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Abstract

Multi-omic datasets with parallel transcriptomic and epigenomic measurements across time or cell

types are becoming increasingly common. However, integrating these data to infer regulatory network

dynamics is a major challenge. We present Dynamic Regulatory Module Networks (DRMNs), a novel

approach that uses multi-task learning to infer cell type-specific cis-regulatory networks dynamics. Com-

pared to existing approaches, DRMN integrates expression, chromatin state and accessibility, accurately

predicts cis-regulators of context-specific expression and models network dynamics across linearly and

hierarchically related contexts. We apply DRMN to three dynamic processes of different experimental

designs and predict known and novel regulators driving cell type-specific expression patterns.
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Background

Transcriptional regulatory networks connect regulators such as transcription factors to target genes, and

specify the context specific patterns of gene expression. Changes in regulatory networks can significantly

alter the type or function of a cell, which can affect both normal and disease processes. The regulatory

interaction between a transcription factor (TF) and a target gene’s promoter is dependent upon TF binding

activity, histone modifications and open chromatin, that have all been associated with cell type-specific

expression [1–4]. To probe the dynamic and cell type-specific nature of mammalian regulatory networks,

several research groups are generating matched transcriptomic and epigenomic data from short time courses

or for cell types related by a branching lineage [5–7]. However, integrating these datasets to infer cell

type-specific regulatory networks is an open challenge.

Existing computational methods to infer cell type-specific networks while integrating different types of

measurements can be grouped into two main categories: (i) Regression-based methods, (ii) Probabilistic

graphical model-based methods. Regression-based methods use linear and non-linear regression to predict

mRNA levels as a function of chromatin marks [8, 9] and/or transcription factor occupancies [9] and can

infer a predictive model of mRNA for a single condition (time point or cell type). These regression ap-

proaches are applied to each context individually and have not been extended to model multiple related time

points or cell types, which is important to study networks transition between different time points and cell

states. Probabilistic graphical models, namely, dynamic Bayesian networks (DBNs), including input-output

Hidden Markov Models [10] and time-varying DBNs [11] have been developed to examine gene expression

dynamics with static ChIP-seq datasets. However, both of these approaches are suited for time courses only,

and do not accommodate branching structure of cell lineages.

To systematically integrate parallel transcriptomic and epigenomic datasets to predict cell type-specific

regulatory networks, we have developed a novel dynamic network reconstruction method, Dynamic Regu-

latory Module Networks (DRMNs). DRMNs are based on a non-stationary probabilistic graphical model

that predicts regulatory networks in a cell type-specific manner by leveraging their relatedness, for example,

by time or a lineage. DRMNs represent the cell type regulatory network by a concise set of gene expres-

sion modules, defined by groups of genes with similar expression levels, and their associated regulatory

programs. The module-based representation of regulatory networks enables us to reduce the number of pa-
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rameters to be learned and increases the number of samples available for parameter estimation. To learn the

regulatory programs of each module at each time point, we use multi-task learning that shares information

between related time points or cell types.

We applied DRMNs to four datasets measuring transcriptomic and epigenomic profiles in multiple time

points or cell types. Two of these datasets, one microarray [12] and one sequencing, study cellular repro-

gramming in mouse and measure several histone marks and mRNA levels [7], with the sequencing data

additionally measuring accessibility. The third dataset includes RNA-seq and ATAC-seq profiles for mouse

dedifferentiation. Finally, the fourth dataset measures transcriptional and epigenomic profiles during early

human differentiation to precursor cell types from four main lineages [13]. DRMN learned a modular regu-

latory program for each of the cell types by integrating chromatin marks, open chromatin, sequence specific

motifs and gene expression. Compared to an approach that does not model dependencies among cell types,

DRMN was able to predict regulatory networks that reflected the relatedness among the cell types, while

maintaining high predictive power of expression. Furthermore, integrating cell type specific chromatin data

with cell type invariant sequence motif data enabled us to better predict expression than each data type alone.

Comparison of the inferred regulatory networks showed that they change gradually over time, and identi-

fied key regulators that are different between the cell types (e.g., Klf4 and Myc in the embryonic stem cell

(ESC) state and Six6 and Irx1 in hepatocyte dedifferentiation).Taken together our results show that DRMN

is a powerful approach to infer cell type-specific regulatory networks, which enables us to systematically

link upstream regulatory programs to gene expression states and to identify regulator and module transitions

associated with changes in cell state.

Results

Dynamic Regulatory Module Networks (DRMNs)

DRMNs are used to represent and learn context-specific networks, where contexts can be cell types or

time points, while leveraging the relationship among the contexts. DRMN’s design is motivated by the

difficulty of inferring a context-specific regulatory network from expression when only a small number of

samples are available for each context. DRMNs are applicable to different types of contexts; for ease of
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description we consider cell types as contexts. In a DRMN, the regulatory network for each context is

represented compactly by a set of modules, each representing a discrete expression state, and the regulatory

program for each module (Figure 1). The regulatory program is a predictive model of expression that

predicts the expression of genes in a module from upstream regulatory features such as sequence motifs and

epigenomic signals. The module-based representations of regulatory networks [14–16], enables DRMN to

pool information from multiple genes to learn a predictive regulatory program. In addition, DRMN leverages

the relationship between cell types defined by a lineage tree. The modules and regulatory programs are

learned simultaneously using a multi-task learning framework to encourage similarity between the models

learned for a cell type and its parent in the lineage tree. DRMN allows two ways to share information across

cell types: regularized regression (DRMN-FUSED) and graph structure prior (DRMN-ST) (See Methods).

Both approaches are able to share information across time points effectively, however, the DRMN-FUSED

approach is computationally more efficient.

DRMNs offer a flexible framework to integrate diverse regulatory genomic features

DRMN’s predictive model can be used to incorporate different types of regulatory features, such as sequence-

based motif strength, accessibility, and histone marks. We first examined the relative importance of context-

specific (e.g., chromatin marks and accessibility) and context independent features (e.g., sequence motifs)

for building an accurate gene expression model. We compared the performance of both versions of DRMNs,

DRMN-ST and DRMN-FUSED, on different feature sets using an array and a sequencing dataset, both

studying mouse cellular reprogramming (Figure 2). The array dataset profiles three stages: the starting

differentiated cell state (Mouse Embryonic Fibroblast (MEF)), a stalled intermediate stage, (pre-iPSCs) and

the end point embryonic cell state (ESC). The sequencing dataset has an additional time point, MEF48 be-

tween MEF and pre-iPSCs. Our metric for comparison was Pearson’s correlation between true and predicted

expression in each module in a three fold cross-validation setting (Figure 2A).

We first compared DRMN-ST (Figure 2B,C) and DRMN-FUSED (Figure 2D,E) using sequence-

specific motifs alone (Motif), histone marks (Histone) and a combination of the two (Histone+Motif), as

these features were available for both array and sequencing datasets. In both models, motifs alone (blue

markers) have low predictive power, which is consistent across different k and for both array (Figure 2B,
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D) and sequencing (Figure2C, E) data. Histone marks alone (red marker) have higher predictive power,

however adding both histone marks and motif features (magenta) has the best performance for k = 3 and

5, with the improved performance to be more striking for DRMN-ST. For DRMN-Fused, Histone only and

Histone+Motif seemed to perform similarly, although at higher k using histone marks alone is better. Be-

tween different cell types the performance was consistent in array data, while for sequencing data, the MEF

and MEF48 cell types were harder to predict than ESC and preIPSC (Additional file 1 Figure S1).

We next examined the contribution of accessibility (ATAC-seq) data in predicting expression using the

sequencing dataset as accessibility was measured only in this dataset (Figure 2C, E). We incorporated

the ATAC-seq data in five ways: as a single feature defined by the aggregated accessibility of a particular

promoter combined with motifs (Accessibility+motif, orange markers), using ATAC-seq to quantify the

strength of a motif instance (Q-Motif, light blue markers), combining the Accessibility feature with histone

and motifs (dark purple marker), combining Q-Motif with histone (Histone+Q-motif, light green), and the

Accessibility feature with histone and Q-motifs (Histone+Accessibility+Q-motif, dark green, Figure 2C,

E). We also considered ATAC-seq as a single feature, but this was not very helpful (Additional file 1

Figure S2).

Combining the accessibility feature together with motif feature improves performance over the motif

feature alone (Figure 2C, E orange vs. dark blue markers). The Q-Motif feature (light blue markers) was

better than the motif only feature (dark blue) at lower k (k=3), however, surprisingly, did not outperform

the sequence alone features. One possible explanation for this is that the Q-Motif feature is sparser because

a motif instance that is not accessible will have a zero value. Finally, we compared the Accessibility fea-

ture combined with chromatin and motif features to study additional gain in performance (Figure 2C, E,

purple markers). Interestingly, even though using accessibility combined with motif features improves the

performance over motif alone, addition of ATAC-seq feature to histone marks and motif does not change

the performance of either version of DRMN compared to histone and motifs (Figure 2C, magenta markers).

