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Abstract 
We develop a deep learning framework (DeepAccNet) that estimates per-residue accuracy 
and residue-residue distance signed error in protein models and uses these predictions to 
guide Rosetta protein structure refinement. The network uses 3D convolutions to evaluate 
local atomic environments followed by 2D convolutions to provide their global contexts and 
outperforms other methods that similarly predict the accuracy of protein structure models. 
Overall accuracy predictions for X-ray and cryoEM structures in the PDB correlate with their 
resolution, and the network should be broadly useful for assessing the accuracy of both 
predicted structure models and experimentally determined structures and identifying specific 
regions likely to be in error. Incorporation of the accuracy predictions at multiple stages in the 
Rosetta refinement protocol considerably increased the accuracy of the resulting protein 
structure models, illustrating how deep learning can improve search for global energy minima 
of biomolecules. 

Introduction 
Distance prediction through deep learning on amino acid co-evolution data has considerably 
advanced protein structure prediction 1–3. However, in most cases, the predicted structures 
still deviate considerably from the actual structure 4. The protein structure refinement 
challenge is to increase the accuracy of such starting models. To date, the most successful 
approaches have been with physically based methods that involve a large-scale search for 
low energy structures, for example with Rosetta 5 and/or molecular dynamics 6. This is 
because any available homology and co-evolutionary information are typically already used 
in the generation of the starting models. 
 
The major challenge in refinement is sampling; the space of possible structures that must be 
searched through even in the vicinity of a starting model is extremely large 5,7. If it were 
possible to accurately identify what parts of an input protein model were most likely to be in 
error, and how these regions should be altered, it should be possible to considerably improve 
the search through structure space and hence the overall refinement process. Many methods 

1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.07.17.209643doi: bioRxiv preprint 

mailto:dabaker@uw.edu
https://paperpile.com/c/e4rDdi/K7zs+IOnt+gu3H
https://paperpile.com/c/e4rDdi/T5ECx
https://paperpile.com/c/e4rDdi/H0Hdf
https://paperpile.com/c/e4rDdi/z7IHm
https://paperpile.com/c/e4rDdi/1au9d+H0Hdf
https://doi.org/10.1101/2020.07.17.209643
http://creativecommons.org/licenses/by-nc-nd/4.0/


for estimation of model accuracy (EMA) have been described, including approaches based 
on deep-learning such as ProQ3D (based on per-residue Rosetta energy terms and multiple 
sequence alignments with multi-layer perceptrons 8), and Ornate (based on 3D voxel atomic 
representations with 3D convolutional networks 9). Non-deep-learning methods such as 
VoroMQA compare a Voronoi tessellation representation of atomic interactions against 
pre-collected statistics 10. These methods focus on predicting per-residue accuracy. Few 
studies have sought to guide refinement using deep learning based accuracy predictions 11; 
the most successful refinement protocols in the recent blind 13th Critical Assessment of 
Structure Prediction (CASP13) test either utilized very simple ensemble-based error 
estimations 5 or none at all 12. This is likely because of the low specificity of most current 
accuracy prediction methods, which only predict which residues are likely to be inaccurately 
modeled, but not how they should be moved, and hence are less useful for guiding search. 

Results 
We set out to develop a deep learning based framework (DeepAccNet) that estimates the 
signed error in every residue-residue distance along with the local residue contact error, and 
we use this estimation to guide Rosetta based protein structure refinement. Our approach is 
schematically outlined in Figure 1. 

Development of improved model accuracy predictor 
We first sought to develop model accuracy predictors that provide both global and local 
information for guiding structure refinement. We developed network architectures that make 
the following three types of predictions given a protein structure model: local measures of 
structure accuracy measured by per residue Cᵦ local distance difference test (l-DDT) scores 
13, a native Cᵦ contact map thresholded at 15 Å (referred to as mask), and per residue-pair 
distributions of signed Cᵦ-Cᵦ distance error against corresponding native structures (referred 
to as estograms; histogram of errors); C⍺ is taken for GLY. Rather than predicting single 
error values for each pair of positions, we instead predict histograms of errors (analogous to 
the distance histograms employed in the structure prediction networks of 1–3), which provide 
more detailed information about the distributions of possible structures and better represent 
the uncertainties inherent to error prediction. Networks were trained on alternative structures 
(“decoys'') with model quality ranging from 50% to 90% in GDT-TS (global distance test - 
tertiary structure) 14 generated by homology modeling 15, trRosetta 1, and native structure 
perturbation (see Methods). ~150 decoy structures were generated for each of 7,314 X-ray 
crystal structures with resolution better than 2.5 Å lacking extensive crystal contacts and 
having sequence identity less than 40% to any of 73 refinement benchmark set proteins (see 
below). Of the approximately one million decoys, those for 280 and 285 of the 7,314 proteins 
were held out for validation and testing, respectively. More details of the training/test set and 
decoy structure generation can be found in Methods.  
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The predictions are based on 1D, 2D, and 3D features that reflect accuracy at different 
levels. Defects in high-resolution atomic packing are captured by 3D convolution operations 
performed on 3D atomic grids around each residue defined in a rotationally invariant local 
frame, similar to the Ornate method 9. 2D features are defined for all residue pairs, and they 
include Rosetta inter-residue interaction terms, which  further report on the details of the 
interatomic interactions, while residue-residue distance and angular orientation features 
provide lower resolution structural information. Multiple sequence alignment (MSA) 
information in the form of inter-residue distance prediction by the trRosetta 1 network and 
sequence embeddings from the ProtBert-BFD100 model 16 (or Bert, in short) are also 
optionally provided as 2D features. At the 1D per residue level, the features are the amino 
acid sequence, backbone torsion angles, and the Rosetta intra-residue energy terms (see 
Methods for details).  
 
We implemented a deep neural network, DeepAccNet, that incorporates these 1D, 2D, and 
3D features (Figure 1A). The networks first perform a series of 3D convolution operations on 
local atomic grids in coordinate frames centered on each residue. These convolutions 
generate features describing the local 3D environments of each of the N residues in the 
protein. These, together with additional residue level 1D input features (e.g. local torsional 
angles and individual residue energies), are combined with the 2D residue-residue input 
features by tiling (so that associated with each pair of residues there are both the input 2D 
features for that pair and the 1D features for both individual residues), and the resulting 
combined 2D feature description is input to a series of 2D convolutional layers using the 
ResNet architecture 17. A notable advantage of our approach of tying together local 3D 
residue based atomic coordinate frames through a 2D distance map is the ability to integrate 
full atomic coordinate information in a rotationally invariant way; in contrast, a Cartesian 
representation of the full atomic coordinates would change upon rotation, substantially 
complicating network for both training and its use. Details of the network architecture, feature 
generation, and training processes are found in Methods. 
 
Figure 2 shows examples of the predictions of DeepAccNet without MSA or Bert embeddings 
(referred to as DeepAccNet-Standard) on two randomly selected decoy structures for each of 
three target proteins (3lhnA, 4gmqA, and 3hixA) not included in training. In each case, the 
network generates different signed residue-residue distance error maps for the two decoys 
that qualitatively resemble the actual patterns of the structural errors (rows of Figure 2). The 
network also accurately predicts the variations in per residue model accuracy (l-DDT scores) 
for the different decoys. The left sample from 4gmqA (second row) is closer to the native 
structure than the other samples are, and the network correctly predicts the location of the 
smaller distance errors and l-DDT scores closer to 1. Overall, while the detailed predictions 
are not pixel-perfect, they provide considerable information on what parts of the structure 
need to move and in what ways to guide refinement. Predictions from the variants with the 
MSA (referred to as DeepAccNet-MSA) and Bert features (referred to as DeepAccNet-Bert) 
are visualized in Figure S1. 
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We compared the performance of the DeepAccNet networks to that of a baseline network 
trained only on residue-residue Cᵦ distances. The performance of the DeepAccNet networks 
are considerably better on average for almost all the test set proteins (Figure S2A; Figure 3); 
they outperform the baseline Cᵦ distance model in predicting estograms for residue pairs 
across different sequence separations and input distances (Figure S2B). The addition of the 
MSA or Bert information improves overall accuracy particularly for quite inaccurate models 
and residues (Figure S2CD). For all networks and the distance-only network, l-DDT score 
prediction does not decline substantially with increasing size (Spearman correlation 
coefficient, or Spearman-r, of -0.04 with p-value > 0.05 for protein size vs. 
DeepAccNet-Standard performance), but estogram prediction performance clearly declines 
for larger proteins (Spearman-r of 0.57 with p-value < 0.00001)  (Figure S2E) -- for larger 
proteins with more interactions over long distances, estimating the direction and magnitude of 
errors is a much harder task while since l-DDT scores only consider local changes at short 
distances, they degrade less with increasing size.  
 
