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Abstract 31 

Acorn barnacle adults experience environmental heterogeneity at various spatial 32 

scales of their circumboreal habitat, raising the question of how adaptation to high 33 

environmental variability is maintained in the face of strong juvenile dispersal and 34 

mortality. Here we show that 4% of genes in the barnacle genome experience balancing 35 

selection across the entire range of the species. Many of these genes harbor mutations 36 

maintained across 2 million years of evolution between the Pacific and Atlantic oceans. 37 

These genes are involved in ion regulation, pain reception, and heat tolerance, functions 38 

which are essential in highly variable ecosystems. The data also reveal complex 39 

population structure within and between basins, driven by the trans-Arctic interchange 40 

and the last glaciation. Divergence between Atlantic and Pacific populations is high, 41 

foreshadowing the onset of allopatric speciation, and suggesting that balancing selection 42 

is strong enough to maintain functional variation for millions of years in the face of 43 

complex demography. 44 

 45 

Introduction 46 

The relationship between genetic variation and adaptation to heterogeneous 47 

environments remains a central conundrum in evolutionary biology (Botero, et al. 2015). 48 

Classical models of molecular evolution predict that populations should be locally 49 

adapted to maximize fitness (Williams 1966). However, species inhabiting highly 50 

heterogeneous environments violate this expectation: if gene flow is high in relation to 51 

the scale of environmental heterogeneity, species will harbor variation that is beneficial 52 

in one condition but deleterious in another (Gillespie 1973), and the resulting ecological 53 

load (i.e., the fitness difference between the best and the average genotype across the 54 

range of environments where offspring may settle) will prevent local adaptation. 55 

Conversely, if gene flow is low, favored alleles will become locally fixed and species should 56 

display low levels of genetic variation. Paradoxically, many natural populations living in 57 

variable environments possess high dispersal capabilities, and harbor more variation 58 

than expected under classical models (Metz and Palumbi 1996; Mackay, et al. 2012; 59 

Messer and Petrov 2013; Bergland, et al. 2014). This disconnect between nature and 60 

theory has motivated the hypothesis that balancing selection, a process where selection 61 
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favors multiple beneficial alleles at a given locus, is at play to maintain adaptations in 62 

these habitats (Levene 1953; Hedrick 2006).  63 

The northern acorn barnacle (Semibalanus balanoides) is a model system to study 64 

adaptations to ecological variability. This barnacle is a self-incompatible, simultaneous 65 

hermaphrodite which outcross only with adjacent individuals. Adult barnacles are fully 66 

sessile and occupy broad swaths of intertidal shores in both the North Pacific and North 67 

Atlantic oceans. These habitats experience high levels of cyclical and stochastic ecological 68 

heterogeneity which impose strong selection at multiple spatial scales: microhabitats 69 

(intertidal shores), mesohabitats (bays and estuaries) and macrohabitats (continental 70 

seaboards) (Schmidt, et al. 2008; Nunez, et al. 2020). Barnacle larvae, on the other hand, 71 

engage in extensive pelagic dispersal by ocean currents, and may settle in habitats 72 

completely different from those of their parents (Flowerdew 1983). This contrast between 73 

strong adult selection and high juvenile dispersal prevents local adaptation. In addition, 74 

S. balanoides has a complex demography. It originated in the Pacific, and colonized the 75 

Atlantic during the many waves of the trans-Arctic interchange (1-3 mya) (Vermeij 1991). 76 

Like most circumboreal species, it was subjected to drastic range shifts due to the 77 

Pleistocene glacial cycles (Wares and Cunningham 2001; Flight, et al. 2012), and more 78 

recently due to anthropogenic climate change (Jones, et al. 2012). As such, S. balanoides 79 

is a premier system to study how adaptive genetic variation is maintained over broad 80 

spatial and evolutionary scales, in the face of ecological load.  81 

Three decades of work have shown that balancing selection, via marginal 82 

overdominance (a case where the harmonic mean fitness of heterozygous genotypes must 83 

be larger than that of either homozygote) (Levene 1953), maintains adaptive variation at 84 

the metabolic gene Mannose-6-phopate isomerase (Mpi) in barnacles across the entire 85 

North Atlantic basin(Schmidt and Rand 1999; Dufresne, et al. 2002; Rand, et al. 2002; 86 