This suggests that combination of multiple chromatin marks capture the dynamics of expression levels better

than the chromatin accessibility signal. It is possible that the overall cell type specific information captured

by the accessibility profile is redundant with the large number of chromatin marks in this dataset and we

might observe a greater benefit of ATAC-seq if there were fewer or no marks. We observe similar trends
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with Histone+Q-Motif and Histone+Accesibility+Q-motif features (light and dark green) which perform on

par to each other, and close to histone+motif and histone+Accessibility+motif.

DRMN-ST and DRMN-FUSED behaved in a largely consistent way for these different feature combina-

tions with the exception of the Histone+Motif feature where DRMN-Fused was not gaining in performance

at higher k. When we directly compared DRMN-ST to DRMN-FUSED, DRMN-FUSED was able to outper-

form DRMN-ST on both Motif and Histone and comparable on Histone+motif on array data (Figure 2F).

On the sequencing data, DRMN-FUSED had a higher performance that DRMN-ST on Motif, Q-Motif,

Accesibilty+motif and Histone alone features (Figure 2G). Both models performed similarly when com-

bining Histones with other feature types. It is likely that DRMN-ST learns a sparser model at the cost of

predictive power (Additional file 1 Figure S3). For the application of DRMNs to real data, we focus on

DRMN-FUSED due to its improved performance.

Multi-task learning approach is beneficial for learning cell type-specific expression patterns

We next assessed the utility of DRMN to share information across cell types or time points while learning

predictive models of expression by comparing against several baseline models: (1) those that do not incorpo-

rate sharing (RMN), or (2) those that are clustering-based (GMM-Indep and GMM-Merged). GMM-Indep

applied Gaussian Mixture Model (GMM) clustering to gene expression values of each cell type indepen-

dently and GMM-Merged, applied GMM to the merged expression matrix from all cell types. For GMM-

Merged, the expression predictions were scored per cell-type.

We evaluated the model performance using quality of predicted expression in a three-fold cross-validation

setting, where a model was trained on two-thirds of the genes and used to predict expression for the

held-aside one-third of the genes. We ran each experiment over a range of the number of modules, k ∈

{3, 5, 7, 9, 11}. Expression prediction was evaluated using two metrics. First, the overall expression pre-

diction was assessed using the Pearson’s correlation between actual and predicted expression of genes in

the test set. Second, the average Pearson’s correlation of true and predicted expression of genes in the test

set in each module. The first metric examines how each model (e.g., expression-based clustering approach

versus a predictive model based on regulatory features), explains the overall variation in the data. The sec-

ond metric assesses the value of using additional regulatory features, such as, sequence and chromatin to
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predict expression. The clustering-based baselines offer simple approaches to describe the major expression

patterns across time but link cis-regulatory elements to expression changes only as post-processing steps.

For both DRMN and RMN, we learned predictive models of expression in each module using different

regulatory feature sets (Figure 3, Additional file 1 Figure S4): motif alone (Motif), histone marks alone

(Histone) and combing motif and histone marks (Histone+Motif). We performed these experiments on the

array and sequencing datasets for mouse reprogramming.

When comparing DRMNs to RMNs on array data, both versions of DRMN outperform corresponding

RMN versions on histone only and histone + motif features, (Figure 3A-F), blue for DRMN and red for

RMN). On motifs, the difference between the models was dependent upon the cell line and the number of

modules, k. In particular, both DRMN-Fused and DRMN-ST outperformed RMN on the iPSC/ESC state,

and was similar for pre-iPSC and MEF when comparing across different k. On sequencing data (Figure 3G-

L), both DRMN-Fused and DRMN-ST were better than RMNs for most k in ESC and pre-IPSCs when

considering Histone and Histone+Motifs. When using motifs, the performance depended upon the DRMN

implementation and k. In particular, DRMN-Fused was at par or better than RMNs for the other cell lines.

DRMN-ST was at par or better than RMNs for most k, however we observed decrease in performance in

the MEF and MEF48 cell lines for higher k (k = 9, 11).

We next compared DRMNs and RMNs to the clustering based methods using the two metrics of overall

correlation across all genes and per module correlation. When using overall correlation, both variants of

DRMNs, RMNs and GMM-Indep, vastly outperform GMM-Merged (Additional file 1 Figure S4A-F).

This suggests that the gene partitions are likely different between the different cell types and imposing

a single structure for all three, as done in GMM-Merged, misses out on the cell type specific aspects of

the data. DRMN models performed at par with RMN and GMM-Indep for most cases (Additional file 1

Figure S4A-F), with the exception of Histone and Histone+Motif for sequencing data (Additional file 1

Figure S4A, B) where GMM-Indep is worse for lower ks. These results suggest that based on overall

correlation, learning predictive or clustering models for each cell line or cell type is more advantageous

than learning a single clustering model (e.g., GMM-Merged), which can better capture the cell type-specific

aspects of the data.

We next compared the different models on the basis of the per-module expression levels (Additional
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file 1 Figure S4G-L). DRMN and RMN clearly outperform the GMM-based approaches, which is because

GMM clustering produces one value per module and does not capture the within-module variation. The

overall high correlation for DRMN and RMN demonstrates that a predictive modeling approach has ad-

vantages over a clustering approach as the learned models from the cis-regulatory features provide a more

fine-tuned model of expression variation. Furthermore, predicting expression across multiple cell types

simultaneously using multi-task learning helps to further improve the predictive power of these models.

Using DRMN to gain insight into regulatory programs of cellular reprogramming

We applied DRMN to gain insights into the regulatory programs of cellular reprogramming from mouse

embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). We focus on the results obtained

on the sequencing dataset for reprogramming from Chronis et al [7] (Figure 4), which measured chromatin

marks (via ChIP-seq), accessibility (via ATAC-seq) and gene expression (via RNA-seq). Many of the trends

are captured in the array data too (Additional file 1 Figure S5). DRMN modules learned on the sequencing

data exhibit seven distinct patterns of expression in each of the four cellular stages (Figure 4A). While

the expression patterns remains the same, the number of genes in each module in each cell type varies

(Figure 4A). We compared the extent of similarity of matched modules between cell types and found that

the modules were on average 30-90% similar, exhibiting the lowest similarity at the MEF48 to pre-iPSC

transition and the highest between MEF and MEF48 (Figure 4B). The repressed modules 1,2 and 3 were

less conserved across all cell types compared to the more highly expressed modules. For the array data as

well, we observed the greatest dissimilarity between the MEF and pre-iPSC transition (Additional file 1

Figure S5). This agrees with the pre-iPSC state exhibiting a major change in transcriptional status during

reprogramming.

To interpret the modules, we first tested them for enrichment of Gene Ontology (GO) processes using

a FDR corrected hyper-geometric test (P-value <0.001). Consistent with the low conservation of genes

present in the modules 1-3, we found few process terms that shared enrichment across these modules. In

contrast modules 4, 5, and 6 exhibited greater shared enrichment and included house-keeping function such

as ribosome biogenesis and general metabolic processes. Several processes were unique to each cell stage.

For example in the repressed modules 1 and 2, we saw enrichment of inflammation response to be down-
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regulated in iPSC, pre-iPSC, while we observed down-regulation of sexual reproduction and gametogenesis

in the MEF/MEF48 stages (Additional file 2). Processes that were specifically up-regulated in the iPSC, pre-

iPSC stages included the cell-cycle, while muscle development and cell adhesion processes were associated

with MEF, MEF48. Overall, the presence of up-regulated cell cycle processes in the ESC/pre-iPSC and

muscle related processes in MEF/MEF48 is consistent with the stages.

We next examined the regulatory programs inferred for each module (Figure 4C, Methods), and found

several known and novel regulatory features associated with each module. For ease of interpretation, we

focused on the three modules associated with highest expression (5, 6 and 7). Several histone marks

(H3K79me2 and H3K4me1) and accessibility were selected as predictive features for all four cellular stages.

In contrast, the transcription factors (TFs) were more specific to each state with a few exceptions (e.g., Insm1

and Bhlhe40). Importantly, we found that several TFs have known roles in the stage in which they are found

significant, e.g., Nfe2fl2 in ESC and pre-IPSC module 6, which is known to play an important role in the

embryonic stem cell state [17], and Mycn and Esrrb in the pre-IPSC module 6, which are both known to

be important for early embryonic stages. We also found several muscle and mesodermal factors associated

with MEF (Foxl1 [18], Mtf1 [19] in module 6), MEF48 (Osr1 [20], Left1 [21] in module 5), and both MEF

and MEF48 (Sox5 [22] in module 5).

