PCs).    The   effect   of   the   PRS   on   risk   within   each   
age   interval   in   the   test   set   was   then   estimated   (again   with   logistic   regression   and   covariates).   
We   estimated   the   odds-ratio   for   the   top   decile   of   risk   and   the   top   20%   of   risk,   using   20   repeats   
of   the   procedure   to   obtain   the   bootstrap   sampling   distribution.   
  

Estimating   age-specific   effects   of   genetic   risk   factors   
We   used   a   standard   GWAS   approach   to   identify   the   risk   and   protective   alleles   at   each   locus   
(Chang   et   al.,   2015) ,   over   the   case-control   matched   dataset   described   above.   The   first   40   
genetic   principle   components   are   taken   as   covariates.   For   all   loci   that   have   protective   minor   
alleles   (odds   ratio   <   1),   we   switched   allele   labels   to   assign   consistency   of   risk   direction.     
  

To   obtain   an   unbiased   estimate   of   genetic   risk   effect   size   over   age,   we   used   a   proportional   
hazard   (PH)   model   to   estimate   the   genetic   hazard   ratio   for   different   age   groups,   using   the   
case-control   matched   data   set.   Within   each   of   the   8   age   intervals,   we   applied   the   PH   model   to   
the   disease   group   and   control   group,   accounting   the   censoring   effect.   We   used   a   univariate   
model   to   estimate   the   effect   size   of   each   variant   separately   and   a   multivariate   model   to   estimate   
effect   sizes   for   all   variants   jointly.   Covariates   include   the   first   40   genetics   PCs   of   the   UK   Biobank   
and   are   regressed   out   for   each   interval.   Both   the   point   estimate   and   standard   error   of   effect   
sizes   are   obtained   for   each   variant   within   each   age   interval.    These   summary   statistics   are   used   
subsequently   for   curve-cluster   fitting.   
  

11   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.17.208280doi: bioRxiv preprint 

https://paperpile.com/c/STDMvn/QL3X2
https://paperpile.com/c/STDMvn/vjJM
https://doi.org/10.1101/2020.07.17.208280
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bayesian   clustering   of   genetic   risk   profiles   
To   group   variants   that   have   similar   age-dependency,   we   applied   a   Bayesian   clustering   of   curves   
model   described   (see   Analytical   Note).   The   model   assumes   each   variant   has   an   age-dependent   
effect   profile   which   is   generated   from   a   mixture   of   curves   model.   The   mean   and   standard   error   
of   the   age-specific   effects   for   individual   variants   described   above   are   the   inputs   of   the   model,   
from   which   we   infer   the   underlying   generative   latent   curve.    The   model   allows   vertical   translation   
in   the   generative   process   (i.e.   the   likelihood   won’t   change   much   if   the   profile   of   the   variant   is   far   
from   the   latent   profile,   as   long   as   the   shape   of   the   variant   curve   is   similar).    The   latent   curve   is   a   
spline   whose   smoothness   is   controlled   by   changing   the   degrees   of   freedom.    For   detailed   
specification   of   model   and   hyper-parameters,   see   the   Analytical   Note.   Inference   is   performed   by   
an   EM   algorithm   and   was   repeated   20   times   with   random   initialization   of   variables   (see   
Analytical   Note).   The    highest   likelihood   sequence   was   retained.    Since   EM   only   provides   a   
point   estimate,   we   estimate   the   curve’s   credible   interval   using   a   variational   approach.   The   
inferred   profiles   with   95%   credible   intervals   are   shown   in   Fig   S4.    The    derivation   and   proof   of   
the   approach   are   provided   in   Analytical   Note.     