Veliz, et al. 2004; Nunez, et al. 2020). These findings motivate two questions which are 87 

addressed in this paper. First, how pervasive are balanced polymorphisms in the barnacle 88 

genome? And, second, what genes are targets of balancing selection? To investigate 89 

functional polymorphism in S. balanoides, we quantified genomic variation in North 90 

Pacific and North Atlantic populations (Figs. 1A-1C). In the Pacific, we analyzed samples 91 

from British Columbia, Canada (WCAN) as well as a sample of the sister taxon 92 

Semibalanus cariosus. In the Atlantic, we analyzed samples from Maine (ME), Rhode 93 
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Island (RI), Iceland (ICE), Norway (NOR), and the United Kingdom (UK). For all 94 

populations, we sequenced multiple libraries including: a single individual barnacle 95 

genome to ~50X coverage, pools of 20-38 individuals per population (i.e., pool-seq 96 

(Schlotterer, et al. 2014)), as well as ~600 bp amplicons from the mitochondrial 97 

(mtDNA) COX I gene (including previously published COX I data(Wares and 98 

Cunningham 2001)). We mapped these datasets to our newly assembled S. balanoides 99 

genome (SI Appendix 1) and characterized genetic diversity across all populations (SI 100 

Appendix 2). We first present our findings in the context of the barnacle’s 101 

phylogeography and demographic history. This is pivotal to understand the historical 102 

conditions which can contribute to ecological load. Then, we characterize the 103 

pervasiveness of balancing selection across the genome, as well as the age of balanced 104 

polymorphisms and their putative functional significance in highly heterogeneous 105 

environments. 106 

 107 

Results 108 

Standing variation across oceans. Our pool-seq panels discovered ~3M high 109 

quality single nucleotide polymorphisms (SNPs) across populations at common allele 110 

frequencies (>5%). When linkage is removed at 500 bp, the SNP panel thins to ~690,000. 111 

Principal component analysis (PCA), on the LD-thinned SNPs, shows that variation is 112 

strongly subdivided by ocean basins (Fig. 1D). PC 1 captures 74% of the variation, and 113 

partitions populations across basins. PC 2 (8.5% var.) partitions Atlantic populations into 114 

2 discrete east-west clusters. The western cluster contains ME, RI, ICE, and the eastern 115 

cluster contains UK and NOR. These clusters are supported by the abundance of mtDNA 116 

haplotypes within and between ocean basins (Fig. 1D inset; Table S1)(Wares and 117 

Cunningham 2001; Flight, et al. 2012; Nunez, et al. 2018). The large divergence between 118 

oceans is also captured in levels of nucleotide diversity (π; a metric of standing genetic 119 

variation). Surprisingly, North Atlantic populations harbor more genetic variation (π = 120 

1.05%) than their Pacific, ancestral, conspecifics (π = 0.55%; Fig. 1E; Fig. S1). We also 121 

estimated the Tajimas’ D statistic (D), a measure of the excess (D<0), or deficit (D>0), of 122 

rare alleles in populations. These data indicate that all North Atlantic populations, 123 

especially NOR, have negatively skewed genome-wide values of D (Figs. 1E, S2).  124 
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Historical phylogeography and structure. We reconstructed changes of 125 

historical effective population sizes (Ne) with the multiple sequentially Markovian 126 

coalescent model (MSMC) using individual whole genomes (Schiffels and Durbin 2014). 127 

Our results provide evidence for different phylogeographic trajectories in response to the 128 

events of the glaciations (Figs. 1G, 1H). For instance, the Eastern Cluster and the 129 

Western Cluster populations shared a common demography throughout the Pleistocene 130 

(Fig. 1G) but diverged in recent geological time. Namely, Eastern populations (especially 131 

NOR) experienced striking increases in Ne in the recent past (Fig. 1I), likely following the 132 

asynchronous deglaciation of the Fennoscandian ice sheet (Ruddiman and Mcintyre 1981; 133 

Patton, et al. 2017). Western populations, on the other hand, experienced a demographic 134 

contraction which started during the last glacial period and ended during the last glacial 135 

maxima (~20 kya; Fig. 1J)(Brochmann, et al. 2003; Maggs, et al. 2008; Flight, et al. 136 