To gain insight into the regulatory features most important for driving transcriptional dynamics, we

identified genes that change their module assignments (module transition) between cell stages. Of the 17,358

genes, 11,152 genes changed their module assignments. We clustered them into sets of 5 or more genes and

defined 111 gene sets consisting of 10,194 genes (the remaining were singleton or genes with similarity

to less than 4 genes). These transitioning gene sets provide insight into the different classes of expression

dynamics exhibited by genes. We next predicted regulators, including both chromatin marks and TFs, for

these gene sets using a regularized regression model (see Methods) and were able to associate regulators

with high confidence to 85 gene sets. These gene sets exhibited a variety of transitions, from induced to

repressed expression levels and vice-versa from MEF to ESC cell state. We next examined individual gene

sets focusing on 42 gene sets with transitions into the high expression modules, 5, 6 or 7 (Figure 4D,

for transitioning gene sets in array dataset see Additional file 1 Figure S6, the full set of gene sets is in

Additional file 3). In particular, two gene sets (C101 and C220, Figure 5A, B) exhibited low expression
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in ESCs and pre-iPSC and high expression in MEF and MEF48, while another showed the opposite pattern

(C216, Figure 5F). For the majority of these genesets, we found a combination of TFs and histone marks

predicted to regulate them. Among these were factors such Srf which was shown to facilitate reprogramming

[23], and Plag1, which is involved in cancer and growth processes and was shown to effect embryonic

development [24]. Taken together, application of DRMN to this dataset characterized the dynamic patterns

of expression and predicted regulators that could be important for cellular reprogramming and cell state

maintenance.

Using DRMNs to gain insight into regulatory program dynamics across a long time course

While the reprogramming study demonstrated the application of DRMNs to a short time course (three-four

time points), we next tested the ability of DRMN to analyze temporal dynamics of a longer time course with

dozens of time points. In particular, we applied DRMNs to examine temporal dynamics of regulatory pro-

grams during hepatocyte dedifferentiation. A major challenge in studying primary cells in culture such as

liver hepatocytes is that they dedifferentiate from their differentiated state. Maintaining hepatocytes in their

differentiated state is important for studying normal liver function as well as for liver-related diseases [25].

Dedifferentiation could be due to the changes in the regulatory program over time, however, little is known

about the transcriptional and epigenetic changes during this process. To measure transcriptional dynamics

during dedifferentiation, Seirup et al. generated an RNA-seq and ATAC-seq timecourse dataset of 16 time

points from 0 hours to 36 hours [26]. We applied DRMN with k = 5 modules to this dataset and partitioned

genes into five levels of expression at all time points with 1 representing the lowest level of expression and

5 the highest level of expression (Figure 6A). Comparison of module assignments across time showed that

module 1, associated with the lowest expression was most conserved across time points, while modules 2,

3 and 4, exhibited transitions happening between 4 and 6 hrs and 14 and 16 hrs (Figure 6B). The rela-

tively high conservation of the repressed module was in striking contrast to what we observed for the most

repressed module in the reprogramming study, where it was least conserved.

As before, we tested the genes in each module for GO process enrichment (Additional file 2) and found

that the repressed module (Module 1) was enriched for developmental processes while the other modules

were enriched for diverse metabolic processes. Of these modules 4 and 5, which are associated with higher
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expression are enriched for more liver-specific metabolic function such as co-enzyme metabolism, acetyl

CoA metabolism and modules 2 and 3 were enriched for general housekeeping function such as DNA and

nucleic acid metabolism. We next examined the regulators associated with each module. Focusing on

the three highly expressed modules (modules 3, 4 and 5), we found several liver factors, e.g., Nfkb [27],

Foxk1 and Foxk2 [28, 29], Onecut2 [30, 31], Lhx2 [32] that are likely important for maintenance of the

hepatocyte state (Figure 6C). In addition, we found several regulators involved in cell fate decision making

e.g., Tcf3 [33] and Smad2 [34]. The cell fate regulators are enriched in the later part of the time course

indicating their potential roles in dedifferentiation.

To gain insight into fine-grained transition dynamics, we next used the DRMN module assignments to

identify genes that transition from one module to another as a function of time, similar to the reprogramming

study. Of the 14,793 genes, there were 5,762 genes that change their module assignments. We identified a

total of 150 transitioning gene sets spanning 5,762 genes (Additional file 3). Many of the transitions were

between modules that are adjacent to each other based on expression levels, suggesting that the majority

of the dynamic transitions are subtle (e.g., module 4 and 5, Figure 6D). However, there were several gene

sets that exhibited more drastic transitions, e.g., C404 and C383 transitioning from induced to repressed

expression while C218 exhibiting the opposite pattern.

We next predicted regulators for these transitioning gene sets using a regularized Group Lasso model,

Multi-Task Group LASSO (MTG-LASSO, Methods). This approach was different from what we had for

reprogramming and modeled individual gene’s profiles while incorporating their membership in a gene set.

Briefly, this approach solves a multi-task learning problem where each task predicts the expression of one

gene in the transitioning gene set using regression. Instead of learning a vector of regression weights for

each task independently, this approach learns a matrix of coefficients which is regularized such that the

same set of regulators are selected for each gene but with different values. Using this approach we identified

84 gene sets with predicted regulators at ≥60% confidence (Methods, Additional file 4). We focused on

those gene sets with a transition into modules 3, 4 and 5 and identified a total of 25 gene sets with varying

types of transitions (Figure 6D). Several of these gene sets exhibited a gradual upregulation of expression,

e.g., C444, C400, C218, C380 (Figure 7), including transitions at 4 and 6 hrs which had the largest change

in module assignment. Regulators associated with these gene sets included pluripotency or developmental
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regulators, such as Irx1 [35] (C380, C455), Meis3 (C224, C455) [36], Alx1 [37] (C455, C224), and the Egr

family (C224). Early growth response (Egr) factors have been shown to play important roles in different

liver-related functions including repair and injury [38]. We also identified gene sets with down-regulation

of expression, e.g., C437. Key regulators predicted for these gene sets included Nuclear receptor 2 family

(Nr2f2, Nr2f6 and Nr2f1), and Hepatocyte nuclear factors (Hnf4g, Hnf4a) that have been implicated in

liver-specific function [39]. Taken together, these results suggest that DRMNs can systematically integrate

gene expression and accessibility measurements across long time courses and predict both known and novel

regulators associated with the dynamics of the process.

DRMN application on early embryonic lineage specification

To demonstrate the utility of DRMN on hierarchical trajectories, we considered a dataset profiling early

differentiation of human embryonic stem cells (H1) into four lineages, mesendoderm, mesenchymal, neural

progenitors, trophoblast [13]. In addition to accessibility, this dataset measured eight different histone marks

including H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K9ac, H3K79me2, H3K36me3 and H3K27me3.

We applied DRMN to this dataset and identified modules representing five major levels of expression, 1-5,

with 1 representing the lowest expression and 5 the highest (Figure 8A). The extent of gene conservation in

modules depended on the module with modules 1 and 2 exhibiting low conservation, while modules 3 and 4

exhibiting high conservation. The low conservation of modules 1 and 2 is consistent with our observations in

the reprogramming study (Figure 8B). Gene Ontology (GO) process enrichment showed that the repressed

module is enriched for developmental and lineage specific functions, while the induced modules tended to

be enriched for cell cycle and translation related processes (Additional file 2). The most repressed module

(Module 1) exhibited the largest extent of cell type specific enrichments, while the induced module (Module

5) was enriched for similar processes. As such the GO enrichment was not able to capture lineage-specific

processes in the induced modules.

We next examined the cis-regulatory elements selected by DRMN, focusing on the two highly expressed

modules, 3 and 4 (Module 5 was associated only with histone marks). Similar to the reprogramming

study, histone mark associations were more conserved across cell types than TFs, with the elongation mark,

H3K36me3 and repressive mark, H3K27me3 being among the most conserved marks predicted across cell
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types. Among the TFs associated with each module, several have known lineage-specific roles (Figure 8C).

For example, we found several neuronal lineage regulators including FOX [40] and MYB [41] proteins in

module 3 of the Neural Progenitor cell type, and VSX1 [42] and SHOX2 [43] in Mesendoderm module 4.

Similarly, TEAD4, a regulator important for trophoblast self renewal [44] was associated with Trophoblast

Module 4.