In addition to distance map features, DeepAccNet networks take as input a) amino acid 
identities and properties, b) local atomic 3D environments for each residue, c) backbone 
torsion angles and residue-residue orientations, e) Rosetta energy terms, f) secondary 
structure information, g) MSA, and h) Bert information. To investigate the contributions of 
each of these features to network performance, we combined each with distance maps one 
at a time during training and evaluated performance through estogram cross-entropy loss 
and l-DDT score mean squared error on test sets (Figure 3A, Table S1). Apart from the MSA 
features, the largest contributions were from the 3D convolution-based features and the Bert 
embeddings (compare (v), (vi), and (vii) ). There is a statistically significant difference 
between the network (ii) and (vii), suggesting that the features other than 3D-convolution and 
Bert help them glue together (p-value < 0.0001 with Wilcoxon signed-rank test for estogram 
loss between network (ii) and (vii)). 
 
An effective accuracy prediction method should be useful for evaluating and identifying 
potential errors in experimentally determined structures as well as computational models.  
We investigated the performance of the network on experimental structures determined by 
X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron 
microscopy (EM) that were not included in the training set (details of the dataset can be 
found in Methods). The predicted Cᵦ l-DDT values by the DeepAccNet variants are close to 
1.0 for high-resolution crystal structures, as expected for nearly error free protein structures, 
and decreases for lower resolution structures (Figure 3C, left panel for 
DeepAccNet-Standard, Figure S3 for other variants). A similar correlation between predicted 
accuracy and resolution holds for X-ray structures of membrane proteins (Figure 3C, middle 
panel; Spearman-r 0.64 with p-value < 0.0001) and cryoEM structures (Figure 3C, right 
panel; Spearman-r 0.87 with p-value < 0.0001). Note that the good correlation found within 
the membrane proteins can be simply due to the difference in core packing; whether the 
network is aware of the membrane environment is unclear from the result. A list of X-ray 
structures with low predicted l-DDT despite their high experimental resolution is provided in 
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Table S2. Many of these are heme-proteins; as the network does not consider bound ligands, 
the regions surrounding them are detected as atypical for folded proteins, suggesting that the 
network may also be useful for predicting cofactor binding and other functional sites from 
apo-structures. NMR structures have lower predicted accuracies than high-resolution crystal 
structures (Figure 3D, right; Figure S3CD), which is not surprising given i) they were not 
included in the training set and ii) they represent solution averages rather than crystalline 
states. Despite their differences in structural aspects, it will be an interesting direction to train 
an accuracy network including NMR structures in the future. 
 
We compared the DeepAccNet variants to other accuracy estimators (Figure 3B). As is clear 
from recent CASP experiments, co-evolution information derived from multiple sequence 
alignments provides detailed structure information; we include this as an optional input to our 
network (DeepAccNet-MSA) for two reasons: first, all available homology and co-evolutionary 
information is typically already used in generating the input models for protein structure 
refinement and second, in applications such as de novo protein design model evaluation, no 
evolutionary multiple sequence alignment information exists. DeepAccNet-Bert includes the 
Bert embeddings which are generated with a single sequence without any evolutionary 
alignments. We compared the performance of the DeepAccNet variants on the CASP13 EMA 
data (76 targets with approximately 150 decoy models each) to that of the methods that 
similarly estimate error from a single structure model. These are Ornate (group name 
3DCNN) 9, a method from Lamoureux Lab 18, VoroMQA 10,  ProQ3 19, ProQ3D, ProQ3D-lDDT 
8, and MODFOLD7 20; the former two use 3D convolutions similar to those used in our single 
residue environment feature calculations. We calculated (i) the Spearman-r of predicted and 
actual global l-DDT scores per target protein and (ii) area under receiver operator 
characteristic (ROC) curve for predicting mis-modeled residues per sample (Cᵦ l-DDT< 0.6 21) 
which assesses global and local model accuracy estimation respectively. According to both 
metrics, DeepAccNet-Standard and DeepAccNet-Bert outperformed the other methods that 
do not use any evolutionary information; DeepAccNet-MSA also outperformed the other 
methods that use evolutionary multiple sequence alignment information (Figure 3B right). 
While this improved performance is very encouraging, it must be noted that our predictions 
are made after rather than before CASP13 data release so the comparison is not entirely fair: 
future blind accuracy prediction experiments will be necessary to compare methods on an 
absolutely even footing. As a step in this direction, we tested performance on structures 
released from the PDB after our network architecture was finalized that were collected in the 
CAMEO (Continuous Automated Model EvaluatiOn) 21 experiment between 2/22/2020 to 
5/16/2020.  We consistently observed that DeepAccNet-Standard and DeepAccNet-Bert 
improved on other methods that do not use evolutionary information, -- namely, VoroMQA 10, 
QMean3 22, and Equant 2 23 in both global (entire model) and local (per residue) accuracy 
prediction performance (Figure S4). DeepAccNet-MSA also showed the state of the art 
performance among the methods that use multiple sequence alignment. We could not 
compare signed residue-pair distance error predictions because this is not predicted by the 
other methods. 
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Guiding search in protein structure refinement using the accuracy 
predictor 
We next experimented with incorporation of the network accuracy predictions into the 
Rosetta refinement protocol 5,24, which was one of the top methods tested in CASP13 25. 
Rosetta high-resolution refinement starts with a single model, and in a first diversification 
stage explores the energy landscape around it using a set of sampling operators, and then in 
a subsequent iterative intensification stage hones in on the lowest energy regions of the 
space. Search is controlled by an evolutionary algorithm which maintains a diverse but low 
energy pool through many iterations/generations. With improvements in the Rosetta energy 
function in the last several years 26,27, the bottleneck to improving refinement has largely 
become sampling close to the correct structure. The original protocol utilized model 
consensus-based accuracy estimations (i.e. regional accuracy estimated as inverse of 
fluctuation within an ensemble of structures sampled around the input model) to keep search 
focused in the relevant region of the space -- these have the obvious downside of limiting 
exploration in regions which need to change substantially from the input model but are 
located in deep false local energy minima.  
 
To guide search, estograms and I-DDT scores were predicted and incorporated at every 
iteration in the Rosetta refinement protocol at three levels (details in Methods). First and most 
importantly, the estograms were converted to residue-residue interaction potentials with 
weight for each pair defined by a function of its estogram prediction confidence, and these 
potentials were added to the Rosetta energy function as restraints to guide sampling. 
Second, the per-residue l-DDT predictions were used to decide which regions to intensively 
sample or to recombine with other models. Third, global l-DDT prediction was used as the 
objective function during the selection stages of the evolutionary algorithm and to control the 
model diversity in the pool during iteration. 
 
To benchmark the accuracy prediction guided refinement protocol, 73 protein refinement 
targets were collected from previous studies 5,24. The starting structures were generally the 
best models available from automated structure prediction methods. A separate 7 targets 
from Park et al 5,24 were used to tune the restraint parameters and were excluded from the 
benchmarking in this study.  
 
