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Abstract 
Studying the evolutionary history of gene families is a challenging and exciting task with              
a wide range of implications. In addition to exploring fundamental questions about the             
origin and evolution of genes, disentangling their evolution is also critical to those who              
do functional/structural work, as the correct interpretation of their results needs to be             
done in a robust evolutionary context. The sirtuin gene family is a group of genes that                
are involved in a variety of biological functions mostly related to aging. Their duplicative              
history is an open question, as well as the definition of the repertoire of sirtuin genes                
among vertebrates. Our goal is to take advantage of the genomic data available in              
public databases to advance our understanding of how sirtuin genes are related to each              
other, and to characterize the gene repertoire in species representative of all the main              
groups of vertebrates. Our results show a well-resolved phylogeny that represents a            
significant improvement in our understanding of the duplicative history of the sirtuin            
gene family. We identified a new sirtuin family member (SIRT3-like) that was apparently             
lost in amniotes, but retained in all other groups of jawed vertebrates. Our results              
indicate that there are at least eight sirtuin paralogs among vertebrates and that all of               
them can be traced back to the last common ancestor of the group that existed between                
676 and 615 millions of years ago. 
 
Keywords: aging, gene family evolution, gene duplication, SIRT, vertebrates. 
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Introduction 
The availability of whole-genome sequences in representative species of all main           
groups of vertebrates represents an opportunity to unravel the evolution of gene            
families. The amount of sequences and their phylogenetic distribution allows performing           
robust inferences regarding how gene family members are related to each other and a              
description of the processes associated with the evolution of these gene families (Nei             
and Rooney 2005). The available genomes also open an opportunity to discover new             
gene family members that are not currently described mainly because they are not             
present in model species and/or to the absence of appropriate evolutionary analyses            
(Wichmann et al. 2016; Céspedes et al. 2017; Himmel et al. 2020). It is important to                
know the number of gene lineages that belong to a given gene family, as well as the                 
variation in the repertoire of genes between species. This variation could be seen as a               
natural experiment (Albertson et al. 2009) that could help understand the evolutionary            
fate of duplicated genes, as individuals with different gene repertoires are capable of             
fulfilling the biological functions with a different combination of paralogs. In addition, this             
research is critical to the correct reconstruction of ancestral and derived states, a key              
piece of information to make robust evolutionary inferences of functional/structural          
results. 

The sirtuin gene family is an ancient group of genes that, in mammals, is              
composed by seven paralogs (SIRT1-7), grouped into four classes (Fig. 1) (Frye 2000;             
Frye 2006). Sirtuin genes are involved in a variety of biological functions mostly related              
to aging, metabolic regulation, stress response, and cell cycle among others (Fig. 1)             
(Michan and Sinclair 2007; Greiss and Gartner 2009; Haigis and Sinclair 2010; Zhao et              
al. 2019). All sirtuin genes have a conserved catalytic domain and variable carboxy- and              
amino terminal domains (Fig. 1). Most family members possess deacetylase activity,           
while others have, in addition to weak deacetylase activity, other enzymatic activities            
like ADP-ribosyltransferase, desuccinylase and demalonylase (Fig. 1). Further, they are          
located in different subcellular compartments and associated to different biological          
processes (Fig. 1). 

