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Abstract  
Protein homeostasis (a.k.a. proteostasis) is associated with the primary functions of life, and 
therefore with evolution. However, it is unclear how the cellular proteostasis machines have 
evolved to adjust the protein biogenesis needs to environmental constraints. Herein, we describe 
a novel computational approach, based on semantic network analysis, to evaluate proteostasis 
differentiation during evolution. We show that the molecular components of the proteostasis 
network (PN) are reliable metrics to deconvolute the life forms into Archaea, Bacteria and 
Eukarya and to assess the evolution rates among species. Topological properties of semantic 
graphs were used as new criteria to evaluate PN complexity of 93 Eukarya, 250 Bacteria and 
62 Archaea, thus representing a novel strategy for taxonomic classification. This functional 
analysis provides information about species divergence and pointed towards taxonomic clades 
that evolved faster than others. Kingdom-specific PN were identified, suggesting that PN 
complexity correlates evolution. Through the analysis of gene conservation, we found that the 
gains or losses that occurred throughout PN evolution revealed a dichotomy within both the PN 
conserved modules and within kingdom-specific modules. Since the PN is implicated in cell 
fitness, aging and disease onset, it could be used as a new metric to tackle mechanisms 
underlying ‘gain-of-functions’, and their biological ramifications.  
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Introduction 
Protein homeostasis (a.k.a. proteostasis) refers to a complex and interconnected network of 
processes that affects both expression levels and conformational stability of proteins, by 
controlling their biogenesis, folding, trafficking and degradation within and outside the cell. 
The molecular mechanisms controlling proteostasis are implicated in cell fitness, aging and 
contribute to disease onset. The underlying network of cellular mechanisms (i.e. the proteostasis 
network - PN) includes protein synthesis, co/post-translational folding, quality control, 
degradation, as well as adaptive signaling in response to proteostasis imbalance (Balch et al., 
2008). From Prokaryotes to Eukaryotes, the PN was subjected to evolutionary pressure for each 
organism, to cope with intrinsic and extrinsic demands. Evolution was shaped by factors such 
as genome complexity, post-translational modifications repertoire, the presence of subcellular 
compartments, the emergence of multicellular organisms and cell differentiation, with cells 
exhibiting high protein synthesis yields and secretion, requiring a robust PN. An effective PN 
is also instrumental for eukaryotic cells with temporal variations of protein expression (e.g. 
neurons and endocrine cells). Each of these constraints increased the needs for updated, 
adaptive mechanisms, ensuring protein homeostasis (Roth & Balch, 2011). As such, the PN 
was subjected to selections, specific to each organism. For instance, compartment-specific 
proteostasis control machineries in the cytosol, the endoplasmic reticulum (ER) or the 
mitochondria are required in eukaryotic cells, whereas dedicated systems are found in the 
cytosol and periplasm of Gram-negative Bacteria (Powers & Balch, 2013). Despite the fact that 
the proteostasis network is a crucial, biological module, with direct relevance to many diseases 
linked with aberrant protein conformation, yet its fragmented, problematic annotation, hinders 
the efficient investigation of its functional ramifications in health and disease (The Proteostasis 
Consortium, Overall coordination et al., 2022). 
 Traditional, phylogenetic approaches use the sequence of conserved genes or proteins 
(or groups of them) as standard references, rather than their functional identities, to form clades, 
ancestral lineages and identify speciation events. A proper PN-related phylogenetic clustergram 
needs to reflect the diversity of PN across species of various taxa. In theory, heat shock proteins 
(HSPs), that exert fundamental roles in maintaining protein homeostasis, could be considered 
as the appropriate markers to delineate PN evolution. Some HSP families (e.g. HSP40 and 
HSP70) are highly represented in most cells and the nature of this representation might reflect 
the underlying evolutionary relationships - e.g. 3 members of HSP40 in E. coli and 49 members 
in Homo sapiens (Gur et al., 2005; Kampinga et al., 2009). However, the content of their 
nucleotide and amino acid sequences remains unable to provide insights about the functional 
evolution of proteostasis. Hence, a different vocabulary is necessary to exploit their functional 
profiles and the subsequent structured networks. 