2012).  137 

We estimated gene flow by computing f3 statistics (Reich, et al. 2009) for all 138 

possible combinations of target, source 1, and source 2 populations, using individual 139 

whole genomes (Fig. S3; Table S2). Our analysis finds no evidence of recent gene flow 140 

across oceans. This result is supported by two additional lines of evidence. First, a mtDNA 141 

molecular clock analysis (Drummond, et al. 2002), which suggests that Pacific and 142 

Atlantic populations have not exchanged migrants in nearly 2 million years (SI 143 

Appendix 3). And second, estimates of genetic differentiation (i.e., FST) which reveal 144 

large amounts of genome-wide divergence (Fig. S4), and foreshadows the onset of 145 

allopatric speciation across oceans. Within the North Atlantic, FST is low (likely due to 146 

shared demography until the glacial maximum) and the f3 analysis suggest that admixture 147 

is pervasive (Fig. S3, Table S2). These findings are supported by additional ABBA-148 

BABA tests for gene tree heterogeneity (Green, et al. 2010) (see SI Appendix 4). Overall, 149 

these findings present three important points. First, they exemplify the complex 150 

demography that underlie standing variation in natural populations. Second, they 151 

confirm that barnacles harbor high levels of genetic variation genome-wide. And third, 152 

they reveal the pervasiveness of gene flow and shared variation within ocean basins, 153 

where environmental heterogeneity is extensive across “micro” (1-3 meter) and “meso” 154 

(1-10 kilometer) scales. These conditions provide the environmental context for ecological 155 

load at the genomic scale.  156 
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Balancing selection in barnacles. Balancing selection is expected to produce 157 

molecular and phylogenetic footprints not consistent with neutrality (Fijarczyk and Babik 158 

2015). Molecular footprints include: enrichment of old alleles (e.g., trans-species 159 

polymorphisms; TSPs), elevated genetic variation (high π), deficit of rare alleles (D > 0), 160 

excess SNPs at medium allele frequencies, reduced divergence around the balanced locus 161 

(low FST), as well as the accumulation of non-synonymous variation in the vicinity of 162 

balanced polymorphisms, a phenomenon known as sheltered load (Uyenoyama 2005). 163 

Likewise, balancing selection will produce a phylogenetic signal composed of diverged 164 

clades, corresponding to the balanced haplotypes. Deeply diverged clades will occur when 165 

balancing selection has maintained variation over long evolutionary times (i.e., ancestral 166 

balancing selection(Fijarczyk and Babik 2015)). A joint analysis of our Pacific, Atlantic, 167 

and outgroup (S. cariosus) datasets reveal 11,917 cosmopolitan SNPs (i.e., SNPs that 168 

segregate in both oceans) which are also TSPs (Dataset S1). TSPs, genome-wide, occur 169 

in 0.14% coding regions, 0.21% in introns, 0.02 % in promoters, 0.01% in 5’UTRs, and < 170 

0.01% in 3’UTRs. The remainder TSPs occur in 0.09% of intergenic regions. An 171 

enrichment analysis which compares the abundance of TSPs, of each genomic class, 172 

relative to all discovered SNPs, reveals that TSPs are significantly over-enriched in coding 173 

loci (Fig. 2A), and 4,415 segregate at high frequencies in all populations (TSPs with 174 

heterozygosity [HE] > 0.30; Fig. S5). These patterns of variation could be the result of 175 

neutral processes such as recurrent mutation (homoplasy) across all populations of either 176 

species. However, the enrichment of cosmopolitan, nonsynonymous, TSPs at common 177 

frequencies is not consistent with neutrality. Under a model of strict neutrality, 178 

segregating mutations are eventually lost in populations after speciation (Clark 1997). 179 

Moreover, coding regions are subjected to purifying selection which removes deleterious 180 

and mildly deleterious nonsynonymous variants (Hartl and Clark 1997).  181 

We compared patterns of genetic variation in exons bearing TSPs and other exons. 182 

When accounting for exon length, we observe consistently elevated values of D and π for 183 

TSP-bearing exons relative to other exons (Figs. 2B and 2C; S6). Except for the ME vs. 184 