The duplicative history of the sirtuin genes is an open question. There are             
multiple phylogenetic hypotheses describing evolutionary relationships among the        
genes in the sirtuin family (Frye 2000; North and Verdin 2004; Frye 2006; Greiss and               
Gartner 2009; Slade et al. 2011; Vassilopoulos et al. 2011; Costantini et al. 2013;              
Scholte et al. 2017; Simó-Mirabet et al. 2017; Yang et al. 2017; Rajabi et al. 2018;                
Kabiljo et al. 2019; Zhao et al. 2019). Differences in the taxonomic sampling, differences              
in the number of paralogs included, and inconsistent use of relevant outgroups, all are              
likely contributors to this variation. Additionally, studies that are focused on resolving            
evolutionary relationships among sirtuin genes are scarce, and in fact, most           
phylogenetic analyses for these genes were part of studies where the sirtuin phylogeny             
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was a secondary goal. Additionally, and probably for similar reasons, there are no             
systematic efforts to characterize the full complement of sirtuin family members among            
vertebrates. Thus, unraveling the duplicative history of sirtuin genes represents a           
challenging and exciting task with a wide range of implications. Because of their role in               
the aging process, these genes are of great interest. In addition to exploring             
fundamental questions about the origin and evolution of sirtuin genes, disentangling           
their evolution is also critical to understanding the diversification of the functional and             
structural phenotypes present in the sirtuin gene family. 

Accordingly, the goal of this study is to take advantage of the diversity of              
genomic data available in public databases to advance in our understanding of the             
diversity of vertebrate sirtuin genes and reconstruct a robust phylogeny for this gene             
family to infer its duplicative history. Our phylogenetic tree is in general well resolved,              
representing an improvement in our understanding of the duplicative history of the            
sirtuin gene family. We also report a new sirtuin family member (SIRT3-like) that was              
retained in all vertebrates, including cyclostomes, other than amniotes (the group that            
unites mammals, birds and  reptiles). 
 
Material and Methods 
Protein sequences and phylogenetic analyses 
We retrieved sirtuin amino acid sequences in representative species of all main            
lineages of vertebrates. Our sampling included mammals, birds, reptiles, amphibians,          
coelacanths, bony fish, cartilaginous fish and cyclostomes (Supplementary Table S1).          
Sequences for these groups were obtained from the Orthologous MAtrix project (OMA)            
(Altenhoff et al. 2018). Protein sequences were aligned using two alternative strategies:            
1) aligning individual sequences using MAFFT v.7 (Katoh and Standley 2013), allowing            
the program to choose the alignment strategy (FFT-NS-2) and 2) aligning each set of              
sirtuin gene family member, and outgroups, individually using MAFFT v.7 (Katoh and            
Standley 2013), allowing the program to choose the alignment strategy (in all cases the              
L-INS-i strategy was the selected one). After that, we merged individual alignments            
using the function --merge from MAFFT v.7 (Katoh and Standley 2013), also allowing             
the program to choose the alignment strategy (FFT-NS-2). To select the best-fitting            
model of molecular evolution we used the proposed model tool in the program IQ-Tree              
v1.6.12 (Kalyaanamoorthy et al. 2017), which selected the JTT+F+G4 model of amino            
acid substitution for both alignments. We used a maximum-likelihood approach to obtain            
the best tree using the program IQ-Tree v1.6.12 (Trifinopoulos et al. 2016). Eleven             
independent replicate phylogenetic analyses were run to explore tree space, and the            
tree with the highest likelihood score was chosen. Support for the nodes was evaluated              
using three approaches: the Shimodaira-Hasegawa approximate likelihood-ratio test        
(SH-aLRT), the aBayes test from Anisimova et al. (2011) (Anisimova et al. 2011) and              
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the ultrafast bootstrap procedure (Hoang et al. 2018). Other genes from the DHS-like             
NAD/FAD-binding domain superfamily were used as outgroups, Deoxyhypusine        
Synthase (DHPS), Nicotinamide Nucleotide Transhydrogenase (NNT), Electron       
Transfer Flavoprotein Subunit Alpha (ETFA), 2-Hydroxyacyl-CoA Lyase 1 (HACL1) and          
IlvB Acetolactate Synthase Like (ILVBL) . 
 
Assessment of conserved synteny 
We examined genes found upstream and downstream of the sirtuin genes. For            
comparative purposes, we used the estimates of orthology and paralogy derived from            
the Ensembl Compara database (Herrero et al. 2016); these estimates are obtained            
from a pipeline that considers both synteny and phylogeny to generate orthology            
mappings. These predictions were visualized using the program Genomicus v100.01          
(Nguyen et al. 2018). Our assessments were performed in humans ( Homo sapiens),            
chicken ( Gallus gallus), high Himalaya frog ( Nanorana parkeri ), coelacanth ( Latimeria          
chalumnae), spotted gar ( Lepisosteus oculatus), and elephant shark ( Callorhinchus         
milii ). 
 