Finally, we examined the transitioning gene sets and identified a total of 6988 (of 17904) genes that

changed their module state. We grouped these into 122 gene sets of at least 5 genes and included 6730

genes (Additional file 3). We focused on gene sets transitioning into the high modules of 3, 4 and 5 and

predicted regulators for them (Methods) and identified a total of 44 (Figure 8D). We found several gene

sets with lineage-specific patterns of expression. For example, some gene sets showed lineage specific

up-regulation for Mesenchymal (C218, C235, Figure 9A, B), neuronal (C226, C154, Figure 9C, D) and

the trophoblast lineages (C131, C161 Figure 9E, F). Several of the gene sets involved known lineage-

specific genes, e.g., NEUROD1 for the neuronal lineage-specific gene set C154 [45] (Figure 9D), as well

as regulators important for multiple lineage (e.g., E2F1 and E2F2 TFs in C161 [46], Figure 9F). Several

gene sets were up-regulated in multiple lineages (C138 and C112, Figure 9G, H), which could indicate

regulatory programs with multi-potent potential. Taken together, these results provided insight into the

interplay of chromatin marks, accessibility and TFs to specify lineage specific expression patterns.
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Discussion

To gain insight into regulatory network dynamics associated with cell type specific expression patterns, time

course and hierarchically related datasets measuring transcriptomes and epigenomes of a dynamic process

are becoming increasingly available [5–7, 13, 47]. Analyzing these datasets to identify the underlying gene

regulatory network dynamics that drive context-specific expression changes is a major challenge. This is

because of the large number of variables measured in each context (time point or cell type), but low sample

size for each context. In this work, we developed DRMN, that simplifies genome scale regulatory networks

from individual genes to gene modules and infers regulatory program for each module in all the input

conditions. Using DRMN, one can characterize the major transcriptional patterns during a dynamic process

and identify transcription factors and epigenomic signals that are responsible for these transitions.

Central to DRMN’s modeling framework is to jointly learn the regulatory programs for each cell type

or time point by using multi-task learning. Using two different approaches to multi-task learning, we show

that joint learning of regulatory programs is advantageous compared to a simpler approach of learning reg-

ulatory programs independently per condition. Furthermore, predictive modeling of expression that also

clusters genes into expression groups is more powerful than simple clustering. Such models have improved

generalizability and are able to capture fine-grained expression variation as a function of the upstream reg-

ulatory state of a gene.

DRMN offers a flexible framework to integrate a variety of regulatory genomic signals. In its simplest

form, DRMN can be applied to expression datasets with sequence-specific motifs to learn a predictive reg-

ulatory model. In its more general form, DRMN can integrate other types of regulatory signals such as

genome-wide chromatin accessibility, histone modification and transcription factor profiles measured using

sequencing and array technologies. Furthermore DRMN is applicable to datasets of different experimen-

tal designs such as short time series (e.g., the reprogramming study), long time series (e.g., the hepatocyte

dedifferentiation study) and hierarchically related cell types on lineages (e.g. in the cellular differentiation

study).

We used DRMN’s predictive modeling framework to systematically study the utility of different cell-

type specific measurements such as chromatin marks and accessibility to predict expression. When com-

bining ATAC-seq with chromatin marks to predict expression, we did not see a substantial improvement
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in predictive power. This is likely because of the large number of chromatin marks in our dataset. How-

ever, in both array and sequencing data we found that combining sequence features (motifs) and histone

modifications had the highest predictive power. In our application to the Chronis et al dataset, we did not

observe a substantial advantage of using accessible motif instances (Q-motif) as opposed to all motif in-

stances. This is most likely due to the sparsity of the feature space of Q-motifs which came from the gene

promoter. A direction of future work would be to incorporate ATAC-seq signal from more distal regions by

using genome-wide chromosome conformation capture assays [48–50]. Another direction would be to use

more generic sequence features, such as k-mers [51] to enable the discovery of novel regulatory elements

and offer great flexibility in capturing sequence specificity and its role in predictive models of expression.

We applied DRMNs to distinct types of dynamic processes which involved cell fate transitions: mouse

reprogramming from a differentiated fibroblast cell state to a pluripotent state (3-4 cell types), hepatocyte

dedifferentiation (16 time points), and forward differentiation of human embryonic stem cells to different

lineages (5 cell types). DRMN application identified the major patterns of expression in these datasets as

well as dynamic, transitioning genes that changed their expression state over time or condition. Interestingly,

when comparing across processes we found that the repressed modules were least conserved in the repro-

gramming and differentiation study, while in the de-differentiation study the repressed module was more

conserved. Accordingly, biological processes were repressed in a cell state specific manner in the repro-

gramming and forward differentiation experiment, while we saw a broad down-regulation of developmental

processes in the hepatocyte dedifferentiation dataset. Furthermore, there were greater changes in expression

in the reprogramming time course compared to dedifferentiation indicative of the different dynamics in the

two processes. Importantly DRMN was able to identify key regulators for gene modules as well as for the

transitioning genes that included both novel and known regulators for each process. For example, DRMN

identified several ESC specific regulators in the reprogramming dataset, liver transcription factors such as

HNF4G::HNF4A in the dedifferentiation dataset, and lineage-specific factors in the differentiation dataset.

These predictions offer testable hypothesis of regulators driving important expression dynamics in cell fate

transitions.
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Conclusion

Cell type-specific gene expression patterns are established by a complex interplay of multiple regulatory

levels including transcription factor binding, genome accessibility and histone modifications. DRMN offers

a powerful and flexible framework to define cell type specific gene regulatory programs from time series and

hierarchically related regulatory genomic datasets. As additional datasets that profile epigenomic and tran-

scriptomic dynamics of specific processes become available, methods like DRMN will become increasingly

useful to examine regulatory network dynamics underlying context-specific expression.

Materials and methods

Dynamic Regulatory Module Networks (DRMN)

DRMN model description

DRMN is based on a module-based representation of a regulatory network, where we group genes into

modules and learn a regulatory program for each gene module. This module-based representation is more

appropriate when the number of samples per condition are too few to perform conventional gene regulatory

network inference of estimating the regulators of individual genes for each time point [14, 52]. The regu-

latory program for the modules of any one condition is referred to as Regulatory Module Network (RMN).

DRMN infers regulatory module networks for multiple biological conditions (e.g., cell types, time points)

related by a time course or a lineage tree, where each condition has a small number of samples (e.g, one or

two) but several types of measurements, such as RNA-seq, ChIP-seq and ATAC-seq. For ease of description,

we will assume we have a set of related cell types, however the same description applies to multiple time

points or related conditions.

DRMN takes as inputs: (i) X, an N ×C matrix of cell type-specific expression values for N genes in C

cell types, assuming we have a single measurement of a gene in each cell type; (ii) Y = {Y1, · · · ,YC} col-

lection of feature matrices, one for each cell type, c. Each Yc is anN×F matrix, with the ith row specifying

the values of F features for gene i; and (iii) a lineage tree, τ which describes how theC cell types are related,

(iv) k the number of gene modules. The DRMN model is defined by a set of RMNs, R = {R1, · · · ,RC}
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linked via the lineage tree τ , and transition probability distributions Π = {Π1, ...,ΠC} (Figure 1). For

each cell type c, Rc =< Gc,Θc >, where Gc is graph defining the set of edges between F features and k

modules, and Θc, are the parameters of regression functions (one for each module) that relate the selected

regulatory features to the expression of the genes in a module. Transition matrices {Π1, ...,ΠC} capture the

dynamics of the module assignments in one cell type c given its parent cell type in the lineage tree τ . Specifi-

cally, Πc(i, j) is the probability of any gene being in module j given that its parental assignment is to module

i. For the root cell type, this is simply a prior probability over modules. The values inside each feature ma-

trix, Yc can be either context-independent (e.g., a sequence-based motif network) or context-specific (e.g.,

a motif network informed by accessibility value, histone modifications). Given the above inputs, DRMN

optimization aims to optimize the posterior likelihood of the model given the data, P (R|X,Y1, · · · ,YC).

Based on Bayes rule, this can be rewritten as:

P (R|X,Y1, · · · ,YC) ∝ P (X|R,Y1, · · · ,YC)P (R) (1)

Here P (X|R,Y1, · · · ,YC) is the data likelihood given the regulatory program. For the second term, we

assume that P (R|Y1, · · · ,YC) = P (R). The data likelihood can be decomposed over the individual cell

types as: P (X|R,Y) =
∏
c P (Xc|Rc,Yc). Within each cell type, this is modeled using a mixture of

predictive models, one model for each module. For the prior, P (R), we used two formulations to enable

sharing information: DRMN-Structure Prior (DRMN-ST) defines a structure prior over the graph structures

P (G1, ..., GC) while DRMN-FUSED uses a regularized regression framework and implicitly defines priors

on the P (Θ1, · · · ,ΘC). In both frameworks, we share information between the cell types/conditions to

learn the regulatory programs of each cell type/condition.