We found that network-based accuracy prediction consistently improves refinement across 
the benchmark examples. In Figure 4, refinement guided by the accuracy predictions from 
DeepAccNet-Standard is compared to our previous protocol in which simpler non-deep 
learning accuracy estimation was used. Refinement of many proteins in the benchmark set 
was previously quite challenging due to their size 24; however, with the new protocol, 
consistent improvements are observed over the starting models regardless of protein size 
(Figure 4A, the l-DDT improve by 10% on average) and over the models produced with our 
previous unguided search (Figure 4B; the I-DDT improves by 4% on average). The number 
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of targets with l-DDT improvements of greater than 10% increases from 27% to 47% using 
DeepAccNet-Standard to guide refinement. These improvements are quite notable given how 
challenging the protein structure refinement problem is (comparison to other best predictors 
on the latest CASP targets is shown in Figure S8); for reference best improvements between 
successive biannual CASP challenges are typically < 2% 25. Tracing back through the 
refinement trajectory reveals that the progress in both predicted and actual model quality 
occurs gradually through the stages and are quite well correlated to each other (Figure S5A). 
Predictions of more detailed per residue model quality also agree well with their actual values 
(Figure 4E).  
 
We evaluated the practical impact of the improvement in refined model quality using the 
accuracy predictions by carrying out molecular replacement (MR) trials with experimental 
diffraction datasets (Fig 3C). On 41 X-ray data sets brought from the benchmark set, the 
fraction of cases for which robust MR hits were obtained was 0%, 20%, and 37% using 
pre-refined models, models refined by the non-deep learning protocol, and models refined 
using DeepAccNet-Standard, respectively. 
 
Residue-pair restraints derived from the DeepAccNet estogram predictions were crucial for 
the successful refinement (Figure 4D and Figure S6A). When only residue-wise and global 
accuracy predictions (either from DeepAccNet or external EMA tool 10) were utilized for the 
refinement calculations, performance did not statistically differ from our previous work 
(P>0.1). When Bert or MSA input was further provided to DeepAccNet (red bars in Figure 
4D), significant increases in model quality was observed for a number of targets (Figure 
S6B). Final pool model quality analyses (Figure S7) suggest that sampling was improved by 
those extra inputs (i.e. overall model quality increases) while the single model selection was 
generally reasonable across the three different network-based-EMAs. 
 
The model accuracy improvements occur across a broad range of protein sizes, starting 
model qualities, and types of errors. Refinement improved models across various secondary 
structures to similar extents and corrected secondary structures originally modeled 
incorrectly, increasing model secondary structure accuracy by almost 10% based on an 
8-state definition 28 (Figure S5B, C). As shown in Figure 4F, improvements involve 
identification and modifications of erroneous regions when the overall structure is correct 
(TR776) as well as overall concerted movements when the core part of the model is 
somewhat inaccurate (5m1mA). The accuracy prediction network promotes this overall 
improvement in two ways: first, it provides a more accurate estimation of unreliable distance 
pairs and regions at every iteration of refinement for every model on which sampling can be 
focused, and second, it provides a means to effectively constrain the search space in the 
already accurately modeled regions through residue-residue pair restraints -- this is 
particularly important for refinement of large proteins. The network enables the refinement 
protocol to adjust how widely to search on a case by case basis; this is an advantage over 
most previous refinement approaches where search has generally been either too 
conservative or too aggressive 29.  
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DeepAccNet is available at https://github.com/hiranumn/DeepAccNet. 

Discussion 
Representations of the input data are critical for the success of deep learning approaches. In 
the case of proteins, the most complete description is the full Cartesian coordinates of all of 
the atoms, but these are transformed by rotation and hence not optimal for predicting 
rotationally invariant quantities such as error metrics. Hence most previous machine learning 
based accuracy prediction methods have not used the full atomic coordinates 8,10,19. The 
previously described Ornate method does use atomic coordinates to predict accuracy, and 
solves the rotation dependence by setting up local reference frames for each residue. As in 
the Ornate method, DeepAccNet carries out 3D convolutions over atomic coordinates in 
residue centered frames, but we go beyond Ornate by integrating together this detailed 
residue information along with additional individual residue and residue-residue level 
geometric and energetic information by 2D convolutions over the full N x N residue-residue 
distance map. DeepAccNet-Bert further employs the sequence embeddings from the 
ProtBert language model 16, which provides a higher level representation of the amino acid 
sequence more directly relatable to 3D structures.  
 
Evaluation of performance on CASP and CAMEO datasets shows that the DeepAccNet 
networks make state-of-the-art accuracy predictions, and they are the first to our knowledge 
to predict signed distance errors for protein structure refinement. Model quality estimations 
on X-ray crystal structures correlate with resolutions, and the network should also be useful 
in identifying errors in experimentally determined structures (Figure 3C). DeepAccNet 
performs well on both cryoEM and membrane protein structures, and it could be particularly 
useful for low-resolution structure determination and modeling of currently unsolved 
membrane proteins (Figure 3C). We also anticipate that the network will be useful in 
evaluating protein design models.  
 
Guiding search using the network predictions improved Rosetta protein structure refinement 
over a wide range of protein sizes and starting model qualities (Figure 4). However, there is 
still considerable room for improvement in the combined method. To more effectively use the 
information in the accuracy predictions it will be useful to explore sampling strategies which 
can better utilize the network predictions and more frequent communication between Rosetta 
modeling and the accuracy prediction network -- the network is fast enough to evaluate the 
accuracy of many models more frequently. Also, we find that DeepAccNet often 
overestimates the quality of models when those are heavily optimized by the network through 
our refinement protocol (Figure S5A); adversarial training could help reduce this problem and 
allow more extensive refinement. It is clear that there is also considerably more to explore in 
using deep learning to guide refinement. For example, selection of which of the current 
sampling operators to use in a given situation, and the development of new sampling 
operators using generative models such as sampling missing regions by inpainting.  More 
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generally, reinforcement learning approaches should help identify more sophisticated 
iterative search strategies.  

Methods 
Data preparation. 
Training and test sets for protein model structures (often called decoys) are generated to 
most resemble starting models of real-case refinement problems. We reasoned that a 
relevant decoy structure should meet the following conditions: i) has template(s) not too far or 
close in sequence space; ii) does not have strong contacts to other protein chains, iii) should 
contain minimal fluctuating (i.e. missing density) regions. To this end, we picked a set of 
crystal structures from the PISCES server (deposited by May 1, 2018) containing 20,399 
PDB entries with maximum sequence redundancy of 40% and minimum resolution of 2.5 Å. 
We further trimmed the list to 8,718 chains by limiting their size to 50-300 residues and 
requiring that proteins are either monomeric or have minimal interaction with other chains 
(weaker than 1 kcal/mol per residue in Rosetta energy). HHsearch 30 was used to search for 
templates; 50 templates with the highest HHsearch probability, sequence identity of at most 
40% and sequence coverage of at least 50% are selected for model generation.  
 
Decoy structures are generated using three methods: comparative modeling, native structure 
perturbation, and deep learning guided folding. Comparative modeling and native structure 
perturbation are done using RosettaCM 15. For comparative modeling of each protein chain 
we repeated RosettaCM 500 times in total, every time randomly selecting a single template 
from the list. In order to increase the coverage of decoy structures at mid-to-high accuracy 
regime for targets lacking templates with GDT-TS > 50, 500 models are further generated 
providing a single template and 40% trimmed native structure as templates. Sampled decoy 
set for a protein chain is included in training/test data only if the total number of decoys at 
medium accuracy (GDT-TS to native ranging from 50 to 90) is larger than 50. Maximum 15 
lowest scoring decoys at each GDT-TS bin (ranging from 50 to 90 with bin size 10) are 
collected, then the rest with lowest energy values are filled so as to make the set contain 
approximately 90 decoys. Native structures are perturbed to generate high-accuracy decoys. 
30 models were generated by RosettaCM either by i) combining a partial model of a native 
structure with high-accuracy templates (GDT-TS > 90) or ii) inserting fragments at random 
positions of the native structure. Deep learning guided folding is done using trRosetta 1. For 
each protein, 5 subsampled multiple sequence alignments (MSAs) are generated with 
various depths (i.e. number of sequences in MSA) ranging from 1 to maximum available. The 
standard trRosetta modeling is run 45 times for each of the subsampled MSAs. The final 
decoy set collected, consisting of about 150 structures (90 from comparative modeling, 30 
from native perturbation, and 30 from deep learning guided folding) per each of 7,314 protein 
chains (6,749, 280, 285 for training, validation and test datasets), are thoroughly relaxed by 
Rosetta dual-relax 31 prior to the usage. The distribution of the starting l-DDT values of the 
test proteins are shown in Figure S9. 
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Model architectures and input features. 
In our framework, convolution operations are performed in several dimensions, and different 
classes of features come in at different entry points of the network (Figure 1). Here, we briefly 
describe the network architecture as well as classes of features. More detailed descriptions 
about the features and model parameters are listed in Table S3 and S4.  
 