Transcript abundance analyses 
Sirtuin transcript abundance was measured from a representative sample of vertebrates           
including the elephant shark ( Callorhinchus milii ), zebra fish ( Danio rerio ), tropical           
clawed frog ( Xenopus tropicalis), anole lizard ( Anolis carolinensis), and human ( Homo           
sapiens). RNASeq libraries from brain, heart, kidney, liver, muscle, ovary, and testis            
from each species were gathered from the NCBI Short Read Archive (SRA)(Leinonen et             
al. 2011). Accession numbers for species and tissue specific libraries can be found in              
Supplemental Table S2. Reference transcript sequences were collected from Ensembl          
v.100 (Yates et al. 2020) and we removed sequences that were shorter than 100 bp.               
For each library adapters were removed using Trimmomatic 0.38 (Bolger et al. 2014)             
and reads were filtered for quality using the parameters HEADCROP:5,          
SLIDINGWINDOW:5:30, and MINLEN:50. We mapped quality filtered paired-end        
RNAseq reads back to reference sequences using Bowtie 1.2.2 (Langmead et al. 2009)             
and default parameters of RSEM (Li and Dewey 2011). Transcripts with < 10 mapped              
reads across all seven tissues per species were removed prior to normalization.            
Normalization of raw read counts for each species was performed using the            
estimateSizeFactors and estimateDispersions functions in DESeq2 v1.26 (Love et al.          
2014). If multiple SIRT transcripts were present, we presented the expression data from             
the transcript with the most mapped reads. 
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Results and Discussion 
We studied the evolutionary relationships of the sirtuin gene family, a group of genes              
that plays fundamental roles in aging, metabolic regulation, stress response, and the            
cell cycle, among others, with the aim of understanding their duplicative history and             
diversity. In addition to addressing fundamental questions about the duplicative history           
of these genes in vertebrates, a robust phylogenetic framework is a central piece of              
information to the generation of evolutionary sound inferences about the pathways by            
which structural and functional properties emerged. 
 
Sirtuin paralogs are recovered into three main clades 
Both alignment strategies recovered the monophyly of the sirtuin gene family with            
strong support, as well as the monophyly of all sirtuin family members (Fig. 2). The               
exceptions are SIRT3 and SIRT3-like clades for which the phylogenetic position of two             
cyclostome sequences, hagfish ( Eptatretus burgeri) and sea lamprey ( Petromyzon         
marinus), respectively, was not well resolved when we aligned individual sequences           
(Fig. 3). The phylogenetic uncertainty of cyclostome sequences is not unexpected, as            
resolving orthology between cyclostomes and gnathostomes represents a challenge         
because cyclostomes genomes possess strong compositional biases (Qiu et al. 2011;           
Smith et al. 2013; Schwarze et al. 2014; Campanini et al. 2015; Opazo et al. 2015;                
Opazo, Kuraku, et al. 2019). Other than the difficulty in inferring orthology for the              
cyclostome sequences, the monophyly of the SIRT3 and the SIRT3-like gene lineages            
from gnathostomes is strongly supported under both alignment strategies (Fig. 3). 

The diversity of sirtuin genes was arranged into three main clades (Fig. 2). The              
first clade contains the SIRT4 and SIRT5 paralogs, the second clade contains the             
SIRT6 and SIRT7 paralogs, and the third clade includes the SIRT1, SIRT2, SIRT3 and              
SIRT3-like gene lineages (Fig. 2). A diversity of phylogenetic arrangements for sirtuin            
genes have been proposed in the past (Frye 2000; Frye 2006; Greiss and Gartner              
2009; Slade et al. 2011; Vassilopoulos et al. 2011; Costantini et al. 2013; Scholte et al.                
2017; Simó-Mirabet et al. 2017; Yang et al. 2017; Rajabi et al. 2018; Kabiljo et al. 2019;                 
Zhao et al. 2019), and our results largely support the relationships proposed by Frye              
(2006).  