RI comparison (Fig. S7), TSP-bearing exons have consistently low FST values (Fig. 2D). 185 

To quantify sheltered load, we compared the ratio of HE values at nonsynonymous (NS) 186 

and synonymous (S) mutations in TSP-bearing and other exons. Our results show that 187 

medium sized TSP-bearing exons (~500 bp) harbor an excess of non-synonymous NS HE 188 
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(Fig. 2E). Notably, we observed that differences between TSP-bearing and other exons 189 

become less apparent as exons get longer. This regionalization of the signal occurs due to 190 

the small linkage blocks in the species (Nunez, et al. 2020). We observe 1,107 TSPs that 191 

cause nonsynonymous changes and occur in 312 genes with high confidence annotations 192 

(4%; Dataset S2). Consistent with our expectation of balancing selection, site frequency 193 

spectrum (SFS) analyses show that these 312 genes harbor an excess of SNPs at medium 194 

allele frequencies relative to other annotated genes (Fig. 2F).  195 

Age of balanced polymorphisms. To determine the age of balanced 196 

polymorphisms, we ran topological tests on the allele trees for each TSP region across the 197 

312 candidate genes. We built trees using phased haplotypes for each TSP-bearing region 198 

for all single individual genomes. We used these allele trees to compute the cophenetic 199 

distance (CPD) between tips. We classified allele trees as having or lacking highly 200 

diverged alleles based on the relative mean CPD between haplotypes from the same 201 

population vs. from different populations (CPDw-b; see supplementary methods). The 202 

analysis reveals that of the 312 allele trees, 150 carry a significant signature of ancestral 203 

balancing selection (CDPw-b > 0, Bonferroni P < 1x10-9; Fig. 2G; Dataset S2). This 204 

suggests maintenance of diverged haplotypes for more than 2 million years, with extreme 205 

cases in which haplotypes are shared across species (8-1o million years)(Perez-Losada, et 206 

al. 2008; Herrera, et al. 2015). The remaining genes with CDPw-b < 0 may either represent 207 

cases where the balanced alleles are younger, or oversampling of homozygous individuals 208 

for any given marker. 209 

Targets of selection. We partitioned our dataset among genes with positive and 210 

negative CPDw-d allele trees and conducted gene ontology (GO) enrichment analyses. The 211 

150 genes with positive CPDw-d trees show enrichment for terms related to “ion channel 212 

regulation”, including genes involved in environmental sensing, and circadian rhythm 213 

regulation (Table S3). We show examples for 3 candidate genes under ancestral 214 

balancing selection involved in environmental sensing: 1) the painless gene (Pain; g1606; 215 

Fig. 3A), which is involved in nociception (i.e., pain reception), as well as detection of 216 

heat and mechanical stimuli (Tracey, et al. 2003; Xu, et al. 2006); 2) the Pyrexia gene 217 

(Pyx; g3472; Fig. 3B), which is involved in negative geotaxis, and responses to heat (Lee, 218 

et al. 2005); and 3) the shaker cognate w gene (Shaw; g3310; Fig. 3C), which is involved 219 

in regulation of circadian rhythm (Hodge and Stanewsky 2008; Buhl, et al. 2016). These 220 
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three examples showcase canonical footprints of balancing selection around the TSP, 221 

concomitant with a bimodal allele tree. Among genes with negative CPDw-d we observe 222 

enriched functions for “anatomical structure formation” including genes coding for motor 223 

proteins and muscle genes (Table S4). In all cases, we used RNA-seq data from ME 224 

individuals to confirm that these loci are expressed in adult barnacles. 225 

 226 

Discussion 227 

In intertidal barnacles, the dichotomy of strong adult selection and high offspring 228 

dispersal means that any allele that is beneficial to parental fitness in one generation may 229 

be neutral or deleterious in the next (Gillespie 1973). This leads to a fundamental question 230 

in evolutionary biology: how are adaptations maintained in the face of extreme ecological 231 

variability? In this paper, we provide evidence that balancing selection is widespread 232 

across the barnacle genome, with 4% of annotated genes harboring functional balanced 233 

polymorphisms. Notably, these polymorphisms occur in genes with important functions 234 

for life in variable environments, and many have been maintained for at least 2 million 235 

years despite a complex phylogeographic history (Wares and Cunningham 2001; Flight 236 