The first set of input features to the network are voxelized Cartesian coordinates of atoms per 
residue, generated in a manner similar to Ornate 9. Voxelization is performed individually for 
every residue in the corresponding local coordinate frame defined by backbone N, Cɑ, and C 
atoms. Such representation is translationally and rotationally invariant because projections 
onto local frames are independent of the global position of the protein structure in 3D space. 
The second set of inputs are per residue 1D features (e.g., amino acid sequence and 
properties, backbone angles, Rosetta intra-residue energy terms, and secondary structures) 
and per residue pair 2D features (e.g. residue-residue distances and orientations, Rosetta 
inter-residue energy terms, inter-residue distance predictions from the trRosetta network 1, 
and the ProtBert-BFD100 embeddings 16). 
 
In the first part of the neural network, the voxelized atomic coordinates go through a series of 
3D convolution layers whose parameters are shared across residues. The resulting output 
tensor is flattened so that it becomes a 1D vector per residue, which is concatenated to other 
1D features. The second part of the network matches the dimensionality of the features and 
performs a series of 2D convolution operations. Let us now denote that there are n residues, 
f1 1D features, and f2 2D features. Then, the input matrix of the 1D features M1 has the shape 
of n by f1, and the input matrix of the 2D features M2 has the shape of n by n by f2. We tile M1 
in the first and second axis of M2, concatenating them to produce a feature matrix of size n by 
n by 2f1+f2. The third axis of the resulting matrix represents vectors of size 2f1+f2, which 
contain the 2d features and 1D features of i-th and j-th residues. This data representation 
allows us to convolve over both backbone chain and pairwise interactions.  
 
The concatenated feature matrix goes through a residual network with 20 residual blocks, 
with cycling dilation rates of 1, 2, 4, and 8 (see Tables S4). Then, the network branches off to 
two arms of 4 residual blocks. These arms separately predict distributions of Cᵦ distance 
errors for all pairs of residues (referred to as estograms) and whether a particular residue pair 
is within 15 Å in a corresponding native structure (referred to as masks). Estograms are 
defined over categorical distributions with 15 binned distance ranges; the boundary of bins 
are at -20.0 Å, -15.0 Å, -10.0 Å, -4.0 Å, -2.0 Å, -1.0 Å, -0.5 Å, 0.5 Å, 1.0 Å, 2.0 Å, 4.0 Å, 10.0 Å, 15.0 Å, 
20.0 Å.  
 
In the standard calculation of a Cᵦ l-DDT score of i-th residue of a model structure, all pairs of 
Cᵦ atoms that include the i-th  residue and are less than 15 Å in a reference structure are 
examined. 0.5 Å, 1.0 Å, 2.0 Å, and 4.0 Å cutoffs are used to determine the fractions of preserved C ᵦ 
distances across the set of pairs. The final Cᵦ l-DDT score is calculated by computing the 
arithmetic mean of all fractional values 13.  
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In our setup, we obviously do not have access to reference native structures. Instead, a Cᵦ l-DDT 
score of i-th residue is predicted by combining the probabilistic predictions of estograms and 
masks as follows:  
 

er_residue_LDDT .25 p )/pp = 0 * ( 0 + p1 + p2 + p3 4  
 

is the mean of probability that the magnitude of Cᵦ distance errors are less than 0.5 Å,p0  
across all residue pairs that have i-th residue involved and predicted to be less than 15 Å in its 
corresponding native structure. The former Cᵦ distance errors are obtained from estogram 
predictions and the latter native distance information are directly obtained from mask 
predictions. are similar quantities with different cutoffs for errors; 1.0 Å, 2.0 Å, and 4.0 Å,...pp1 3  
respectively. is the mean probability that native distance is within 15 Å and it is againp4  
directly obtained from mask predictions. 
 
The network was trained to minimize categorical cross-entropy between true and predicted 
estograms and masks. Additionally, as noted, we calculated Cᵦ l-DDT scores based on 
estograms and masks, and we used a small amount of mean squared loss between 
predicted and true scores as an auxiliary loss. The following weights on the three loss terms 
are used. 
 

lobal_loss estogram_loss 10.0 DDT_loss 0.25 ask_lossg =  +  * L +  * m  
 
The weights are tuned so that the highest loss generally comes from  sincestogram_losse  
estograms are the richest source of information for the downstream refinement tasks. At each 
step of training, we selected a single decoy from decoy sets of a randomly chosen training 
protein without replacement. The decoy sets include native structures, in which case the 
target estograms ask networks to not modify any distance pairs. An epoch consists of a full 
cycle through training proteins, and the training processes usually converge after 100 
epochs. Our predictions are generated by taking an ensemble of four models in the same 
training trajectory with best validation performance. We used an ADAM optimizer with a 
learning rate of 0.0005 and decay rate of 0.98 per epoch. Training and evaluation of the 
networks was performed on RTX2080 gpus. 
 
Analyzing the importance of features. 
Feature importance analysis was conducted to understand and quantify the contributions 
from different classes of features to accurately predicting accuracy of model structures. To do 
this, we combined each feature class with a distance map one at a time during training (or 
removed them in one particular case) and analyzed loss of predictions on a held-out test 
protein set. In addition to the DeepAccNet-Standard, -Bert, and -MSA, we trained 8 types of 
networks: i) distance map only, ii) distance with local atomic environments scanned with 3D 
convolution, iii) distance with Bert embeddings, iv) ii and iii combined, v) distance with 
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Rosetta energy terms, vi) distance with amino acid identities and their properties, vii) distance 
with secondary structure information, and iv) distance with backbone angles and 
residue-residue orientations. For each network, we took an ensemble of four models with 
best validation performance from the same trajectory in order to reduce noise.  
 
We are aware that more sophisticated feature attribution methods for deep networks exist 32; 
however, these methods attribute importance scores to features per output per sample. Since 
we have approximately a quarter million outputs and near million inputs with a typical 150 
residue protein, these methods were not computationally feasible and tractable to analyze. 
 
Comparing with other model accuracy estimation methods. 
For the CASP13 datasets, we downloaded submissions of QA139_2 (ProQ3D), QA360_2 
(ProQ3D-lDDT 8), QA187_2 (ProQ3 19), QA067_2 (LamoureuxLab 18), QA030_2 (VoroMQA-B 
10), QA275_2 (MODFOLD7), QA359_2 (Ornate, group name 3DCNN 9) for the accuracy 
estimation category. The former five methods submitted their predictions for 76 common 
targets, whereas the last method, Ornate, only submitted for 55 targets. Thus, we decided to 
analyze predictions on the 76 common targets from all methods except for Ornate, which was 
only evaluated on 55 targets. An evaluation was performed in two metrics; i) Spearman-r of 
predicted quality scores across decoys of each target, and ii) area under ROC curve for 
predicting mis-modeled residues of each sample (Cᵦ l-DDT< 0.6). The latter metric is one of 
the official CAMEO metrics for local accuracy evaluation. Samples whose residues are all 
below or above 0.6 Cᵦ l-DDT are omitted. For assessing the performance of methods other 
than ours, their submitted estimations of global quality scores were evaluated against the true 
full-atom global l-DDT scores.  
 