In the first clade we recovered the sister group relationships between SIRT4 and             
SIRT5 with strong support (Fig. 2). Evolutionary relationships between these two family            
members are still a matter of debate, as a variety of phylogenetic positions have been               
suggested for these paralogs (Slade et al. 2011; Vassilopoulos et al. 2011; Costantini et              
al. 2013; Yang et al. 2017; Rajabi et al. 2018), and only in a fraction of the studies their                   
sister group relationship is supported (Frye 2000; North and Verdin 2004; Frye 2006;             
Greiss and Gartner 2009; Hirschey 2011; Scholte et al. 2017; Simó-Mirabet et al. 2017;              
Kabiljo et al. 2019; Zhao et al. 2019). In the second clade, we recovered SIRT6 sister to                 
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the clade containing SIRT7 sequences with strong support (Fig. 2). The sister group             
relationship between SIRT6 and SIRT7 has been recovered in all examined studies            
(Frye 2000; North and Verdin 2004; Greiss and Gartner 2009; Hirschey 2011; Slade et              
al. 2011; Vassilopoulos et al. 2011; Costantini et al. 2013; Scholte et al. 2017;              
Simó-Mirabet et al. 2017; Yang et al. 2017; Rajabi et al. 2018; Kabiljo et al. 2019; Zhao                 
et al. 2019), suggesting there is robust support for the sister relationship between these              
sirtuin family members. In the third clade, there is a broad consensus in the literature               
that SIRT2 shares a common ancestor more recently in time with SIRT3 than with any               
other sirtuin paralog, and that the clade containing SIRT1 sequences is sister to the              
SIRT2/SIRT3 clade (Frye 2000; North and Verdin 2004; Frye 2006; Greiss and Gartner             
2009; Hirschey 2011; Slade et al. 2011; Vassilopoulos et al. 2011; Costantini et al.              
2013; Scholte et al. 2017; Simó-Mirabet et al. 2017; Yang et al. 2017; Rajabi et al. 2018;                 
Zhao et al. 2019). We recovered the same evolutionary relationships with strong            
support (Fig. 2). The sister-group relationship between the SIRT6/SIRT7 and          
SIRT2/SIRT3/SIRT1 clades is not supported under the alignment strategy of aligning           
sequences individually (Fig. 2), but received moderate support when we merged           
alignments (0.59, aBayes; 95, ultrafast bootstrap; Fig. 2). The sister-group relationships           
among the three main sirtuin clades is something that has been difficult to resolve              
(Simó-Mirabet et al. 2017; Zhao et al. 2019), as it appears divergences were close in               
time, as evidence by the short length of the corresponding branch (Fig. 2). 

In summary, we present a phylogenetic analysis based on a taxonomic sampling            
that included representative species from all main groups of vertebrates for all sirtuin             
family members. Our phylogenetic tree is in general well resolved (Fig. 2), representing             
an advance in our understanding of the duplicative history of the sirtuin gene family. In               
comparison to the phylogenetic trees currently available in the literature only one study             
shows the same topology as our study (Frye 2006).  
 