Even if studies have reported computational models of proteostasis in E. coli Powers et 
al., 2012) and in Eukaryotes (Wiseman et al., 2007), an overall layout of proteostasis evolution 
is still lacking. Herein, we propose a novel method for phylogenetic analysis, based on the 
semantic network analysis of ontological graphs, which describes the functional characteristics 
of species, under a specific cellular process, such as proteostasis. Using this approach to 
evaluate the functions of specific biological modules (i.e. list of genes/proteins), we assessed 
how proteostasis evolved with the phylogeny. Proteostasis-based evolutionary maps performed 
well vs. the gold-standard ribosomal RNA (rRNA) sequence-based evolution metric (Gilbert, 
1986; Smit et al., 2007). Specifically, these maps managed to yield a phylogenetic clustergram, 
which proposes taxonomic classifications of organisms, based on the topology of their PN. In 
addition, these newly generated clustergrams reproduce the established classifications in major 
taxa. Species allocation into distinct clusters, populated by members from various phyla, 
unveiled new shared, adaptive responses to environmental cues. We show here that proteostasis, 
as a whole, represents a reliable metric for species partitioning, providing a snapshot of the 
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overall, functional diversification of cellular functionality, in the tree of life. Conserved and 
‘kingdom-specific’ PN components were identified, implying that proteostasis is associated 
with a plethora of crucial, cellular functions, in different taxonomies, apart from its core 
machinery. 
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Materials & Methods 
Proteostasis-related genes lists and data acquisition 
The PN encompasses various mechanisms, pertinent to different functional aspects, as protein 
quality control, production, concentration maintenance and degradation. Moreover, proteostasis 
regulates a multitude of cellular processes and consequently has a powerful contribution to the 
large phenotypic diversity observed. This large complexity is partly documented by the 
available vocabularies of biological pathways and processes (e.g. Gene Ontology 
(The Gene Ontology Consortium, 2019), Reactome (Jassal et al., 2020), KEGG (Kanehisa & 
Goto, 2000)). Therefore, the semantic representation and annotation of the PN is largely 
skewed. On account of this, we defined species-specific gene lists, related to proteostasis, in 
order to reveal the PN components, utilizing the pathway analysis. This gene selection 
procedure was performed through a supervised, multi-phase, analytic workflow (Fig. 1A, step 
I), and it aimed to include genes strongly associated with key functional components, such as 
protein folding, degradation, endoplasmic reticulum, autophagy and associated signaling 
pathways. In this way, seed gene lists were defined for eight eukaryotic model species (Homo 
sapiens, Gallus gallus, Danio rerio, Xenopus tropicalis, Caenorhabditis elegans, Drosophila 
melanogaster, Saccharomyces cerevisiae and Arabidopsis Thaliana) and a generic gene list 
was created for the prokaryotic domain (see Code and Data Availability). For Eukaryotes, we 
applied homology mappings so as to retrieve putative, functionally similar genes, from the 
Ensembl database (vertebrates, fungi, metazoans and plants, Kinsella et al., 2011). The 
aforementioned model species were used to detect homologies, with species belonging to the 
same taxonomic classification level (e.g. S. cerevisiae was used as a reference species for fungi 
and A. thaliana for plants). Hence, representative proteostasis-related gene lists were 
constructed automatically for hundreds of Eukaryotes. However, in order to exclude spurious 
annotations, only species pertaining a number of genes, above 75% of the reference gene sets, 
were included into the final set. 