DRMN-ST: Structure prior approach. In DRMN-ST, information is shared by specifying a structure

prior, P (G1, ..., GC), defined only over the graphs. The parameters are set to their maximum likelihood

setting. P (G1, ..., GC) determines how information is shared between different cell types at the level of

the network structure and encourages similarity of features, indicative of regulators, between cell types.

P (G1, ..., GC) is computed using the transition matrices {Π1, ...,ΠC} and decomposes over individual

regulator-module edges within each cell type as follows:
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P (G1, · · · , GC) =
∏
f→i

P (If→i)

where

P (If→i) = P (Irootf→i)
∏

c′→c∈τ
P (Icf→i|Ic

′
f→i)

where Icf→i is an indicator function for the presence of the edge f → i for cell type c, between a regulator

f and a module i. To define P (Icf→i|Ic
′
f→i), we use the transition probability of the modules as:

P (Icf→i|Ic
′
f→i) =


Πc(i|i) if Icf→i = Ic

′
f→i

1−Πc(i|i)
k−1 otherwise,

where k is the number of modules. Here the first option gives the probability of maintaining the same

state from parent to child cell types (is present or absent in both c and c′), and the second option gives the

probability of changing the edge state. We incorporated the structure prior within a greedy hill climbing

algorithm for estimating the DRMN model (see Section DRMN learning for more details of the learning

algorithm).

DRMN-FUSED: Parameter prior approach. In DRMN-FUSED, we use a fused group LASSO formu-

lation to share information between the cell types by defining the following objective:

min
Θ

∑
c

||Xc,k −Yc,kΘ
T
c,k||22 + ρ1||Θk||1 + ρ2||ΨΘk||1 + ρ3||Θk||2,1, (2)

where Xc,k is the expression vector of genes in module k in cell line c, Yc,k is the feature matrix for

genes in module k, and Θc,k is a 1 × F vector of regression coefficients for the same module and cell line

(non-zero values correspond to selected features). Θk is the C by F matrix resulting from stacking up the

Θc,k vectors as rows. Ψ is a C − 1 by C matrix, encoding the lineage tree. Each row of Ψ corresponds

to a branch of the tree and each column corresponds to a cell type. If row i of Ψ corresponds to a branch

c′ → c in the lineage tree, Ψ(i, c1) = 1, Ψ(i, c2) = −1, and all other values in that row are 0. ΨΘk is

a C − 1 by F , where row i correspond to Θc′,k − Θc,k, the difference between regression coefficients of
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cell lines c′ and c. ||.||1 denotes l1-norm (sum of absolute values), ||.||2 denotes l2-norm (square root of

sum of square of value), and ||.||2,1 denotes l2,1-norm (sum of l2-norm of columns of the given matrix).

ρ1, ρ2 and ρ3 correspond to hyper parameters, with ρ1 for sparsity penalty, ρ2 to enforce similarity between

selected features of consecutive cell lines in the lineage tree, and ρ3 to enforce selecting the same features

for all cell types. Thus, ρ2 controls the extent to which more closely related cell types are closer in their

regression weights, which ρ3 controls the extent to which all the cell types share similarity in their regulatory

programs. We set these hyper parameters based on cross-validation by performing a grid search for ρ1, ρ2

and ρ3 as described in the dataset-specific application sections. We implemented the optimization algorithm

by extending the algorithm described in the MALSAR Matlab package [53] to handle branching topologies.

The learning algorithm uses an accelerated gradient method [54, 55] to minimize the objective function

above.

DRMN learning

DRMNs are learned by optimizing the DRMN score (Eqn 1), using an Expectation Maximization (EM)

style algorithm that searches over the space of possible graphs for a local optimum (Algorithm 1). In the

Maximization (M) step, we estimate transition parameters (M1 step) and the regulatory program structure

(M2 step). In the Expectation (E) step, we compute the expected probability of a gene’s expression profile

to be generated by one of the regulatory programs. The M2 step uses multi-task learning to jointly learn the

regulatory programs for all cell types using either the framework of DRMN-ST or DRMN-FUSED.

Algorithm 1: DRMN Algorithm
Input:
- Expression data X = {X1, · · · ,XC},
- Regulatory features Y = {Y1, · · · ,YC},
- Initial module assignments M = {M1, ...,MC}
Output:
- Regulatory programs R = {R1 = (G1,Θ1), ...,RC = (GC ,ΘC)},
- Transition probabilities Π = {Π1, ...,ΠC}
while not converged do

M1: Estimate transition parameters (Π1, · · · ,ΠC)
M2: Update regulatory programs (G1, · · · , GC ,Θ1, · · · ,ΘC)
E: Update module assignment probabilities and module assignments (Γ,M1, ...,MC)

end
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Estimate transition parameters (M1 step): Let γg,ck,k′ be the probability of gene g in cell type c to belong

to module k, and, in its parent cell type c′, to module k′. We calculate the probability of transitioning from

k′ in c′ to k in c as Πc(k, k
′) =

∑
g γ

g,c

k,k′∑
g,k,k′ γ

g,c

k,k′
.

Update regulatory programs (M2 step): Recall that the regulatory program for each cell type c is Rc =<

Gc,Θc >, where Gc is a set of regulatory interactions f → i from a regulatory feature f to a module i, and

Θc are the parameters of a regression function for each module that relates the selected regulatory features

to the expression of the genes in a module. We assume that the expression levels are generated by a mixture

of experts, each expert corresponding to a module. Each expert uses a multivariate normal distribution, with

mean µc,i and covariance Σc,i. Let Vc,i denote the set of regulatory features in Gc,i. µc,i is |Vc,i|+ 1× 1 and

Σc,i is square matrix with |Vc,i| + 1 rows and columns, where the additional dimension is for expression.

Given, µc,i and Σc,i, let θc,i denote the conditional mean of the expression variable given all the regulatory

features and let Σx|Vc,i be the conditional variance. Let Xc(g) denote the expression level of a gene g in cell

type c. The probability of Xc(g) from module i in cell type c is:

P (Xc(g)|Rc,i,Yc) ∼ N

 ∑
f∈Vc,i

θc,i(f)Yc(g, f),Σx|Vc,i


The estimation of these multivariate distributions is done one module at a time across all cell types, however

the procedure is specific to DRMN-ST and DRMN-FUSED. In the DRMN-ST approach, the regulatory

interactions are learned one module, across all cell types at a time using a greedy hill-climbing framework.

At initialization, for each module i, Gc,i is an empty graph, and the Gaussian parameters are computed

as the empirical mean and variance of the genes initially assigned to module i in each cell type. In each

iteration, we score each potential regulatory feature based on its improvement to the likelihood of the model,

and choose the regulator with maximum improvement. This regulator is added to the module’s regulatory

program for all cell types for which it improves the cell type-specific likelihood. In DRMN-FUSED, the

structure and parameters of Rc,i are learned by optimizing the objective in Eqn 2 using an accelerated

gradient method [54, 55]. See Additional file 1 Supplemental text for more details.
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Update soft module assignments (E step): Let γg,ci|j be the probability of gene g in cell type c to belong

to module i, given that in its parent cell type c′, it belonged to module j. We also introduce αcg, a vector of

size k × 1 where each element αcg(c
′) specifies the probability of observations given the parent state is c′.

We estimate the probabilities using a dynamic programming procedure, where values at internal nodes in

the lineage tree are computed using the values for all descendent nodes, down to the leaves.

If c is a leaf node, we calculate

γg,ci|j = P (xg,c|Rc,i,yg,c)Πc(i|j)

where the first term is the probability of observing expression of gene g in cell type c in module i (given its

regulatory program and regulatory features), and the second is the probability of transitioning from module

j in the parent cell type c′ to module i in cell type c.

For a non-leaf cell type c:

γg,ci|j = P (xg,c|Rc,i,yg,c)Πc(i|j)
∏

c→l∈τ
αg,l(i)

For both internal and leaf cell types, we write the joint probability of the (j, i) pair as γg,ci,j =
γg,c
i|j

αg,c(j) ,

where αg,c(j) =
∑

i γ
g,c
i|j is the probability of g’s expression in any module given parent module j.

Termination: DRMN inference runs for a set number of iterations or until convergence. Final module

assignments are computed as maximum likelihood assignments using a dynamic programming approach.

While module assignments between consecutive iterations do not change significantly, the final module

assignments are significantly different from the initial module assignments, and predictive power of model

significantly improves as iterations progress (though improvements are small after 10 iterations, Additional

file 1 Figure S7). In our experiments, we ran DRMN for up to ten iterations. When using greedy hill

climbing approach, the M2 step was run until up to five regulators were added per module.
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Feature sets tested in DRMN

We initially examined DRMN with a variety of feature sets to study the utility of different feature combina-

tions for predicting expression. Most of the feature set types were examined with the reprogramming array

and sequencing datasets. We considered the following features for each gene to predict its expression.