Identification of a new sirtuin gene family member, SIRT3-like 
We identified a new sirtuin family member, SIRT3-like, which is present in a fraction of               
the vertebrate tree of life, that was recovered sister to the SIRT3 clade with strong               
support (Fig. 2 and 3). Synteny conservation provides further support to the monophyly             
of the SIRT3-like gene lineage in gnathostomes (Supplementary figure 1), as genes            
found at the 5` side (RIC8B, RFX4, and POLR3B) and 3` side (TMEM263, MTERF2,              
and CRY1) of the SIRT3-like gene are well conserved (Supplementary figure 1).            
Synteny is also conserved in species in which the SIRT3-like gene was lost             
(Supplementary figure 1). Among vertebrates, we found orthologs of the SIRT3-like           
gene in representative species of cyclostomes, cartilaginous fish, bony fish, coelacanth,           
and amphibians (Fig. 3). The lack of the SIRT3-like gene in mammals, birds, and              
reptiles, indicates that it was probably lost in the common ancestor of the group,              
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between 352 and 312 millions of years ago (Kumar et al. 2017). Thus, our analyses               
indicate that the last common ancestor of vertebrates had eight sirtuin genes, all of              
them were retained in all major groups of vertebrates, except SIRT3-like. 

An amino acid alignment of the SIRT3-like and SIRT3 sequences shows that the             
catalytic domain of SIRT3-like is well conserved, where six amino acid positions were             
identified as diagnostic characters (Fig. 4). The amino acid divergence of the SIRT3-like             
catalytic domain varies from 32.17% (spotted gar vs coelacanth) to 33.59% (spotted gar             
vs elephant shark). The same comparisons for the SIRT3 catalytic domain show slightly             
lower amino acid divergence values, between 24.81% (spotted gar vs coelacanth) and            
31.01% (coelacanth vs elephant shark). As expected, the interparalog distance (SIRT3           
vs SIRT3-like) of the catalytic domains shows higher divergence values, ranging from            
40.7% (spotted gar SIRT3 vs spotted gar SIRT3-like) and 43.63% (elephant shark            
SIRT3 vs elephant shark SIRT3-like). Although nothing is known about the functional            
role of the protein encoded by the SIRT3-like gene, based on how sirtuin genes are               
related to each other and the information already known for the other family members              
(Fig. 1), we can speculate that SIRT3-like belongs to the class I, has a deacetylase               
activity, is located on the mitochondria/cytoplasm and is associated to ATP production            
and thermogenesis (Fig. 1). It is important to highlight that the inferences regarding a              
newly discovered gene are better performed if they are phylogenetically informed. 

Our next step in characterizing the SIRT3-like gene was to investigate whether it             
is transcribed and if it was, to characterize the transcription pattern To do this, we               
mapped RNASeq reads to reference gene sequences of representative species of           
vertebrates and examined transcript abundance. In agreement with the transcription          
pattern reported for sirtuin genes (Stelzer et al. 2016; Kabiljo et al. 2019), our results               
show that although they exhibited wide variance in tissue expression, sirtuin genes are             
expressed in almost all tissues, including the novel SIRT3-like gene lineage (Fig. 5). In              
the case of the tropical clawed frog, the SIRT3-like gene is transcribed at a similar level                
in all tissues, other than the ovary where high transcription levels were observed (Fig.              
5). In zebrafish, SIRT3-like is transcribed on all examined tissues other than brain and              
liver (Fig. 5). Finally, and coincident with the pattern observed in the tropical clawed              
frog, the elephant shark SIRT3-like gene is mostly transcribed in the ovary (Fig. 5). In               
addition to showing that the SIRT3-like gene is transcribed, our analyses allow us to              
suggest that this gene could be involved in biological processes associated with            
reproduction, as in two out of the three sampled species SIRT3-like is mainly             
transcribed in the ovary. Our study represents the first step and more research is              
needed to better understand the function of the SIRT3-like in vertebrate physiology. 
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Conclusions 
In summary, we uncover the existence of a novel paralog in the sirtuin gene family of                
vertebrates, infer the sirtuin repertoire present in the last common ancestor of            
vertebrates, and reconstruct phylogenetic relationships among them. Resolving their         
duplicative history allows us to generate evolutionary sound hypotheses about their           
functional and structural attributes (Fig. 1). The SIRT3-like gene is an old gene that has               
been retained and is transcribed in all vertebrates other than mammals, birds, and             
reptiles. This case highlights the need for more exhaustive assessments of orthology            
with a more broad taxonomic sampling to better define the membership composition of             
gene families (Glover et al. 2019). The lack of description of family members is not               
uncommon; it could be mainly due to the absence in model species and/or appropriate              
evolutionary analyses. In the literature, there are examples in which more           
comprehensive analyses provide a better description of the membership composition of           
gene families, including previously unknown family members with an ancient          
evolutionary origin (Castro et al. 2012; Wichmann et al. 2016; Céspedes et al. 2017;              
Ramos-Vicente et al. 2018; Opazo, Kuraku, et al. 2019; Opazo, Hoffmann, et al. 2019).              
The availability of species with different gene repertoires, as a result of a             
birth-and-death process, could be seen as a natural experiment (Albertson et al. 2009)             
that helps understand the evolutionary fate of duplicated genes, as they are capable of              
fulfilling the biological functions associated to the gene family but with a different             
combination of paralogs. 
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Figure legends 
 