and Rand 2012). Naturally, the heterogeneous nature of the rocky intertidal imposes a 237 

segregation ‘cost’ for these balanced polymorphisms, as they occur in individuals that, 238 

due to high dispersal, recruit in sub-optimal habitats for any given genetic makeup. This 239 

ecological load, defined as 𝐿! =	 (𝑊"#$ −	𝑊' )/	𝑊"#$ (where 𝑊' 	is mean fitness, and	𝑊"#$ 240 

is optimal fitness, across all habitats), will be substantial, as demonstrated by 241 

comprehensive recruitment studies in natural habitats (Bertness 1989; Bertness, et al. 242 

1992; Pineda, et al. 2006). For example, at initial settlement, barnacle density can be as 243 

high as 76 individuals per cm2, but at maturity, it can be as low as 0.15 individuals per 244 

cm2 (0.2% survival)(Pineda, et al. 2006). This mass mortality is habitat- and genotype-245 

dependent (Schmidt and Rand 2001). This is the type of ‘fitness cost’ envisioned in the 246 

Levene model of balancing selection (Levene 1953). As such, our data suggests that the 247 

problem of ecological load is a defining condition of the barnacle life cycle. And, more 248 

generally, it argues in favor of balancing selection, via marginal overdominance, as the 249 

fundamental process underlying maintenance of adaptation in variable environments. 250 
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Is pervasive balancing selection plausible in nature? Under classical 251 

models of population genetics, when loci are considered to be independent of each other, 252 

the additive effects of widespread balanced polymorphism results in unbearable amounts 253 

of fitness variance and genetic death (Kimura and Crow 1964; Lewontin and Hubby 1966). 254 

However, if balanced loci have interactive effects (e.g., epistasis), multiple 255 

polymorphisms could be maintained with minimum effects on the distribution of fitness 256 

variance (King 1967; Milkman 1967; Sved, et al. 1967; Wittmann, et al. 2017). Based on 257 

this theoretical framework, multiple models have been developed to describe the 258 

conditions that favor the long-term maintenance of functional variation in spatially 259 

varying environments (Gillespie 1973; Hedrick, et al. 1976). Moreover, polymorphisms 260 

will be less likely to be lost if there is a large number of ecological niches available, if there 261 

is migration among niches, and if individuals are proactive in choosing niches where their 262 

fitness is maximized (Hedrick, et al. 1976). We argue that barnacles satisfy these 263 

conditions to some degree. 264 

First, while it is useful to summarize intertidal heterogeneity in the form of discrete 265 

microhabitats (Schmidt, et al. 2000), individual barnacles experience the rocky shore as 266 

a complex tapestry of interactive stressors at three spatial levels. At microhabitats scales, 267 

the upper and lower tidal zones pose diametrically different ecological challenges in terms 268 

of food availability, competition, predation, and risk of desiccation (Bertness, et al. 1991; 269 

Schmidt and Rand 1999, 2001). At mesohabitat scales, open coasts vs. sheltered estuaries 270 

vary in their exposure to wave action, upwelling dynamics, and biotic interactions 271 

(Sanford and Menge 2001; Dufresne, et al. 2002; Veliz, et al. 2004). These, in turn, 272 

modify micro-level stressors. Lastly, at macrohabitat scales, topological differences across 273 

shores and latitudinal variations in tidal range produce a mosaic of thermal stress along 274 

continents (Helmuth, et al. 2002). Consequentially, what selection pressures are more 275 

important for any given barnacle will emerge from the interactions among these stress 276 

gradients. This complex landscape of selection has been captured in studies of the 277 

barnacle Mpi gene. Accordingly, the locus is under selection at micro-levels in the Gulf of 278 

Maine (Schmidt and Rand 1999; Schmidt, et al. 2000), at meso-levels in the gulf of St. 279 

Lawrence (Canada)(Dufresne, et al. 2002; Veliz, et al. 2004), yet it shows tepid signs of 280 

selection in the Narragansett Bay (Rhode Island)(Rand, et al. 2002; Nunez, et al. 2020). 281 

Similar complexity has also been captured in temperate populations of Drosophila. In 282 
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these, idiosyncratic weather effects can alter the dynamics of seasonal adaptation 283 