For the CAMEO datasets, we downloaded the QA datasets registered between 2/22/2020 to 
5/16/2020. This corresponds to 206 targets with approximately 10 modeled structures on 
average. We downloaded submissions of "Baseline potential", EQuant 2, ModFOLD4, 
ModFOLD6, ModFOLD7_LDDT, ProQ2, ProQ3, ProQ3D, ProQ3D_LDDT, QMEAN3, 
QMEANDisco3, VoroMQA_sw5, and VoroMQA_v2. Some methods did not submit their 
predictions for all samples, and those missing predictions are omitted from the analysis.  
 
Visualizing predictions. 
Figure 2 visualizes true and predicted estograms per pair of residues. The images are 
generated by calculating the expected values of estograms by taking weighted sums of 
central error values from all bins. For the two bins that encode for errors larger than 20.0 Å 
and smaller than -20.0 Å, we define the central distance at their boundaries of 20.0 Å and 
-20.0 Å. 
 
Native structure dataset 
Native structures that were not used for model training and validation, monomeric, larger than 
40 residues, and smaller than 300 residues for the X-ray and NMR structures, and smaller 
than 600 residues for EM structures were downloaded from the PDB. For Figure 3C, samples 
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with a resolution larger than 4Å and 5Å are ignored for the X-ray and EM structures, 
respectively. The histograms in Figure 3D are using all samples. In total, 23,672 X-ray 
structures, 88 EM structures, and 2,154 NMR structures are in the histograms. For NMR 
structures, regions highly varying across the models were trimmed. Structures were 
discarded if the number of remaining residues after trimming was less than 40 residues or 
half of the original chain length. 
 
Dataset for refinement runs. 
We took 73 proteins and their starting models from our previous work 5 with a few 
modifications as described below. Of the entire 84 targets used in our previous work, 7 
small-sized targets (4zv5A, 5azxA, 5ghaE, 5i2qA, 5xgaA, TR569, T0743) are excluded from 
the benchmark set and were used for restraint parameter search. 8 additional targets (2n12A, 
4idiA, 4z3uA, 5aozA, 5fidA, T0540, TR696, TR857) are excluded after more careful visual 
inspections as those had potential issues in their native structures (e.g. having contacts with 
ligands or other chains in crystal structures). 4 new targets were added from previous CASP 
refinement categories that were not included in the original set (TR747, TR750, TR776, 
TR884). Model accuracy is evaluated on a subset of ordered residues by trimming less 
confident residues according to the CASP standard evaluation criteria 25.  
 
Refinement protocol. 
Refinement protocol tested in this work inherits the framework from previous study 5. The 
overall architecture consists of two stages (Figure 1B): first initial model diversification stage, 
followed by iterative model intensification stages where a pool of structures is maintained 
during optimization by an evolutionary algorithm. At the diversification stage, following 
accuracy estimation of the single starting model, two thousands of independent Rosetta 
modeling are attempted using RosettaCM 15. In the iterative annealing stage, series of 
accuracy estimation, new structure generation, and pool selection steps are repeated 
iteratively. At each iteration, 10 model structures are selected from the current pool, then 
individual accuracy predictions are made for each of 10 structures in order to guide the 
generation of 12 new model structures starting from each (total 120). New pool with size of 
50 is selected among 50 previous pool members plus 120 newly generated ones with criteria 
of i) the highest global l-DDT estimated and ii) model diversity within the pool. This process is 
repeated for 50 iterations. At every fifth iteration, a recombination iteration is called instead of 
a regular iteration where model structures are recombined with another member in the pool 
according to the residue l-DDT values predicted by the network (see below).  
 
For modeling of a single structure at both diversification and intensification stages, first 
unreliable regions in the structure are estimated from accuracy prediction (see below). 
Structural information is removed in those regions and fully reconstructed from scratch. 
Fragment insertions are carried out in a coarse-grained broken-chain representation of the 
structure 15 focusing more on unreliable regions (5 times more frequently with respect to the 
rest part), followed by repeated side-chain rebuilding and minimization 31 in all-atom 
representation. Both coarse-grained and all-atom stage modeling are guided by distance 
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restraints derived from accuracy predictions in addition to Rosetta energy. Details of 
unreliable region predictions, recombination iteration, and restraints are reported in the 
following sections. 
 
Unreliable region prediction 
Accuracy values predicted from the network are used to identify unreliable regions. We 
noticed that the l-DDT metric has a preference for helical regions (as local contacts are 
almost always correct). To fix this systematic bias, we exclude short sequence separation 
contacts in the contact mask that are within sequence separation of 11 to get corrected 
residue l-DDT values. Then these values are smoothed through a 9-residue-window uniform 
weight kernel. The residues at the lowest accuracy are determined as unreliable regions. 
Two definitions of regions are made: in static definition, the accuracy threshold is varied until 
the fraction of unreliable regions lies between 10 to 20% of the entire structure. In dynamic 
definition, this range is defined as a function of predicted global accuracy (i.e. average 
residue-wise corrected accuracy): from fdyn to f dyn +10% with fdyn = 20 + 20*(0.55 - Q)/30, 
where Q refers to predicted global accuracy. fdyn  is capped between 20 to 40%. In the 
diversification stage, one thousand models were generated for each definition of unreliable 
regions. Static definition is applied throughout the iterative stage. 
 
Restraints 
We classified residue pairs in three confidence levels: high confidence, moderate confidence, 
and non-preserving. Highly or moderately confident residue pairs stand for those whose 
distance should be fixed from the reference structure (i.e. starting structure) at different 
strengths; non-preserving pairs refer to the rest which can freely deviate. 
 
Confident pairs are collected if Cᵦ-Cᵦ distance are not greater than 20Å and whose 
“probability with absolute estimated error ≤ 1Å”, shortly Pcen, is above a certain threshold (e.g. 
0.7). For those pairs, bounded functions are applied at coarse-grained modeling stage, and 
sum of sigmoid functions at all-atom modeling stage, minima centering at the original 
distance d0 for both cases: 
 
Bounded function:  

(d)f = s
(d−(d +tol+s))0 + 1  for old > d0 + t + s  

(d)  f = ( s
d−(d +tol) 0  )2 

for ol old0 + t ≤ d ≤ d0 + t + s  

(d)f = 0  for d | ol| − d0 < t  

(d)  f = ( s
d−(d −tol) 0  )2 

for ol old0 − t − s ≤ d ≤ d0 − t  

(d)f = s
(d−(d −tol−s))0 + 1  for old < d0 − t − s  

 
Sum of sigmoid function:  
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(d)  f = wfa * [ −1
1+exp(−5.0 (d−d +tol)/s)* 0

+ 1
(1+exp(−5.0 (d−d −tol)/s)* 0

+ 1]  

 
where s and tol stand for width and tolerance of the functions. Thresholds in Pcen values for 
highly confident pairs, Phigh, and moderately confident pairs, Pmoderate, are set at 0.8 and 0.7, 
with (s,tol) = (1.0,1.0) and (2.0,2.0), respectively, by analyzing the network test results shown 
in Figure S10 . Restraint weight at all-atom stage modeling, wfa, is set as 1.0. We noticed 
iterative refinement with these empirically determined parameters (wfa, {Phigh, Pmoderate}) 
brought too conservative changes. We therefore ran another iterative refinement with a more 
aggressive parameter set (0.2,{0.8,0.9}) and chose the trajectory from whichever sampled a 
higher predicted global l-DDT. 
 
For the rest non-preserving Cᵦ-Cᵦ pairs whose input distances are shorter than 40Å, error 
probability profiles (estograms) are converted into distance potentials by subtracting error 
bins from the original distances d 0 and taking log odds to convert probability into energy units. 
Instead of applying raw probabilities from the network, corrections are made against 
background probability collected from the statistics of the network's predictions over 20,000 
decoy structures in the training set conditioning on sequence separation, original distances 
d 0, and predicted global model quality. The potential was applied in full form interpolated by 
spline function at the initial diversification stage, and was replaced by a simpler functional 
form in subsequent iterative process for efficiency: 
 

(d) d )f = ( − 9 + 1  for Åd > 9  
(d)f = (d )− 8 2   for Å8 ≤ d ≤ 9  
(d)f = 0   for Åd < 8  

 
for those pairs predicted from estogram as contacting within 10Å. Contacts are predicted 
when Pcontact > 0.8, with Pcontact = sum(Pi ) over i whose d 0 + e i  < 10Å and Pi  stands for 
probability in estogram at bin i. 
 