Figure 1. Gene phylogeny, synteny, catalytic domain, protein size, molecular weight,           
enzymatic activity, subcellular localization and biological process associated with sirtuin          
genes. Information regarding the sister group relationships was obtained from this           
study, synteny from ENSEMBL v.100 (Yates et al. 2020), catalytic domain, protein size,             
enzymatic activity and subcellular localization from Fujita and Yamashita (2018),          
molecular weight from Vassilopoulos et al. (2011), while the biological processes from            
Haigis and Sinclair (2010). 
 
Figure 2. Maximum likelihood tree showing sister group relationships among sirtuin           
genes of vertebrates. Numbers above the nodes correspond to support from the            
Shimodaira-Hasegawa approximate likelihood-ratio test, aBayes and maximum       
likelihood ultrafast bootstrap values under the strategy of aligning individual sequences.           
Numbers below the nodes correspond to the same support values under the alignment             
strategy of aligning alignments. Deoxyhypusine Synthase (DHPS), Nicotinamide        
Nucleotide Transhydrogenase (NNT), Electron Transfer Flavoprotein Subunit Alpha        
(ETFA), 2-Hydroxyacyl-CoA Lyase 1 (HACL1) and IlvB Acetolactate Synthase Like          
(ILVBL) were used as outgroups (not shown). The scale denotes substitutions per site             
and colors represent gene lineages. 
 
Figure 3. Maximum likelihood tree showing sister group relationships among SIRT3 and            
SIRT3-like genes in vertebrates. Numbers above the nodes correspond to support from            
the Shimodaira-Hasegawa approximate likelihood-ratio test, aBayes and maximum        
likelihood ultrafast bootstrap values under the strategy of aligning individual sequences.           
Numbers below the nodes correspond to the same support values under the alignment             
strategy of aligning alignments. The scale denotes substitutions per site and colors            
represent gene lineages. This tree does not represent a novel phylogenetic analysis; it             
is the SIRT3/SIRT3-like clade that was recovered from figure 2. 
 
Figure 4. Alignment of the catalytic domain of SIRT3 in humans ( Homo sapiens), and              
SIRT3 and SIRT3-like of spotted gar ( Lepisosteus oculatus), coelacanth ( Latimeria          
chalumnae) and elephant shark ( Callorhinchus milii ). The shaded region denotes the           
catalytic domain. Diagnostic characters -i.e. amino acids positions that distinguish          
between SIRT3 and SIRT3-like gene lineages - are indicated with a rectangle. 
 
Figure 5. Heatmap representation of transcription levels of sirtuin genes among           
vertebrates. Transcription values were calculated independently for each species and          
normalized over all tissues.  
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Supplementary  figure 1. Patterns of conserved synteny in the chromosomal
regions that harbor the SIRT3-like gene of gnathostomes. Asteriks indicate
that the orientation of the genomic piece is from 3' to 5', whereas gray lines
represent genes that do not contribute to conserved synteny.
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