(Bergland, et al. 2014; Machado, et al. 2019). Second, the high dispersal capacity of the 284 

larval stage ensures constant migration between these niches across generations. Finally, 285 

barnacles also have the ability to choose preferred substrates during settlement. This 286 

occurs during the spring when barnacle larvae extensively survey microhabitats for 287 

biological, chemical and physical cues produced by previous settlers before making final 288 

commitments of where to settle (Bertness, et al. 1992). Unfortunately for the barnacle, 289 

this capacity for substrate choice does not mitigate mass mortality during late summer, 290 

which leads to strong selection for particular genotypes (Schmidt and Rand 2001). 291 

Nevertheless, these behaviors may constitute a form of adaptive plasticity, helping 292 

barnacles choose habitats where their fitness may be marginally improved. Overall, this 293 

suggests that the barnacle’s life history is conducive to the maintenance of balanced 294 

polymorphisms. 295 

What variation is under selection? Our analyses indicate that 4% (312) of all 296 

annotated genes are experiencing some form of balancing selection across the entire 297 

range of the species. This number of genes harboring ancestral polymorphisms is similar 298 

to that observed in Arabidopsis thaliana and its close relative Capsella rubella (433 299 

genes)(Wu, et al. 2017). Similar to Semibalanus, these plants diverged ~8 mya, and their 300 

natural populations experience high levels of ecological heterogeneity (Bakker, et al. 301 

2006). We must acknowledge that our number may be an underestimation driven by the 302 

nascent state of the genomic tools in Semibalanus. Future genome assemblies, combined 303 

with improved annotations, will undoubtedly yield a more complete picture of functional 304 

variation in the species. In addition, it will allow for a more comprehensive 305 

characterization of selection in structural variants and regulatory loci, which have been 306 

shown to be fundamental in the evolution of complex phenotypes (Wray 2007; Faria, et 307 

al. 2019). Despite these limitations, our analysis recovered a large number of genes 308 

involved in key functions for life in variable environments. These will be subjects of future 309 

validation studies. For instance, the general enrichment for ion channel genes suggests 310 

selection related to osmotic regulation (Sundell, et al. 2019). This hypothesis is highly 311 

plausible given that intertidal ecosystems experience strong salinity fluctuations, 312 

repeatedly exposing barnacles to osmotic challenges at all spatial scales. In addition, we 313 

observe targets of selection involved in environmental sensing loci (e.g., pain, pyx, and 314 
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shaw; Fig. 3). Similar to osmotic regulation, selection on these genes is entirely plausible 315 

given the inherent variability of intertidal habitats. An important hypothesis from the 316 

allozyme era is the idea that balancing selection would target genes at the node of 317 

metabolic fluxes (Eanes 1999; Watt and Dean 2000). In such cases, balanced variation 318 

would provide biochemical flexibility to cope with environmental heterogeneity. In the 319 

same vein, we hypothesize that balancing selection may act more often on “sensor genes” 320 

which control plastic responses to ecological variation. Testing this hypothesis is beyond 321 

the scope of this paper and would require the use of allele-specific differential expression 322 

experiments in barnacles.  323 

Complex demography and speciation. Our demographic analyses provide 324 

clues about how historical events affected genetic variation in barnacle populations. In 325 

the Atlantic, our evidence suggests a shared demography throughout the Pleistocene, and 326 

that the modern Eastern and Western clusters formed in response to recent events of last 327 

glacial cycle. These findings highlight that the low FST values observed within the basins 328 

arise due to shared ancestry. Moreover, they also suggest that population structure 329 

persists in the presence of gene flow. As such, while larvae have the capacity to disperse 330 

for hundreds of kilometers, ocean currents (Nunez, et al. 2018) and different estuarine 331 

flushing times (Brown, et al. 2001) allow regions to retain some level of geographical 332 

structuring (Johannesson, et al. 2018; Nunez, et al. 2018). Comparisons between oceans 333 

reveal a stark pattern of genome wide divergence. This pattern is driven by the separation 334 

of Pacific and Atlantic populations following the events of the trans-Arctic interchange 335 