Recombination Iteration  
At the recombination iteration, instead of running RosettaCM as the sampling operator, 
model structures are directly generated by recombining the coordinates from two models 
according to the predicted residue l-DDT profiles by the network. For a “seed” member, 4 
“partners” are identified among the remaining 49 members in the pool that have the most 
complementarity to the seed in the predicted residue l-DDT profiles. All the members in the 
pool are recombined individually with their 4 partners, resulting in a total 200 new structural 
models. For each seed-partner combination, first, “complementary regions” are identified 
where the seed is inferior to the partner in terms of predicted l-DDT, then coordinates at the 
regions are substituted to those from the partner. Multiple discontinuous regions are allowed 
but the total coverage is restricted to a range between 20 to 50% of total residues. Next, 
Rosetta FastRelax 31 is run by imposing residue-pair restraints from estograms brought from 
either the partner or the seed interpolated into pair potentials (see above). Restraints from 
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the partner are taken if any residue in the pair is included in complementary regions, and 
from the seed for the rest pairs. Recombination iterations are called at every 5 iterations to 
prevent over-convergence in the pool. 
 
Final model selection  
A model with the highest predicted global l-DDT is selected among 50 final pool members. 
Then a pool of structures similar to this structure (S-score 33 > 0.8)  are collected from the 
entire iterative refinement trajectory, structurally averaged, and regularized in model 
geometry by running dual-relax 31 with strong backbone coordinate restraints with a harmonic 
constant of 10 kcal/mol Å2, which was the identical post-processing procedure in our previous 
work 5. The final model refers to this structurally averaged and subsequently regularized 
structure. Structural averaging adds 1% l-DDT gain on average. 
 
Testing other EMA methods in the refinement protocol 
To test the refinement coupled with an external non-DL geometrical EMA, VoroMQA10 
version 1.21 was downloaded and integrated into our refinement protocol script substituting 
DeepAccNet for global model ranking and unreliable region prediction. Because VoroMQA 
does not provide any residue-pair estimations, confidence in the distance between residue i,j 
(denoted as Pij ) was estimated by the logic used in our previous work5,24. Here, Pij = Pi *Pj 
where Pi  = exp(-ƛ/L i ) and L i is the residue-wise accuracy from VoroMQA; ƛ was set to 1.4 
which gave the most similar distribution in weights as what was found in our previous work. 
Then Pij was divided by the highest 70 percentile value capping the maximum value at 1.0. 
Residue pair restraints were applied at these per-pair weights with the identical functional 
forms described above. The same logic was applied to the refinement protocol using 
“DeepAccNet w/o 2D”; here ƛ=2.0 was used. 
 
Molecular replacement (MR) 
Of a total 50 targets native structures of which were determined by X-ray crystallography in 
the benchmark set, 41 are tested for MR. 9 targets are excluded as their crystal structures 
contained other proteins or domains with significant compositions (>50%). Phaser 34 in the 
Phenix suite version 1.18rc2-3793 is applied with MR_AUTO mode. Terminal residues are 
trimmed from model structures prior to MR if they do not directly interact with the rest of 
residues. B-factors are estimated by taking residue-wise DeepAccNet predictions: first, ui , 
the position error at residue i (in Å), is estimated by using a formula: ui = 
1.5*exp[4*(0.7-lddtpredicted,i )], where parameters were pre-fit to training set decoy structures. 
Then B-factor at residue i is calculated as 8𝜋2ui

2/3.  

Data Availability 
Decoy structures generated for the training of the DeepAccNet models and their raw 
predictions on the held-out test, CASP13, and CAMEO set are available at the github 
repository https://github.com/hiranumn/DeepAccNet.  
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Code Availability 
Code and accompanying scripts for the model accuracy predictors (DeepAccNet-Standard, 
DeepAccNet-MSA, and DeepAccNet-Bert) are implemented and made available at 
https://github.com/hiranumn/DeepAccNet. 
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Figures 

 
Figure 1:  Approach overview. A) The deep learning network (DeepAccNet) consists of a series of 3D and 2D 
convolution operations. The networks are trained to predict i) the signed Cᵦ-Cᵦ distance error distribution for each 
residue pair (error histogram or estogram in short), ii) the native Cᵦ contact map with a threshold of 15Å (referred 
to as mask), iii) the Cᵦ l-DDT score per residue; Cα is taken for GLY. Input features to the network include: a) 
distance maps, b) amino acid identities and properties, c) local atomic environments scanned with 3D 
convolutions, d) backbone angles, e) residue angular orientations, f) Rosetta energy terms, and g) secondary 
structure information. Multiple sequence alignment (MSA) information in the form of inter-residue distance 
prediction by the trRosetta network and sequence embeddings from the ProtBert-BFD100 model (or Bert, in short) 
are also optionally provided as 2D features. Details of the network architecture and features are provided in 
Methods. B) The machine learning guided refinement protocol uses the trained neural networks in three ways; the 
estimated l-DDT scores are used to identify regions for more intensive sampling and model recombination, the 
estimated pairwise error distributions are used to guide diversification and optimization of structure(s), and finally 
the estimated global l-DDT score, which is mean of per-residue values, to select models during and at the end of 
the iterative refinement process.  
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Figure 2:  Example estograms and l-DDT score prediction.  Model predictions for two randomly selected 
decoys for three test proteins were randomly selected (3lhnA, 4gmqA, 3hixA; size 108, 92, and 94 respectively; 
black rectangular boxes delineate results for single decoy). The first and fourth columns show true maps of errors, 
the second and fifth columns show predicted maps of errors, and the third and sixth columns show predicted and 
true l-DDT scores. The i, j element of the error map is the expectation of actual or predicted estograms between 
residues i and j in the model and native structure. Red and blue indicate that the pair of residues are too far apart 
and too close, respectively. The color density shows the magnitude of expected errors.  
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Figure 3:  DeepAccNet performance.  A) Contribution of individual features to network performance; all models 
include the distance matrix features. Overall, the largest contribution is from the features generated by 3D 
convolutions on local environments, Bert embeddings, and MSA information. Estogram (A, cross-entropy) loss 
values averaged over all decoys for each test protein are shown as one data point. The grey dotted line shows the 
values from predictors (i) and (ii). B) Comparison of the performance of single model accuracy estimation (EMA) 
methods on CASP13 data. (top) Performance of global accuracy estimation measured by the Spearman 
correlation coefficient (r-value) of predicted and actual global l-DDT scores per target protein. (bottom) 
Performance of local accuracy estimation measured by area under receiver operator characteristic (ROC) curve 
for predicting mis-modeled residues per sample (Cᵦ l-DDT< 0.6). The blue horizontal lines show the value of 
DeepAccNet-Standard. The methods to the left of the dotted line do not use coevolutionary information. 
Quasi-single EMA method is shown in pink. Error bars show standard deviation. C) Predicted Cᵦ I-DDT by 
DeepAccNet-Standard correlates with resolution for X-ray structures (left; Spearman-r 0.48 with p-value < 
0.0001), X-ray structures of transmembrane proteins (middle; Spearman-r 0.64 with p-value < 0.0001),  and 
cryoEM structures (right; Spearman-r 0.87 with p-value < 0.0001).  D) X-ray structures have higher predicted 
I-DDT values by DeepAccNet-Standard than NMR structures. 
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Figure 4.  Consistent improvement in model structures from refinement runs guided by deep learning 
based accuracy predictions . Refinement calculations guided and not guided by network accuracy predictions 
were carried out on a 73 protein target set 5,24  (see Methods for details). A) Network guided refinement 
consistently improves starting model.  B) Network guided refinement trajectories produce larger improvements 
than unguided refinement trajectories. The accuracy of the refined structure (l-DDT; y-axis) is compared with that 
of the starting structure in A, and with the final refined structure using non-DL-based model consensus accuracy 
predictions in B 5. Top and bottom panels show results for proteins less than 120 residues in length and 120 or 
more residues in length, respectively. Each point represents a protein target with color indicating the protein size 
(scale shown at the right side of panel B). C) Molecular replacement experiments on 41 benchmark cases using 
three different sets of models: i) starting models, ii) refined models from the non-deep learning protocol, and iii) 
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guided by DeepAccNet-Standard. Distributions of TFZ (translation function Z-score) values obtained from Phaser 
software 34 are reported; TFZ values greater than 8 are considered robust MR solutions. D) Model improvements 
brought about by utilizing DeepAccNet-Standard (magenta), different EMA methods (gray bars), and other 
DeepAccNet variants trained with Bert or MSA features (red bars). Average improvements tested on the 73 target 
set are shown. For the “DeepAccNet-Standard w/o 2D” and “geometrical EMA”10, residue pair distance 
confidences are estimated by the multiplication of residue-wise accuracy following the scheme in our previous 
work 5,24 (details can be found in Methods). E) Example of predicted versus actual per-residue accuracy prediction. 
Predicted and actual l-DDT values are shown before (left) and after refinement (right) with a color scheme 
representing local l-DDT from 0.0 (red) to 0.7 (blue). Native structure is overlaid in gray color. Red arrows in the 
panels highlight major regions that have been improved. F) Examples of improvements in refined model 
structures. For each target, starting structures are shown on the left and the refined model on the right. Color 
scheme is the same as E, showing the actual accuracy. 
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Supplementary Figures 