The advantage of the genomic annotation of Prokaryotes, compared to that of 
Eukaryotes, is the adoption of a common nomenclature. Homologous genes in different species 
are referred with the same gene symbol, facilitating their automated search and association. 
Hence, the initial prokaryotic gene list was used as the basis to construct a proteostasis profile 
for thousands of species. These profiles were extracted from the UniProt Knowledgebase (The 
UniProt Consortium, 2018), which contains numerous reference proteomes of fully sequenced 
species. To focus on taxonomically proximal species with ‘good quality’ genomic annotations, 
only species with complete proteome detector (CPD index equal to “Standard”) were selected. 
As thousands of Bacteria met that criterion, a random selection was then performed to reduce 
their number to 250. The selection procedure adopted the constraint to select at least one 
member for each taxonomic Class. The taxonomic analysis, using as metric the topological 
properties of the PN, was contrasted to classical, taxonomic analyses, which utilize either the 
ribosomal sequences (18S and 16S rRNAs), retrieved from the ENA repository (Leinonen et 
al., 2010), or heat shock proteins data (HSP40 and HSP70), collected from Ensembl and 
UniProt Knowledgebase (Fig. 1A, step II).  
 
Pathway analysis of proteostasis-related genes lists 
A PN semantic profile was constructed for each species, based on the Biological Process corpus 
of Gene Ontology (GO-BP) (Fig. 1B, step I). We used the prioritized pathway analysis 
described in Koutsandreas et al., 2016, while the whole implementation can be found in a 
publicly available Galaxy-engine platform (http://www.biotranslator.gr:8080/). The algorithm 
utilizes the statistical distribution of enrichment scores, derived from the respective gene lists 
of each species, which is reordered according to the frequency of the scores,  further corrected 
by non-parametric, permutation resampling so as to prioritize the final set of enriched pathways.  
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For each species, this semantic processing identified a network of biological processes, 
delineating the semantic tree of proteostasis. We used two criteria to determine the enriched 
biological processes. Hypergeometric p-value cut-off was set to 0.05 and then, the GO-BP 
terms were prioritized according to the adjusted p-value. The cut-off for the adjusted p-value 
was set at 0.05, however if a species had fewer than one hundred terms satisfying that threshold, 
the selection was extended to the first hundred terms to keep a comparable cardinality, among 
the sizes of lists. 
 
Standardized GO-BP and PN profiles 
The GO-BP graph represents a vocabulary of biological knowledge, which is used to provide a 
genome-wide interpretation of experimental results. Yet, inherent inconsistencies regarding the 
structure and the depth of its branches generate bias that hampers comparative analysis, 
between different species (Gaudet & Dessimoz, 2017). Some graph branches are more 
expanded than others, due to extensive annotation. This leads to distorted, descriptive capacity, 
regarding the degree of semantic specification that each term bears. Namely, graph branches 
do not carry the same, semantic weight. Furthermore, the depth of genomic annotation differs 
among species. Different research communities have developed rich, genomic annotations for 
model species, emphasizing on specific components of cellular physiology, according to 
specific, operational or developmental characteristics of each organism (Gaudet & Dessimoz, 
2017). On the other hand, the vast majority of species has been sketchily annotated, only 
through electronic inference, based on homology associations (Gaudet et al., 2011). This causes 
inconsistencies regarding the semantic network profile across species, and even taxonomically 
related species, could have divergence in annotation coverage (Lobb et al., 2020). All these 
predict upon a standardized version of GO, suitable for comparative analyses among various 
species. The construction of such a standardized, unbiased graph relies on two metrics of 
ontological graphs, information content (IC) and semantic value (SV). IC measures the 
specificity of a term, considering the amount of its descendant nodes (Pesquita et al., 2009). 
Conceptually, a term with plenty of descendant nodes has low IC value because its semantic 
content can be further broken down into more specific concepts. On the other hand, graph leaves 
have the maximum IC value. IC is defined as follows: 

𝐼𝐶! 	= 	−𝑙𝑜𝑔" )
𝐷! + 1
𝑁 . 

where 𝐷! refers to the number of descendants of term t and 𝑁	is the cardinality of the complete 
set of terms. As it considers only the number of its child-terms, IC does not integrate the 
topological information of a term. For example, all leaf nodes have the same IC, but are located 
at different depths within the graph, depending on the quality of annotation. SV is a metric, 
proposed to overcome that limitation. It depicts the semantic distance of a term from the root, 
considering the information contained in its ancestral plexus (X. Song et al., 2014): 