Motif. We defined motif features based on the presence of a motif instance of a transcription factor

(TF) within the gene’s promoter region, defined as ±2500 around the gene TSS. We downloaded a meta-

compilation of position weight matrices (PWMs) from various resources (see dataset-specific sections for

details) for human (e.g., CisBP) or mouse (CisBP and Sherwood et al [56]). We applied FIMO [57] to scan

the mouse or human genome for significant motif instances (p < 1e − 5). For each gene, we generated

a vector of motif presence, one dimension for each motif with the value equal to the −log10(p-value) of

a motif instance. If a gene had multiple motif instances for the same motif, we used the most significant

instance (smallest p-value).

Histone. For datasets with histone modifications measured, we used each histone mark as a separate fea-

ture. This included 8 features for the reprogramming array dataset, 9 features for the sequencing dataset and

8 features for the H1ESC differentiation dataset. The feature value was the aggregated count value around

the gene TSS followed by log transformation.

Histone + Motif. This was the concatenation of histone modification features (Histone) where available,

with the motif features for each gene.

Accessibility. The Accessibility feature was a single feature repressing the aggregated ATAC-seq or DNase-

seq reads around the gene promoter. After aggregating to the gene promoter, we quantile normalized and

log transformed the values.

Accessibility + Motif. This feature set represents the concatenation of the ATAC feature with the Motif

feature set for each gene.
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Q-Motif. This feature set represents sequence-specific motif features scored by the ATAC-seq/DNase-seq

signal producing a total of as many features as there are motifs with significant instances. We used BedTools

(bedtools genomecov -ibam input.bam -bg -pc > output.counts) to obtain the ag-

gregated signal on each base pair. We defined the feature value as the log-transformed mean read count

under each motif instance. If multiple instances of the same motif were mapped to the same transcript, the

signal was summed. If a TF was mapped to multiple transcripts of the same gene, or multiple motifs of the

same TF were mapped to the same gene, the max value was used.

Histone + Accessibility + Motif. This feature set represents the concatenation of the Histone feature set,

ATAC feature and the Motif feature set.

Histone + Q-Motif. Similar to the Histone + Motif feature set, Histone + Q-Motif represents the concate-

nation of the Histone and Q-Motif feature set for each gene.

Histone + Accessibility + Q-Motif. This feature set is similar to Histone+ATAC+Motif and represents the

concatenation of Histone and Q-Motif feature sets with the ATAC feature.

Application of DRMN to different datasets

We applied DRMN to study regulatory network dynamics to four different processes (a) A microarray

time course dataset of cellular reprogramming from mouse embryonic fibroblasts (MEFs) to pluripotent

cells, (b) A sequencing time course dataset of cellular reprogramming using the same system as (a), (c) A

sequencing time course dataset profiling dedifferentation of hepatocyte cells, (d) differentiation of H1ESC

cells to different developmental lineages. Below we describe the dataset processing, feature generation,

hyper-parameter selection and analysis of transitioning gene sets.

Reprogramming array data.

This dataset had measurements of gene expression and eight chromatin marks in three cell types: mouse em-

bryonic fibroblasts (MEFs), partially reprogrammed induced pluripotent stem cells (pre-iPSCs), and induced

pluripotent stem cells (iPSCs), collected from multiple publications [12, 58–60]. The expression values of
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15,982 genes was measured by microarray. Eight chromatin marks were measured by ChIP-on-chip (chro-

matin immunoprecipitation followed by promoter microarray). For each gene promoter, each mark’s value

was averaged across a 8000-bp region associated with the promoter. The chromatin marks included those

associated with active transcription (H3K4me3, H3K9ac, H3K14ac, and H3K18ac), repression (H3K9me2,

H3K9me3, H3K27me3), and transcription elongation (H3K79me2).

For this dataset, we considered the following set of features: Motif, Histone, Histone+Motif. For the Mo-

tif feature, we used the motif collection available with the PIQ software [56] from http://piq.csail.mit.edu/,

which were sourced from multiple databases [61–63]. From the full motif list, we used only those anno-

tated as transcription factor proteins [64]. This resulted in a total of 353 TFs. We used FIMO to find motif

instances using the mm9 mouse genome. Motif instances for the same TF were further aggregated into a

single feature per gene by selecting the motif instance with the most significant p-value. This resulted in a

total of 353 dimensions for the Motif feature.

We used the array and the reprogramming dataset to study the effect of hyper-parameters on the perfor-

mance of DRMN-FUSED with different feature sets. The hyper-parameters are ρ1 (sparsity in each task),

ρ2 (selection of more similar features for closely related cell types) and ρ3 (selection of similar features for

all cell types). We performed a grid search on a wide range of parameters values:

ρ1 ∈ {0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130}, ρ2 ∈ {0, 10, 20, 30, 40, 50} and

ρ3 = {0, 10, 20, 30, 40, 50} (Additional file 1 Figure S8). We used a three-fold cross validation setting

and computed average correlation between predicted and true expression for each module and cell line. We

used the average over modules and cell lines to assess DRMN performance for particular feature set and

hyper-parameter setting. We observe that increase in ρ3 was generally not beneficial for the Motif feature

for all k, number of modules, and for k ≥ 7 when using Histone and Histone+Motif (blue ρ3=0) vs. cyan,

ρ3=50, Additional file 1 Figure S8). For a fixed value of ρ3, increasing sparsity ρ1 is beneficial for the

Histone and Histone + Motif features, upto ρ1 = 30− 60, beyond which the performance decreases or does

not improve. The ρ2 feature was also most useful when using the Histone feature.

Final results of DRMN were obtained by using the Motif+Histone feature with DRMN-FUSED. We

inspected the performance across different hyper-parameter settings using these features and found the top

5 configurations to be: {(50, 50, 30), (50, 10, 30), (90, 10, 0), (40, 40, 50), (30, 50, 50)}. Inspection of the
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heat maps DRMN results showed that the results were similar across these configurations, where we se-

lected the first configuration (50, 50, 30) for DRMN application on the full dataset. DRMN modules were

interpreted using Gene Ontology enrichment using a Hyper-geometric T-test. Transitioning gene sets were

defined based on genes that change

Reprogramming sequencing data.

This dataset generated by Chronis et al. [7], assayed gene expression with RNA-seq, nine chromatin marks

with ChIP-seq, and chromatin accessibility with ATAC-seq in different stages of reprogramming (MEF,

MEF48 (48 hours after start of the reprogramming process), pre-iPSC, and embryonic stem cells (ESC)). The

chromatin marks included H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2,

H3K9ac, and H3K9me3. We aligned all sequencing reads to the mouse mm9 reference genome using

Bowtie2 [65]. For RNA-seq data, we quantified expression to TPMs using RSEM [66] and applied a log

transform. After removing unexpressed genes (TPM<1), we had 17,358 genes. For the ChIP-seq and

ATAC-seq datasets, we obtained per-base pair read coverage using BEDTools [67], aggregated counts within

±2, 500 bps of a gene’s transcription start site and applied log transformation.

For this dataset, we considered all the feature types described in the section, Feature sets tested in

DRMN. The Motif feature was generated in a similar manner as in the reprogramming array dataset. In

addition, we included, Q-Motif, Accessibility and their combinations with the Histone feature.

Similar to the array dataset, we used this dataset to study the effect of hyper-parameters, ρ1, ρ2 and ρ3

on the performance of DRMN-FUSED using a similar three-fold cross-validation framework (Additional

file 1 Figures S9, S10, S11). Similar to the array dataset, increasing values of ρ3 was not beneficial for Motif

or Q-Motif alone. Higher value of ρ3 was useful for some of settings of histones features combined with

Accessibility, Motif or Q-motif (k = 3, 5 for generally lower values of ρ1, Additional file 1 Figures S9, S10,

S11). We next investigate the impact of ρ1 and ρ2, for different values of ρ3. We observe that when using

histone features (Histone+Motif, Histone+Accessibility+Motif, Histone+Accessibility+Q-Motif,), increase

in ρ2 (increasing the similarity of inferred networks) improves the predictive power of the method. Increase

in ρ1 is beneficial for these features upto a limit (typically, ρ1=60 or 70). Conversely, for the feature sets

that do not use histone features (Motif, Q-Motif, and Accessibility+Motif), increase in ρ1 (sparser models)
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decrease the predictive power of the model, which is consistent with the decrease in performance of Motif

features in the array dataset.