 
Figure S1: Example estograms and l-DDT score prediction from DeepAccNet standard, Bert and MSA. 
Model predictions for the same set of decoys from Figure 2 (3lhnA, 4gmqA, 3hixA; size 108, 92 and 94 
respectively). The first column shows true maps of errors, the second to fourth columns show predicted maps of 
errors, and the last column shows predicted and true l-DDT scores. The i, j element of the error map is the 
expectation of actual or predicted estograms between residues i and j in the model and native structure. Red and 
blue indicate that the pair of residues are too far apart and too close, respectively. The color density shows the 
magnitude of expected errors.  
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Figure S2. A) Comparison of the variants of DeepAccNet and distance-only network on predicted estograms (top) 
and l-DDT scores (bottom). Each dot represents the loss for a single protein averaged over all decoys. Lower loss 
values indicate better performance. Estograms are evaluated by cross-entropy loss, and per residue l-DDT scores 
are evaluated by mean-squared error. B) Test estogram loss plotted against four conditions; sequence separation, 
input distance, input variability (standard deviation of input distance across decoys from the same target), and 
output variability (entropy of true estogram across decoys from the same target). The loss values are binned in 
terms of x-axis properties. The mean value at each bin is shown on the y-axis, and the range of one z-score is 
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shown with the shaded area. CD) Dependence of l-DDT score loss on true l-DDT per-model (C) and per residue 
(D). Loss values are binned in terms of the true l-DDT scores. The mean of loss values at each bin is shown on 
the y-axis as a solid line, and the range of one Z-score is shown with the shaded area. E) Dependence of 
estogram (left) and l-DDT score per residue (right) loss on protein size. Each dot is an average loss value for a 
single target protein over all decoys. 
 
 
 
 

 
Figure S3. AB) Predicted Cᵦ I-DDT by DeepAccNet-Bert (A) and DeepAccNet-MSA (B) correlates with resolutions 
for X-ray structures (left; Spearman-r 0.43 and 0.44 with p-value < 0.0001 for the Bert and MSA variants, 
respectively), X-ray structures of transmembrane proteins (middle; Spearman-r 0.73 and 0.74 with p-value < 
0.0001 for the Bert and MSA variants, respectively), and cryoEM structures (right; Spearman-r 0.82 and 0.84 with 
p-value < 0.0001 for the Bert and MSA variants, respectively).  CD) X-ray structures have higher predicted I-DDT 
values by DeepAccNet-Bert and -MSA than NMR structures. 
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Figure S4. Comparison of the performance of single model accuracy estimation (EMA) methods on 
CAMEO data. (Top, middle) Performance of local accuracy estimation measured by area under receiver operator 
characteristic (ROC, top) curve and precision-recall curve (PR, middle) for predicting mis-modeled residues per 
sample (Cᵦ l-DDT< 0.6). Error bars show standard deviation. (Bottom) Performance of global accuracy estimation 
measured by the Spearman correlation coefficient (r -value) of predicted and actual global l-DDT scores. Since the 
number of models per target was small, correlation was measured globally across all targets. The blue horizontal 
lines show the value of DeepAccNet-Standard. The methods to the left of the dotted line do not use 
coevolutionary information. Quasi-single models are shown in pink. 
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Figure S5. Detailed analyses of refinement results. A) Actual and predicted model accuracy improvements 
throughout the refinement trajectory. Model quality (actual in blue and predicted in gray, CB l-DDT is used for 
direct comparison), averaged over 73 benchmark cases, is shown through the refinement process. Points and 
bars show the model1 quality and the quality range of 50 models in the pool, respectively.  B) 3-state secondary 
structure type at the reconstructed regions (H:helix, E:extended, C:coil). Residue-wise fractions of each type are 
plotted according to the native structure (left) and to the starting model structure (middle), respectively. (right) 
Pre-refinement l-DDT values at reconstructed regions and the rest preserved regions, shown in red and blue 
colors, respectively (average by circles; standard deviations by error bars). C) Breakdown of accuracy 
improvements by secondary structure types. In upper panels, light colored boxes represent improvements without 
DeepAccNet-Standard, while darker regions of the boxes represent additional improvements gained with 
DeepAccNet-Standard; these are calculated over the complete benchmark set. (left panel) Similar improvements 
are observed across secondary structure types. (right panel) Improvements in model secondary structure 
accuracy are evaluated on 3- or 8-states following DSSP annotations 28; improvements are evident in both 3 state 
and 8 state local structure prediction. (bottom panel) D) Correlation between refinement performance and highest 
structural/sequence similarity of the target to the training set proteins. (left panel). Correlation between the 
maximum structural similarity (x-axis) versus the starting/refined model quality (y-axis) shown in TM-score 35. (right 
panel) Correlation between the maximum sequence identity (%) versus the refinement performance (in l-DDT 
change). In both panels, targets highlighted in Figure 4 are shown in colored arrows. 
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Figure S6. Breakdown of Figure 4D: Comparison of refinement performances by EMA methods or extra 
information utilized. A) Refinement performance with different EMA methods taken during refinement, compared 
to that of our baseline approach (x-axis) 5,24 using model consensus for 1D (region detection) and 2D (residue pair 
confidence) and Rosetta energy for 0D (global ranking).  B) Refinement performance gained by providing extra 
input from Bert and MSA features, compared to DeepAccNet without such extra input features (x-axis).  
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Figure S7. The model quality of the final iteration structural pool and the selected one from the refinement 
runs using DeepAccNet-Standard, -Bert, and -MSA. 1st and 3rd quartile of the model qualities in the final 
iteration models shown in cyan bars, their mean in red dots, selected by DeepAccNet (without structural 
averaging) in blue dots, and individual values in gray crosses.  
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Figure S8. Performances of the methods on CASP13 refinement category targets. Improvements in l-DDT 
scores over starting models are shown. Two leading groups in CASP13, Feig and Baker, are brought in for the 
comparison against refinement with DeepAccNet; Feig group ran long MD simulations, while BAKER group ran 
the non-DL refinement method presented in the main text with subsequent short MD simulations. Net l-DDT 
changes for both of these groups range within 3~4%, compared to 7% by DeepAccNet-guided refinement. 9 
targets from the CASP13 refinement category are removed from the analysis for which the native structures 
contain heavy oligomeric contacts or are determined at low resolutions (>3Å). 
 