Permutation   testing   for   genetic   effect   heterogeneity   over   age   
To   provide   robustness   in   testing   for   age   heterogeneity,   we   carried   out   a   permutation   test,   using   
the   likelihood   ratio   test   statistic   (for   fitting   a   non-uniform   genetic   risk   over   age)   for   both   the   
original   data   set   and   permutation   samples   to   obtain   the   permutation   p-value.    The   likelihood   
ratio   test   compares   an   alternative   model   with   linear   and   quadratic   genetic   risk   over   age   and   a   
null   model   assuming   a   constant   effect   over   age   (see   Methods   and   Analytical   Note).   
  

To   perform   permutation   tests,   we   kept   the   matched   case-control   structure   and   then   sampled   
case-control   pairs   for   each   age   interval,   while   fixing   the   onset   age   distribution   for   permutation   
samples.   We   repeated   the   procedure   10,000   times   to   obtain   permutation   samples,   and   
computed   the   likelihood   ratio   for   each   sample.   We   note   that   the   likelihood   ratio   does   not   include   
the   prior   term   for   spline   coefficients,   while   EM   finds   the   Maximum   a   Posteriori   (MAP)   estimate   
(see   Analytical   Note),   which   will   give   a   likelihood   slightly   lower   than   the   MLE   estimate.   Under   
the   permutation   test   framework,   the   p-values   will   be   consistent   as   long   as   the   same   test   
statistics   are   used   for   both   the   original   data   set   and   permutation   samples    (Neyman   et   al.,   1933) .   
We   further   checked   that   the   difference   between   MAP   estimation   and   MLE   estimation   is   
negligible.   

  
The   EM   procedure   (see   Analytical   Note)   is   initialised   randomly   20   times   for   the   observed   data   
and   each   permutation   sample   to   compute   the   likelihood   ratios.   The   permutation   p-value   for   each   
disease   is   obtained   from   the   likelihood   ratios.    We   correct   for   multiple   testing   using   FDR,   with   
the   corrected   q-values   shown   in   Table   1   (when   a   multivariate   approach   is   used   to   estimate   
effect   size)   and   Table   S1   (when   a   univariate   approach   is   used).     
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In   order   to   determine   the   optimal   number   of   clusters   for   each   disease,   we   performed   
permutation   tests   using   the   same   procedure,   considering   the   addition   of   each   new   cluster.   For   
adding   the   k+1   cluster,   the   alternative   model   has   k+1   clusters   and   the   null   model   has   k   clusters.   
All   models   are   fitted   with   quadratic   polynomials   (see   Analytical   Note).   Again,   we   computed   the   
likelihood   ratio   statistics   for   both   the   observed   data   set   and   permutation   samples   to   obtain   
p-values.   This   analysis   is   performed   over   all   diseases   and   adjusted   for   multiple   testing   with   
FDR.    We   note   that   we   found   no   compelling   evidence   supporting   a   model   of   more   than   two   
clusters   for   any   disease.   The   p-values   and   q-values   for   the   test   of   two   clusters   are   shown   in   
Table   1   (when   effects   for   individual   variants   are   estimated   are   estimated   jointly)   and   Table   S1  
(when   effects   for   individual   variants   are   estimated   using   a   univariate   model).     
  

Estimating   effects   of   unobserved   risk   background   
To   estimate   the   effect   of   unobserved   risk   factors,   we   assumed   an   individual   hazard   model   that   
has   a   frailty   coefficient   and   baseline   hazard.   The   frailty   coefficient   has   mean   1   and   a   scale   
parameter   that   controls   the   variance   of   population   hazard   rate.   We   chose   the   baseline   hazard   to   
be   a   power   function   of   age.   We   fitted   the   model   to   the   empirical   incidence   rates   in   the   UK   
Biobank.   The   empirical   incidence   rate   at   a   specific   age   is   computed   as   the   number   of   
individuals   who   have   first   onset   of   the   target   disease   within   this   age   year,   divided   by   the   number   
of   healthy   individuals   at   risk   at   the   beginning   of   this   age   year.   We   then   fitted   the   parametric   
hazard   to   the   empirical   incidence   rate   until   age   70,   and   finally   subtracted   the   intercept   from   the   
empirical   incidence   rate   to   match   the   parametric   form   of   the   hazard   rate.   We   fitted   the   model   by   
minimizing   square   error   using   the    Nelder-Mead   method.   The   fitted   incidence   curves   are   
compared   with   empirical   curves   for   all   diseases   (Fig   S7).   We   also   computed   a   Goodness-of-fit   
p-value   for   each   disease,   comparing   the   match   between   fitted   and   empirical   three-year   
incidence   rates   using   a   Chi-square   test   statistic.   The   Goodness-of-fit   p-values   are   shown   in   
Table   S4.    We   used   the   inferred   parameters   to   predict   how   genetic   effects   are   expected   to   be   
diluted   by   the   presence   of   frailty   (Fig   S9;   for   technical   details,   see   Methods   and   Analytical   Note).     