(Vermeij 1991). Accordingly, the negative levels of D in the north Atlantic may reflect the 336 

effect of bottlenecks during the trans-Arctic interchange. Notably, the high levels of π in 337 

the Atlantic is not concordant with predictions of common colonization models in which 338 

variation of the younger population is a subset of the ancestral population (Maggs, et al. 339 

2008). We hypothesize this could be the result of ancient admixture due to repeated 340 

trans-Arctic invasions from the Pacific (Väinölä 2003). We recognize that ancestral 341 

admixture could generate artificial signatures of balancing selection via the mixing of 342 

highly differentiated haplotypes. However, such an occurrence would affect most genes 343 

in the genome. Our evidence shows that the signatures of balancing selection are highly 344 

localized in TSP-regions. For example, while D is elevated in TSP-regions, it is negatively 345 

skewed genome-wide. Our data does not support recent gene flow between ocean basins. 346 
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As such, after 2 million years of separation, neutral divergence appears to be driving 347 

Atlantic and Pacific populations to speciate in allopatry. A closer look to this hypothesis 348 

will require crossing individuals from both basins, and surveying offspring fitness and 349 

viability. More salient, however, is the observation of shared haplotypes between oceans 350 

in our candidate genes for balancing selection. In light of such strong background 351 

divergence, this provides evidence that balancing selection on most of these genes is 352 

strong, and that polymorphisms have been maintained for long periods of time. 353 

 354 

Materials & Methods 355 

Barnacle Collections. Barnacle samples were collected from Damariscotta 356 

(Maine, United States; ME), Jamestown (Rhode Island, United States, RI), Calvert Island 357 

(British Columbia, Canada; WCAN), Reykjavik (Iceland; ICE), Porthcawl (Wales, United 358 

Kingdom; UK), and Norddal (Norway; NOR). Additional samples were collected in 359 

Bergen (Norway), Tórshavn (Faroe Island), and Tjärnö (Sweden). For all samples, species 360 

identities were confirmed using Sanger sequencing of the mtDNA COX I region(Bucklin, 361 

et al. 2011). For the WCAN, RI, ME, ICE, UK, and NOR population we collected a single 362 

individual for DNA-seq, and a group of 20-40 individuals for pool-seq (SI Appendix 2). 363 

RNA-seq was done on four individuals from Maine. DNA-seq was done on a single 364 

individual from the sister taxa S. cariosus. DNA/RNA was extracted using Qiagen 365 

DNeasy/RNeasy kits. All pools and single individuals were sequenced in their own lanes 366 

of an Illumina machine by GENEWIZ LLC using 2x150 paired-end configuration. 367 

Mapping datasets to the genome. Samples were mapped to a genome 368 

assembled de novo for the species (Sbal3.1; NCBI GenBank: VOPJ00000000; SI 369 

Appendix 1). The genome was assembled using a hybrid approach which combines 370 

PacBio reads and Illumina reads using DBG2OLC(Ye, et al. 2016) and Redundans(Pryszcz 371 

and Gabaldon 2016). Gene models were constructed using an ab initio method, 372 

AUGUSTUS(Stanke and Waack 2003), informed by evidence from the RNA-seq. A gene 373 

feature file (GFF) is available as Dataset S4. The model used for gene prediction was 374 

trained in Drosophila melanogaster. Genes were annotated by pairwise blast against the 375 

Drosophila melanogaster genome (Dmel6; NCBI GenBank: GCA_000001215.4). All 376 

annotations are available as Dataset S5. DNA reads from all populations were mapped 377 
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to Sbal3.1 using bwa mem(Li 2013). RNA reads were mapped using HiSat2(Kim, et al. 378 

2015). SNPs were called using the samtools pipeline(Li, et al. 2009).  379 

Genome analyses. Estimates of π and D were done using the popoolation-1 380 

suite(Kofler, Orozco-terWengel, et al. 2011). Estimations of allele frequencies and FST 381 

were done using the popoolation-2 suite(Kofler, Pandey, et al. 2011). Demographic 382 

reconstructions were done using MSMC(Schiffels and Durbin 2014). The f3 statistics were 383 

estimated using treemix(Pickrell and Pritchard 2012). Bayesian molecular clock analyses 384 

were done in BEAST2(Bouckaert, et al. 2014). ABBA/BABA statistics were calculated in 385 