 
 
 

 
Figure S9. Numbers of samples that participated in loss analysis based on starting l-DDT scores.  
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Figure S10. Assessment of binary correct/incorrect predictions. Actual error values were grouped into correct 
and incorrect bins. In each panel, a distance is counted as correct if the actual distance error (from that of the 
native structure) is within a certain range, while a prediction is counted correct if the sum of probability over the 
given range in the estogram is above the threshold value (x-axis). Error range definitions are [-0.5, 0.5], [-1, 1] , 
[-2, 2], and [-4, 4] Å from the left to the right panel. The dotted lines show recall values and solid lines show 
precision values. The grey lines visualize the thresholding of 0.7 used in the downstream refinement process. 
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Supplementary Tables 
 

Models 
Held-out proteins 
(# proteins=285) 

True global  
l-DDT < 0.7 

True global  
l-DDT > 0.7 

Esto Mask l-DDT Esto Mask l-DDT Esto Mask l-DDT 

(i) DAN-Standard 1.805 0.200 0.012 1.939 0.250 0.014 1.567 0.110 0.009 

(ii)  DAN-Bert 1.697 0.171 0.009 1.781 0.208 0.010 1.548 0.106 0.009 

(iii) DAN-MSA 1.557 0.135 0.008 1.594 0.158 0.009 1.489 0.094 0.008 

(iv) Cᵦ distance 1.901 0.217 0.017 2.022 0.270 0.017 1.685 0.123 0.016 

(v) 3D conv 1.808 0.200 0.012 1.936 0.250 0.013 1.581 0.111 0.010 

(vi) Bert 1.761 0.181 0.012 1.836 0.217 0.012 1.628 0.115 0.012 

(vii) 3D+Bert 1.714 0.175 0.010 1.794 0.211 0.010 1.570 0.110 0.010 

(viii) Rosetta 1.854 0.209 0.013 1.986 0.262 0.015 1.617 0.115 0.011 

(ix) AA-related 1.863 0.208 0.014 1.977 0.258 0.014 1.659 0.119 0.014 

(x) Sec struct 1.922 0.222 0.017 2.049 0.275 0.018 1.695 0.127 0.015 

(xi) Angles and 
orientations 

1.870 0.212 0.015 2.006 0.266 0.017 1.627 0.117 0.012 

 
Table S1: Performance of the variants of distance-based networks trained with and without a certain class of 
features. Performance is measured by cross-entropy for estograms and masks and mean squared error for l-DDT 
scores. For each setting, we ensembled the prediction from four models with the best validation performance from 
the same training trajectory (see Methods). Columns 2-4 report the quality of the three predictions averaged over 
all held-out decoy structures. Columns 5-7 report the quality of the predictions on decoys with low true quality 
(global l-DDT < 0.7). Columns 8-10 report the quality of the predictions on decoys with high true quality (global 
l-DDT > 0.7).  
 
 

6B17, 3URO, 3TWG, 5DYR, 6HR0, 1P9G, 4G4L, 6EWN, 4HB6, 5JQF, 4U2W, 4HB8, 1MBN, 4HAJ, 1CYC, 
1VXB, 3H4N, 2SBT, 1NXB, 4HBF, 1G7V, 2EWI, 1J0O, 2SNS, 4HDL, 3SJ4, 3H34, 4D5M, 1MBS, 1OS6, 
2EWU, 1LWK, 1LYZ, 3TRV, 3SJ0, 4Z0W, 1ACX, 1PMK, 3TJW, 1HH5, 1M1R, 6DK5, 2ZVS, 3D6T, 2AOA, 
3SEL, 6FM8, 5YP8, 4EFX, 1TGL, 3SJ1, 1TIA, 2EWK, 2XJI, 5HDD, 6CDX, 5VBD, 4HC3, 3NIR, 2YYX, 1HGU 

 
Table S2: List of X-ray native structures with low C  β-lddt despite their high experimental resolution. 
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Distance-based i) C  β to C β distance map, Cɑ is taken for GLY, ii) Cɑ to Tip-atom distance map and its 
transpose, iii) Tip-atom to Tip-atom distance map, and iv) sequence separation map. 
The distance maps (i~iv) go through a variance reduction process with arcsinh(x). See 
Table S5 for the definition of tip atoms. 

Amino acid 
properties 

i) One-hot encoded amino acids. ii) Blosum62 scores 36. iii) Per amino-acid feature sets 
from Meiler et al 37. 

Rosetta energy 
terms 

i) Two-body energy terms: fa_atr, fa_rep, fa_sol, lk_ball_wtd, fa_elec, hbond_bb_sc, 
and hbond_sc. ii) One-body energy terms: p_aa_pp, rama_prepro, omega, fa_dun. iii) 
Presence of backbone-to-backbone hydrogen bonds. 

Backbone angles 
and lengths 

i) Phi, Psi, and Omega angles. ii) Standardized length between backbone atoms. 

residue-residue 
orientations 

i) Full 6 degrees of freedom of translation and rotation. ii) cosine and sine of Dihedral 
and planar angles defined by Yang et al 1. 

Secondary 
structures 

1-hot encoded representation of three state secondary structures given by DSSP 
solver. 

Local atomic 
environments 

24 by 24 by 24 voxels of size 0.8Å. In total, it covers an area of size 19.2Å by 19.2Å by 
19.2Å. There are 20 channels for 20 atom types defined by Rosetta (See Table S3). The 
coordinate frame is fixed based on backbone N,Ca,C atoms 9.  

Multiple sequence 
alignment 

Inter-residue distance (30 by N by N, where N is protein size) predictions from trRosetta 
1 gives indirect access to evolutionary multiple sequence alignments  

Bert embeddings Attention heads from the last attention layer of the ProtBert-BFD100 model 16 (16 by N 
by N, where N is protein size) 

 
Table S3: Generated features for all 9 major feature classes. Some features are scaled and normalized to a 
reasonable range. Please refer to the code available at github for further details on the normalization scheme. 
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Layers groups Descriptions 

3D convolution layers This group has four layers of 3D convolution operations with 20, 20, 30, and 20 filters 
with sizes of 1, 3, 4, 4, respectively. Elu activation is used. Mean pooling of filter size 4 
with stride 4 was performed at the end. 

Feature merging  This operation merges flattened 3D conv outputs, 2D, and 1D features (see 
Methods). One layer of 2D convolution with 32 filters of size 1 and instance 
normalization are applied. Elu activation is then used. Finally, the output is upsampled 
to 256 channels for the following ResNet operations. 

Residual blocks 1 Each residual block consists of (i) elu activation, (ii) projection down to 128 channels, 
(iii) elu activation layer (iv) 3 by 3 convolution, (V) elu activation, (vi) projection up to 
256 channels. Instance normalization operations are applied. Residual connection 
adds inputs to (i) with outputs of (vi). 20 residual blocks are stacked. Dilation is 
applied to (iv) with a cycling dilation size of 1,2,4,8.  

Residual blocks 2 for 
estograms and masks 

Two arms of four residual blocks are applied to predict estograms and masks. The 
same numbers of channels (256-->128-->256) are used. 

l-DDT calculation 
layers 

l-DDT values are calculated within gpu memory based on predicted estograms and 
masks (see Methods).  

Loss (i) Estograms are evaluated with categorical cross-entropy loss. (ii) Masks are 
evaluated with binary cross-entropy loss. (iii) l-DDT values are evaluated with mean 
squared loss. Global loss is defined and shown in Method. 

 
Table S4: Model architectures for the DeepAccNet. Please refer to the code available at github for further 
details on the implementation. 
 

amino 
acid 

ALA CYS ASP ASN GLU GLN PHE HIS ILE GLY 

tip 
atom 

CB SG CG CG CD CD CZ NE2 CD1 CA 

amino 
acid 

LEU MET ARG LYS PRO VAL TYR TRP SER THR 

tip 
atom 

CG SD CZ NZ CG CB OH CH2 OG OG1 

 
Table S5: Definitions of tip atoms for each residue. 
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