Simulation   
In   our   simulation,   we   generate   a   risk   profile   over   age   for   each   variant   from   underlying   curves   
with   different   slopes.   The   individual   risk   is   then   computed   at   different   ages,   which   are   then   used   
to   generate   disease   incidence   events   over   the   simulated   population.    We   choose   the   population   
size   to   be   50,000,   which   is   comparable   to   our   empirical   case-matching   population   size    (the   set   
of   common   diseases   analysed   each   have   ~10,000   cases   in   the   UK   Biobank   and   we   match   each   
case   with   four   controls).   We   simulated   50   SNPs   (MAF   of   each   SNPs   are   sampled   from   uniform   
distribution   0-0.5).   The   risk   effect   for   each   SNP   is   sampled   from   a   profile   which   changes   linearly   
with   age.   The   individual   hazard   within   a   specific   age   interval   is   computed   as   the   exponential   of   
genetic   risk   multiplied   by   a   linearly   increasing   baseline   hazard   ratio.   
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For   each   interval,   we   simulated   the   time   to   the   next   event   using   a   homogeneous   Poisson   
process   with   the   defined   individual   hazard   rate.   An   individual   with   no   event   in   this   interval   is   
considered   as   observed   (censored).   We   record   only   the   first   event   as   the   onset   of   the   disease.   
The   simulation   is   performed   over   a   40   year   duration   divided   into   eight   5-year   intervals,   as   most   
of   the   disease   onset   occurs   between   ages   40-80   years   old   in   the   UK   Biobank.   In   order   to   
represent   the   end   of   observation   (study   drop-out)   or   death   events   in   the   cohort,   a   competing   
censoring   process   is   sampled   using   a   Poisson   process   of   constant   rate.   The   dropout/death   and   
disease   onset   events   are   combined   and   we   keep   the   first   event,   labelling   it   as   either   disease   or   
censoring.   For   parameters   setting   in   the   simulation,   see   Methods.   
  

To   test   our   statistical   model   for   inferring   age-varying   genetic   effects,   we   simulated   a   population   
using   the   scheme   described   above   and   analysed   it   using   the   methods   described   above   to   infer   
the   genetic   risk   profiles   over   age   and   the   underlying   curves   that   generated   them.   We   simulated   
the   cohort   with   different   values   of   the   slope,   which   represent   different   age   dependencies,   and   
tested   whether   our   method   could   recover   the   simulated   values.   We   then   assessed   the   power   of   
the   statistical   test   to   detect   age-varying   genetic   effects.   We   simulated   the   genetic   risk   profile   
with   the   slope   ranging   from   -0.01   (linearly   decreasing   with   age)   to   0.01   (linearly   increasing   with   
age),   with   a   step   size   of   0.0001.   The   simulated   population   is   analysed   using   the   null   model   of   a   
constant   effect   with   age,   and   an   alternative   model   of   either   a   linear   model,   or   a   quadratic   
polynomial   curve.   A   likelihood   ratio   test   is   performed   to   calculate   the   p-value,   and   we   calculate   
the   power   of   rejecting   the   null   at   a   threshold   of   p   =   0.05.   For   each   slope,   the   simulation   was   
repeated   for   400   times   to   estimate   the   power   and   its   standard   error.   
  