Final results from DRMN for this dataset are obtained by applying DRMN-FUSED to the Histone+Accessibility+Q-

Motif feature set with k = 7 modules in three-fold cross-validation mode and examining the top 5 config-

urations. For this dataset, these were {(10,50,40), (20,50,40), (10,50,10), (40,50,0), (10,50,0)}. Next we

inspected the heat maps of DRMNs and determined that the results are largely similar. We present results for

one of the configurations:ρ1 = 10, ρ2 = 50, ρ3 = 40. Similar to the reprogramming array dataset we tested

for GO enrichment and defined transitioning gene sets. We next used a simple regression model to predict

regulators for each gene set (See Section, “Identification of transitioning gene sets and their regulators”).

Hepatocyte dedifferentiation time course data.

The dedifferentiation time course consisted of samples were extracted from adult mouse liver and gene

expression and chromatin accessibility were assayed by RNA-seq and ATAC-seq, respectively, at 0 hrs, 0.5

hrs, 1 hrs, 2 hrs, 4 hrs, 6 hrs, 8 hrs, 10 hrs, 12 hrs, 14 hrs, 16 hrs, 18 hrs, 20 hrs, 22 hrs, 24 hours, and 36

hrs (16 time points in total, [26]). All sequencing reads were aligned to mouse mm10 reference genome

using Bowtie2 [65], and gene expression was quantified using RSEM [66]. Any gene with TPM= 0 in all

time points was removed, resulting in 14,794 genes with measurement in at least one time point. Per-base

pair read coverage for ATAC-seq was obtained using BEDTools [67], and counts were aggregated within

±2, 500 bps of a gene’s transcription start site. Both gene expression and accessibility data were quantile

normalized across 16 time points and then log transformed.

DRMN was applied with Accessibility and Q-Motif as the feature set with k = 5 modules using the

DRMN-FUSED implementation. Q-Motif features were generated similar to the reprogramming dataset.

We used a utility in the PIQ package [56] to identify motif instances in ±2, 500bp of a gene TSS using

PWMs from CIS-BP database [68]. Motif instances were scored by the ATAC-seq signal resulting in a total

of 2,856 features. The Q-Motif Features were quantile normalized and log transformed across the 16 time

points.

To determine the appropriate settings for the hyper-parameters for DRMN-FUSED, we scanned the

following range of values of values: ρ1 ∈ {30, 50, 70, 90, 110, 130, 150}, ρ2 ∈ {0, 10, 30, 50, 70} and
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ρ3 = {0, 10, 30, 50, 70} within a three-fold cross-validation setting (Additional file 1 Figure S12) and

picked the best setting based on overall prediction error (as described in the procedure for the reprogramming

dataset). We used the Accessibility+Q-Motif feature set and k = 5 for the number of modules. We found

the top 5 parameter configurations to be {(70,10,70), (70,0,70), (90,0,50), (70,30,50), (70,50,30)}. The

modules from these five configurations looked similar. We finally did a full run of DRMN-FUSED with

(ρ1 = 70, ρ2 = 10, ρ3 = 70), which had the best prediction error. The DRMN modules were interpreted

with GO enrichment analysis. We defined transitioning gene sets from the DRMN modules and used a multi-

task group LASSO regression approach to select regulators for each gene set (See Section, “Identification

of transitioning gene sets and their regulators” for more details).

H1ESC differentiation into different lineages.

The differentiation dataset from Xie et al. [13] profiled gene expression, accessibility and histone modi-

fications in human embryonic stem cells (hESCs) and four lineages derived from hESCs, mesendoderm,

neural progenitor, trophoblast-like, and mesenchymal stem cells. Gene expression was measured with

RNA-seq, histone modifications were measured with ChIP-seq and chromatin accessibility with DNase-

seq. The dataset included eight histone modification marks: H3K27ac, H3K27me3, H3K36me3, H3K4me1,

H3K4me2, H3K4me3, H3K79me1, and H3K9ac. We aligned all sequencing reads to the human hg19 refer-

ence genome using Bowtie2 [65]. For RNA-seq data, we quantified expression to TPMs using RSEM [66],

quantile normalized across cell lines and applied a log transform, resulting in 17,899 genes with expression

across all cell lines. For both the ChIP-seq (chromatin marks) and DNase-seq data, we obtained per-base

pair read coverage using BEDTools [67] and aggregated counts within ±2, 500 bps of a gene transcription

start site (TSS).

DRMN was applied using the full set of features, Accessibility, Q-Motif, Histone with k = 5 modules.

Q-Motif features were obtained using Cis-BP human motif PWM collection by applying utility tools from

the PIQ software package [56] on±2500bp of a gene TSS. Each motif instance was scored with the DNAse-

seq signal resulting in a total of 2,998 features. These features were quantile normalized and log transformed

across the cell lines.

To determine the appropriate settings of the hyper-parameters, we performed three fold cross-validation
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with hyper parameter values in the following range: ρ1 ∈ {30, 50, 70, 90, 110, 130, 150 }, ρ2 ∈ {0, 10,

30, 50, 70 } and ρ3 ∈ {0, 10, 30, 50, 70} (Additional file 1 Figure S13). The top 5 configurations were

{(150,0,30), (30,0,0), (150,0,10), (30,0,10), (130,0,30)}. The results from these settings were similar. The

results reported here were generated by applying DRMN on the full dataset with ρ1 = 150, ρ2 = 0, ρ3 = 30.

We note that for this dataset, as the relationships between the cell types is captured by a two-level tree, the

ρ2 parameter likely does not have a large effect and most of the task sharing is sufficiently captured by the

global ρ3 parameter. Once modules were defined we analyzed them as described in the above sections and

generated transitioning gene sets. We identified regulators for the transitioning gene sets using our simple

regression-based approach (See Section, “Identification of transitioning gene sets and their regulators” for

more details).

Identification of significant cis-regulatory elements and regulatory features per module

To analyse the inferred regulatory programs in DRMN models, we sought to identify regulatory features that

are significantly different across the contexts. Briefly, for each regulatory feature selected for each module,

we calculated the z-score of inferred DRMN edge weights across all conditions (cell-type/time point). In

each module features with a significant edge (z-score> 1 for reprogramming datasets, and z-score> 3 for

dedifferentiation and ES differentiation datasets) in at least one conditon were selected. The complete list

of identified features are available in Additional file 5.

Identification of transitioning gene sets and their regulators

A transitioning gene is defined as a gene for which its module assignment changes in at least one time

point/cell line. We grouped the genes into transitioning gene sets using a hierarchical clustering approach

with city block as a distance metric and 0.05 as a distance threshold. We developed two strategies for

selecting regulators for transitioning gene sets: Simple linear regression for short time courses (with 5 or

fewer time points) and Multi-Task Group LASSO (MTG-LASSO) that is suitable for longer time courses.

Both approaches take as input a list of genes from a transitioning set and predict the regulators that are likely

responsible for the change in expression over time.
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Simple linear regression approach. To identify regulators associated with transitioning gene sets in

datasets with ≤ 5 samples (the two reprogramming datasets and H1ESC differentiation dataset), we used

a simple regression-based approach, that sought to find regulators that can explain the overall variation in

expression of genes in the set. Briefly, for each transitioning gene set with n genes across C cell types, we

created a n.C × 1 expression vector by stacking of the C-dimensional vector for each of the genes across

the C cell types. We repeated this procedure for all the features associated with the gene set to produce a

n.C×F matrix, where F is the total number of features in our dataset. Next, we used regularized regression

to select which features are most predictive of the expression levels. Any regularized regression framework

can be used; we used the sparsity imposing regression framework of the MERLIN algorithm [69], which

uses a probabilistic framework with a prior term (tuned using a hyper-parameter) to infer sparser models.

We ran MERLIN (with default settings) on each transitioning gene set to identify regulatory features asso-

ciated with that set. We finally filtered the predicted regulators per gene set by assessing the correlation of

the regulator/feature with the gene expression of a gene across the cell lines and included a regulator if was

correlated to at least 5 genes with a Pearson’s correlation of 0.6 or higher.

Multi-Task Group Lasso. To identify regulators associated with transitioning gene sets in datasets with

≥ 6 samples, e.g., the dedifferentiation dataset, we used a multi-task regression framework called Multi-

Task Group Lasso (MTG-Lasso). In MTG-Lasso, we perform multiple regression tasks, one for each gene

in the set to select regulatory features as predictors for each gene’s expression levels. The “group” penalty of

MTG-Lasso enables us to select the same regulator for all genes in the gene set but with different parameters.