Dsuite(Malinsky, et al. 2020). Phylogenetic inferences were done in iQtree(Chernomor, 386 

et al. 2016). GO enrichment analysis was done using GOrilla(Eden, et al. 2009) and GO 387 

terms inferred from our Drosophila annotation. The enrichment was assessed by 388 

comparing 2 genes list. The first composed of the genes of interest (i.e., the gene targets), 389 

the second one by all the genes annotated in Sbal3.1 (i.e., the gene universe). A detailed 390 

description of our analyses can be found in the supplementary methods section, as well 391 

as in GitHub: https://github.com/Jcbnunez/BarnacleEcoGenomics. 392 
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Figure 1. Genetic variation and phylogeography 641 

 642 

 643 
A. Map of the North Pacific coast of North America with collection sites indicated. 644 

B. Collections in the Atlantic Eastern coast of North America. C. Collections in the 645 

Atlantic European coast. For A, B, and C, stars indicate sites where a single individual and 646 

a pool of multiple individuals were collected, the hexagon indicates the site from which 647 

the reference genome was constructed, and the circles indicate sites were COX I data was 648 

collected. The asterisks indicate cases where COX I data was downloaded. D. PCA with 649 

Pool-seq data from all populations. The colors represent populations. Pacific Canada 650 

(WCAN; pink), Maine (ME; blue), Rhode Island (RI; yellow), Iceland (ICE; dark green), 651 

Norway (NOR; purple), United Kingdom (UK; light green). D-inset. Distribution of 652 

mitochondrial haplotypes across all populations. The names a, b (including bRI and bSC), 653 

and c represent common mtDNA haplotypes observed in populations. E. Nucleotide 654 

diversity (log10 π) for all nuclear genes across all populations. F. Tajima’s D for all nuclear 655 

genes across all populations. The dashed vertical line marks 0, the expected value under 656 

a neutral model. The y-axis in E and F show the density of observations. G. Demographic 657 
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reconstruction for North Atlantic individuals showing demographic changes from 2 mya 658 

to 200 kya. I. demographic changes in British and Norwegian individuals. H. North 659 

Pacific individual showing demographic changes from 2 mya to 200 kya. J. Plot of recent 660 

(today – 250 kya) demographic changes in the North American and Icelandic individuals.  661 
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Figure 2. Evidence for balancing selection across the genome 662 

 663 

 664 
A. Enrichment analysis of TSPs across the genome of S. balanoides based on all 665 

populations studied. The asterisks symbols represent statistical significance. 666 

Abbreviations: promoters (Prom.), nonsynonymous loci (NS), synonymous loci (S), 667 

coding loci (Cod.). B. Plot of Tajima’s D (as a function of length) of exons bearing TSPs 668 

versus all other exons not bearing TSPs. C. Same as B but for nucleotide diversity (π). D. 669 

Same as B but for mean FST. E. Same as B but for the ratio of nonsynonymous 670 

heterozygosity to synonymous heterozygosity. F. Site frequency spectrum for whole genes 671 

with TSPs vs other genes. Vertical bars are 95% confidence intervals. G. Candidate genes 672 

under balancing selection ranked according to their CPDw-b values (interquartile ranges 673 

shown as error bars). Red values indicate statistical significance. Horizontal dashed line 674 

indicates CPDw-b = 0. Three example allele tree topologies are shown. The sister taxon, S. 675 

cariosus, is shown as “Ou” (for outgroup). The x-axis for B, C, D, and E is exon length (x 676 

1000 bp). 677 

  678 
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Figure 3. Balancing selection on ecologically important genes 679 

 680 

 681 
 682 

We present patterns of genetic variation (π and D estimated from pool-seq data, 683 

and allele tree topologies estimated from single individuals) for 3 example genes: A) 684 

painless (Pain), B) pyrexia (Pyx), C) shaker cognate w (Shaw). Grey arrows show regions 685 

that contain TSPs. In Tajima’s D panels, the horizontal line marks the D = 0 point. For all 686 

trees, the sister taxon, S. cariosus, is shown as “Ou”. The colors represent populations. 687 

WCAN (pink), ME (blue), RI (yellow), ICE (dark green), NOR (purple), UK (light green). 688 

The x-axis shows base pair position within scaffolds.  689 
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