To   test   our   statistical   model   for   detecting   multiple   clusters   of   genetic   risk   profiles,   we   simulated   
disease   cohorts   with   five   (10%)   of   the   variants   that   had   effect   sizes   generated   from   a   
non-constant   latent   profile,   while   the   effect   sizes   for   the   remaining   45   variants   had   a   constant   
(age-invariant)   effect.   We   assessed    our   model   as   to   whether   it   can   detect   the   presence   of   
multiple   clusters.   The   simulated   cohorts   are   analysed   with   both   a   null   model   of   a   single   
quadratic   polynomial   curve,   as   well   as   the   alternative   model   of   two   quadratic   polynomial   curves.   
For   each   simulation,   we   compute   the   p-value   for   the   likelihood   ratio   test   comparing   two   clusters   
against   one   cluster,   measuring   power   at   p   =   0.05.   We   varied   the   slope   of   the   non-constant   
profile   to   test   how   different   the   curve   needs   to   be   from   a   constant   effect   to   be   distinguishable   by   
our   model.   Power   is   computed   for   slopes   ranging   between   -0.0375   and   0.0375,   with   a   step   size   
of   0.00025.   For   each   slope,   the   simulation   was   repeated   for   400   times   to   estimate   the   power   
and   its   standard   error.     
  

To   model   possible   mechanisms   for   the   observed   decline   in   genetic   risk   with   age   we   simulated   a   
threshold   model   in   which   each   individual   has   an   unknown   “liability",   which   evolved   over   time   
(Demenais,   1991) .   For   a   specific   disease,   onset   occurs   when   an   individual's   “liability"   passes   a   
certain   threshold.   We   simulated   a   liability   model   for   50,000   individuals   with   a   single   genetic   
effect   that   alters   the   starting   point   of   liability.   Genotypes   were   simulated   with   a   risk   allele   
frequency   0.3.    The   liability   is   simulated   as   a   stochastic   process   with   starting   points   altered   by   
genotypes.   We   then   simulated   increments   of   liability   from   a   Gaussian   distribution   which   controls   
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the   drift   and   variance   of   the   stochastic   process.   The   stochastic   process   models   the   disease   risk   
increase   over   age   through   the   drift,   and   the   correlation   of   increments   induced   by   the   variance   of   
Gaussian   distribution   creates   a   “momentum"   such   that   an   individual's   health   status   tends   to   
improve   or   deteriorate   over   years   at   similar   rate.   We   simulated   for   60   years   and   considered   an   
individual   to   have   an   onset   of   a   disease   when   the   liability   (arbitrarily)   reaches   0.   We   then   
estimated   the   effect   size   of   the   risk   allele   over   the   age   interval   21-60.   For   parameters   setting   in   
simulating   the   stochastic   processes,   see   Methods.   
  

To   consider   whether   the   decreasing   pattern   could   be   explained   by   interactions   (either   
gene-by-environment   or   gene-by-gene)   we   performed   additional   simulations.    We   modelled   the   
interaction   of   a   focal   genetic   effect   with   other   unobserved   risk   factors.   Assuming   the   effect   size   
interacts   with   environmental   or   other   genetic   factors,   the   effect   size   for   each   individual   is   
generated   from   a   positively   defined   distribution.   We   can   show   that   the   estimated   marginal   effect   
size   will   be   increasingly   underestimated   as   age   increases   for   all   positive   defined   probability   
distributions   (see   Analytical   Note).   We   then   performed   a   simulation   using   the   parameter   settings   
described   at   the   beginning   of   this   section,   but   sampled   an   effect   size   for   each   individual   from   a   
gamma   distribution.   The   effect   size   for   each   individual   remains   constant   over   age   intervals.   We   
then   inferred   the   posterior   of   effect   size,   presented   in   Fig   6B.    We   note   that   this   model   is   a   
generalisation   of   the   concept   of   frailty   in   which   one   allele   has   greater   frailty   than   the   other.   
  