The regulatory feature corresponds to a “group” with the regression weights for the regulator across all genes

to be the in the same group. MTG-Lasso selects or unselects entire groups of regression weights. The MTG-

Lasso objective for each gene set s is:

min
Θs

∑
g

||Xsg −YsgΘsg||22 + λ
∑
f

||θf.||22,

Here Xsg is the C × 1 vector of expression values over C samples for gene g, and Ysg is the C × F

matrix of regulatory features for g over samples. Θsg = [θ1g, · · · , θFg]T is the F × 1 vector of regression

weights for predicting g’s expression from the F regulatory features. The first term denotes the regression
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task for each gene g, while the second term denotes the L1/L2 regularization required for the MTG-LASSO

framework. The sum over f imposes the L1 penalty selecting a small number of groups (one θf. for each

feature f ), and the ||θf.||22 imposes the L2 norm for smoothness of the regression coefficients across genes.

λ is the hyper-parameter controlling for the strength of the regularization.

We applied MTG-Lasso to each transitioning gene set using the MATLAB SLEP v4.1 package [70] to

infer the most predictive regulatory features for the gene set. We performed leave-one-out cross-validation,

where one sample is left out from training, a model is fit on the remaining samples and used to predict

the left out sample. We computed a confidence for each feature based on the percentage of models in

which the feature is selected. Additionally, we computed a p-value for the selection of each regulator by

comparing the number of times it was selected to a null distribution of feature selection obtained from

randomizing the data 40 times and training MTG-Lasso models. A feature was selected as a regulator if

it was in at least 60% of the trained values and had a p-value< 0.05. We tried different hyper-parameter

values (λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}) and selected the value that resulted in reasonable

number of regulators across all transitioning gene sets (λ = 0.7). Once regulators were selected for each

gene set, we further filtered the features based on the pearson correlation of the gene expression and feature

values as in the simple regression case.

Availability

The DRMN code is available at https://github.com/Roy-lab/drmn along with usage instruc-

tions. Data pre-processing and feature generation scripts are available at https://github.com/Roy-lab/

drmn_utils. DRMN outputs have been provided as Additional file 6 (the necessary mapping between

motif names and TF names are available in Additional file 7).
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Additional files

Additional File 1. Supplemental data including supplementary text and Figures S1-S13.

Additional File 2. GO terms enriched in each module of each cell line or time point. Each sheet correspond to one
dataset.

Additional File 3. List of genes that change module across cell lines/time points. Each sheet correspond to one data
set.

Additional File 4. Regulators associated with the transitioning gene sets. The file contains three zip files (for
reprogramming dataset from from Chronis et al., the dedifferentiation dataset, and the ESC differentiation dataset).
Each zip file contains a file per transitioning gene set, where first column is the name of regulator, second column is
the name of target (Exp for all files), and the last column correspond to edge weight (regression coefficient for linear
regression and confidence for MTG LASSO).

Additional File 5. Significant interaction per module, where significance was defined as z-score higher than the given
threshold (1 for reprogramming datasets and 3 for the other two datasets). Each sheet corresponds to one dataset.

Additional File 6. The zip file contains four zip files (one for each dataset) containing the DRMN outputs of inferred
networks and module assignments per cell line/time point.

Additional File 7. The zip file contains map of motif names to gene names for human and mouse CIS-BP motifs. It
also contains the shortened names used in different figures.
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Figure legends

Figure 1. The outline of Dynamic Regulatory Module Networks (DRMN) method. Inputs are a lineage tree over
the cell types, cell type-specific expression levels, a shared skeleton regulatory network (e.g. sequence specific motif
network), and optionally cell type-specific features such as histone modification marks or chrmatin accessibility sig-
nal. The output is a learned DRMN, which consists of cell type-specific expression state modules, their regulatory
programs, and transition matrices describing dynamics between the cell types.

Figure 2. (A) Predicted expression vs. observed expression, for iPSC/ESC, for (i) DRMN-ST on array dataset, (ii)
DRMN-ST on sequencing dataset, (iii) DRMN-FUSED on array dataset, and (iv) DRMN-FUSED on sequencing
dataset. Average per-module correlation averaged across cell lines as a function of different number of modules, for
(B) DRMN-ST on array dataset, (C) DRMN-ST on sequencing dataset, (D) DRMN-FUSED on array dataset, and (E)
DRMN-FUSED on sequencing dataset. Average per-module correlation for individual cell lines for DRMN-ST vs.
DRMN-FUSED for (F) array dataset, and (G) sequencing dataset. Each shape correspond to a cell line and each color
correspond to a different feature set.

Figure 3. Average per-module correlation for individual cell lines as a function of different number of modules for
single task and multi task versions of the method, for A-C) DRMN-ST on sequeincing dataset, D-F) DRMN-FUSED
on sequencing dataset, G-I) DRMN-ST on array dataset, and J-L) DRMN-FUSED on array dataset. Each shape
correspond to a cell line and each color correspond to a different method.

Figure 4. Application of DRMNs to the cellular reprogramming sequencing dataset using histone marks, accessibility
and Q-motifs for the feature set. A. Show are gene expression patterns of the k = 7 modules. The number above the
heatmap is the number of genes in that module. B. Similarity of modules across cellular stages as measured by F-score.
The color intensity is proportional to the match. C. Inferred regulatory program for the most highly expressed modules
across cell stages. D. Transitioning gene sets exhibiting changes into the high expression modules (3, 4, 5). Shown
are the mean expression levels of genes in the gene set (left, red-blue heat map), the module assignment (second), the
number of genes in each module (third) and the set of regulators for each gene set (white-red heat map). Red arrows
depict gene sets discussed in the text.

Figure 5. Selected transitioning gene sets in the cellular reprogramming dataset. Each panel shows the member
genes of a transitioning gene set (label on top). The columns show the module assignment of each gene, followed
by its expression level in each cell type (Exp). The subsequent groups of columns are the levels of the regulator on
the gene promoters. The name of the regulator is specified at the bottom of the heat map. All significant regulators
are shown. A-B. Gene sets exhibiting down-regulation in ESC/pre-iPSC and up-regulation in MEF/MEF48 (Geneset
C101, C220). C-E. Up-regulation in ESC/iPSC alone (Gene sets C191, C200, C203). F. Upregulation in ESC/iPSC
and pre-iPSC and down regulation in MEF and MEF48 (Geneset C216).
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Figure 6. Application of DRMNs to the hepatocyte dedifferentiation dataset using accessibility and Q-motifs for the
feature set. A. Show are gene expression patterns of k = 5 modules for each time point (major row). The number
above the heatmap is the number of genes in that module. B. Similarity of modules across time points as measured
by F-score. The color intensity is proportional to the match. C. Inferred regulators for each modules across time.
Only modules with highest expression and that had TFs as regulators (3 and 4) are shown. D. Transitioning gene sets
exhibiting changes into the high expression modules (3, 4, 5). Shown are the mean expression levels of genes in the
gene set (left, red-blue heat map), the module assignment (second), the number of genes in each module (third) and
the set of regulators for each gene set (white-red heat map). Red arrows depict gene sets discussed in the text.

Figure 7. Selected transitioning gene sets in the hepatocyte dedifferentiation dataset. Each panel shows the member
genes of a transitioning gene set (label on top). The columns show the module assignment of each gene, followed by
its expression level in each cell type (Exp). The subsequent groups of columns are the levels of the regulator (Q-motif
value) on the gene promoters. The name of the regulator is specified at the top of each block of columns. All significant
regulators are shown.

Figure 8. Application of DRMNs to the hepatocyte dedifferentiation dataset using accessibility and Q-motifs for the
feature set. A. Show are gene expression patterns of k = 5 modules for each lineage (major row). The number above
the heatmap is the number of genes in that module. B. Similarity of modules across lineages as measured by F-score.
The color intensity is proportional to the match. C. Inferred regulators for each modules across time. Only modules
with highest expression and that had TFs as regulators (3 and 4) are shown. The red intensity is proportional the
z-score significance of the regression weight of a regulator D. Transitioning gene sets exhibiting changes into the high
expression modules (3, 4, 5). Shown are the mean expression levels of genes in the gene set (left, red-blue heat map),
the module assignment (second), the number of genes in each module (third) and the set of regulators for each gene
set (white-red heat map).

Figure 9. Selected transitioning gene sets in the ESC differentiation dataset. Each panel shows the member genes
of a transitioning gene set (label on top). The columns show the module assignment of each gene, followed by its
expression level in each cell type (Exp). The subsequent groups of columns are the levels of the regulator (Histone or
Q-motif value) on the gene promoters. The name of the regulator is specified at the top of each block of columns. All
significant regulators are shown. A-B. Mesenchymal specific gene sets. C-D. Neural progenitor specific lineage. E-F.
Gene sets with trophoblast-specific expression. G-H. Gene sets exhibiting multi-lineage expression.
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