Description   of   Supplemental   Data   
Supplemental   Data   include   nine   figures,   five   tables,   Methods   and   Analytical   Note.     
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Figures   

  

Fig   1.   Age-varying   genetic   risk   score   (GRS)   prediction   power.    A-F)   Genetic   risk   score   
prediction   power   for   six   disorders   where   there   is   evidence   for   single   non-constant   profile,   
“Primary   (essential)   hypertension”   (ICD-10   code   I10),   “pure   hypercholesterolaemia”   (E78.0);   
“Calculus   of   gallbladder   without   cholecystitis”   (K80.2)   and   “Hypothyroidism,   unspecified”   
(E03.9);   “atherosclerotic   heart   disease   of   native   coronary   artery”   (I25.1)   and   “other   and   
unspecified   malignant   neoplasm   of   skin   and   unspecified   parts   of   face”   (C44.3).    Curves   for   all   
diseases   are   shown   in   Fig   S1.    Odds   ratios   for   the   80th   (blue)   and   90th   percentiles   of   a   
combined   genetic   risk   score   within   matched   case-control   samples   (five   controls   for   each   case)   
are   shown   for   each   age   interval;   points   indicate   the   average   odds   ratio   of   twenty   five-fold   
cross-validation   analyses   with   lines   indicating   the   95%   confidence   interval.     
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Fig   2.    Schematic   representation   of   methodology .    A)   Independent   variants   associated   with   
a   trait   of   interest   are   identified   by   analysis   of   the   entire   UK   Biobank   cohort   using   the   TreeWAS   
methodology    (Cortes   et   al.,   2017) .    B)   An   interval-censored   proportional   hazards   model   
(Finkelstein,   1986)    is   used   to   estimate   the   effect   (and   associated   standard   error)   of   each   variant   
on   the   trait   of   interest   within   each   of   eight   age   intervals.    C)   Bayesian   clustering   is   used   to   
estimate   age-profiles   of   risk,   using   either   linear   models   or   quadratic   polynomials   to   encourage   
smoothness.    D-F)   Permutation   is   used   to   test   for   age-homogeneity   of   effect   size   as   well   as   to   
assess   the   evidence   for   multiple   age   profiles.   
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Fig   3.    Overview   of   simulation   results.     A)   Power   at   P   ≤   0.05   to   detect   deviation   from   
age-homogeneity   as   a   function   of   slope   in   a   model   where   effect   sizes   change   linearly   with   age.   
The   blue   line   indicates   the   point   estimate   when   using   a   linear   model   to   fit,   the   red   line   indicates   
the   point   estimate   with   a   quadratic   polynomial   model   and   the   grey   shading   indicates   the   95%   
confidence   interval.   B)   Example   showing   the   age-profile   under   which   data   are   simulated   
(dashed   blue   line)   and   the   inferred   age   profile   (dashed   red   line)   and   95%   credible   interval   (red   
shading).    C)   Power   at   P   ≤   0.05   to   detect   multiple   age   profiles   in   a   simulation   where   90%   of   
variants   have   a   time-invariant   profile   and   10%   have   an   effect   size   that   increases   with   age.   The   
solid   blue   line   indicates   power   when   fitting   a   linear   model   and   the   solid   red   line   indicates   power   
when   fitting   a   quadratic   model.    The   dashed   red   line   indicates   the   nominal   significance   
threshold.   Note   the   change   in   x-axis   scale   compared   to   Fig.   2A.    D)   Example   showing   inferred   
age-profiles   for   the   two   components   (mean   posterior   and   95%   credible   interval).    Additional   
simulation   details   are   provided   in   the   Methods   and   Fig   S2.   
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Fig   4.   Age-varying   disease   risk   profiles.    A-D)   Inferred   cluster   profiles   for   four   disorders   where   
there   is   evidence   for   single   non-constant   profile;   “Primary   (essential)   hypertension”   (ICD-10   
code   I10;   P   =   0.0001),   “pure   hypercholesterolaemia”   (E78.0;   P   =   0.0001),   “Calculus   of   
gallbladder   without   cholecystitis”   (K80.2;   P   =   0.0236)   and   “Hypothyroidism,   unspecified”   (E03.9,   
P   =   0.0329);    E-F)   Inferred   cluster   profiles   for   two   disorders   where   there   is   evidence   for   multiple   
non-constant   profiles;   “atherosclerotic   heart   disease   of   native   coronary   artery”   (I25.1;   P   =   
0.0001)   and   “other   and   unspecified   malignant   neoplasm   of   skin   and   unspecified   parts   of   face”   
(C44.3;   P   =   0.0092).    Curves   for   all   diseases   are   shown   in   Fig   S4.    The   solid   line   indicates   the   
posterior   mean   and   the   shaded   area   the   95%   credible   interval;   Numbers   in   parentheses   indicate   
the   number   of   variants   in   each   cluster;   All   estimates   are   made   with   quadratic   models   for   
age-varying   risk   profiles.     
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Fig   5.    The   impact   of   frailty   on   genetic   risk   profiles .    A)   Estimated   age-profiles   for   genetic   
risk   for   I10   “essential   (primary)   hypertension”   (left)   and   I25.1   “atherosclerotic   heart   disease   of   
native   coronary   artery”   (right)   fitted   under   the   univariate   (purple)   and   multivariate   (green)   
approaches.    The   solid   line   indicates   the   posterior   mean   and   the   shaded   area   the   95%   credible   
interval.    Comparisons   for   all   diseases   are   shown   in   Fig   S6.    B)   Estimated   incidence   by   age   for   
K80.2   “Calculus   of   gallbladder   without   cholecystitis”   (left)   and   C44.3   “Other   and   unspecified   
malignant   neoplasm   of   skin   and   unspecified   parts   of   face”   (right).    The   red   solid   line   indicates   
the   rate   estimated   from   the   UK   Biobank   (see   Methods)   and   the   dotted   blue   line   indicates   the   
fitted   incidence   curve   from   the   parametric   model.    The   P   value   indicates   the   Goodness-of-Fit   
test.   Curves   for   all   diseases   are   shown   in   Fig   S7.    C)   Comparison   of   inferred   genetic   effect   sizes   
(red   curve)   and   those   implied   by   the   frailty   parameters   estimated   from   incidence   rate   within   the   
UK   Biobank   (blue   dashed   curve).     
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Fig   6.   Models   for   a   decreasing   influence   of   genetic   risk   with   age .    A)   A   threshold   model,   in   
which   each   individual   has   a   disease   “liability”   which   evolves   over   age.   Disease   onset   occurs   
when   liability   crosses   a   threshold.   The   upper   panel   shows   example   trajectories,   where   genetic   
risk   alters   only   the   liability   baseline.   The   middle   panel   is   a   schematic   representation   of   a   
simulation   in   which   genetic   risk   affects   developmental   pathways   at   birth,   while   non-genetic   risk   
accumulates   over   time.   The   lower   panel   shows   an   estimation   of   the   effect   size   from   a   simulated   
dataset   of   UK   Biobank   sample   size   (see   Methods).   B)   Interactions   between   genetic   and   
environmental   risk   factors   can   create   a   distribution   of   effect   sizes   for   a   specific   genotype.    The   
upper   panel   shows   example   trajectories,   where   the   environment   influences   the   slope   of   the   
trajectory.    The   middle   panel   shows   how   individuals   at   higher   risk   enter   disease   earlier,   diluting   
the   effect   size   estimation   at   a   later   age.   The   lower   panel   shows   simulation   results   under   such   a   
model   using   realistic   parameters   from   UK   Biobank   (see   Methods).     
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