𝑆𝑉! 	= 	1
#∈%

1
1 + 𝑒𝑥𝑝(−𝐼𝐶#&')

 

where 𝐴 is the set of ancestors of term t. The SV of a term is linearly correlated to the amount 
of its ancestors. High values point out either increased distances from the root or the existence 
of extensively described semantic regions. The latter causes annotation bias favoring the 
overpopulated tree branches. 
 For the purposes of the comparative analysis, we created a semantic graph that would 
render feasible the comparison among species, by trading off between the detail of annotation 
of semantic branches and the need to minimize annotation bias. We constructed a standardized 
version of GO-BP, by filtering out very specific terms (high IC) from expanded ontological 
areas (high SV). Terms exceeding the twentieth (20th) percentiles of IC and SV distributions 
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were trimmed and substituted with their most proximal ancestors, conforming to these 
thresholds (Fig. 1C). The initial set of 20596 annotated GO-BP terms was decreased to 2693 
terms.  

The PN profiles derived from pathway analysis were transformed within the terms of 
this standardized GO-BP graph. Specifically, enriched terms not included in the corpus of the 
standardized graph were mapped to ancestral terms that existed in the graph. For example, the 
term “peptidyl-proline modification” (GO:0018208) was substituted with “protein metabolic 
process” (GO:0019538) and “macromolecule modification” (GO:0043412). On the other hand, 
each enriched term included in the standardized graph was mapped to a list, which contained 
only itself. As a result, each PN profile was transformed from a list of enriched terms into a set 
of term lists. These new semantic representations were used for the comparative analysis, as 
well the identification of PN components (Fig. 1B, step II). 
 
Comparative analysis of the PN profiles 
The calculation of the group-wise semantic similarities of the PN profiles was based on the 
exploitation of GO-BP structure. Initially, terms with information content lower than 0.1 were 
filtered out from the enriched sets. These terms referred to very generic biological processes 
(e.g. biological process, biological regulation, etc) and their inclusion in the PN profiles 
suppresses the potential semantic difference between two species. All other enriched terms were 
mapped to their respective sets of terms included in the standardized graph, as described in the 
previous section. 

In general, semantic comparison estimates the closeness of two ontological terms, and 
is based on the topological relevance of their ancestors (pairwise measures). Due to the mapping 
of the enriched terms to sets of terms in the standardized graph, we adjusted the concept of 
semantic comparison to be applicable on groups of terms. Initially, a global similarity matrix 
was constructed for all the terms of standardized GO-BP. To avoid bias of specific pairwise 
measures, the similarity of two terms was calculated by averaging three widely used metrics: 
Resnik (Resnik, 1999), XGraSm (Mazandu et al., 2016) and AggregateIC (X. Song et al., 2014). 
Then, the similarity of two enriched terms was calculated as the mean similarity of the 
respective sets of terms in the standardized graph. In this way, we estimated the pairwise 
similarities of enriched terms. Finally, the similarity of two species was calculated based on the 
average best matches formula (Mazandu et al., 2016): 

 
𝑆𝑒𝑚𝑆𝑖𝑚(𝑂', 𝑂")

=
∑(!!∈)*" [𝑃𝑎𝑖𝑟𝑆𝑒𝑚𝑆𝑖𝑚(𝑡+, 𝐺𝑂")] 	+ ∑,!#∈)*$ [𝑃𝑎𝑖𝑟𝑆𝑒𝑚𝑆𝑖𝑚(𝑡-, 𝐺𝑂')]	

|𝑁| + |𝑀|  

 
where 𝐺𝑂'and 𝐺𝑂" are the enriched GO-BP sets for the compared species and N, M their 
cardinalities. Each sum function in the numerator refers to one of the two GO-BP sets and 
aggregates the maximum similarities of its terms with the other set of terms. The aggregation 
of best matches between these two lists is averaged by dividing it with the sum of their sizes. 
The final distance matrix was defined by subtracting similarity scores by one (Fig. 1B, step II), 
and the phylogenetic clustergram was generated based on Ward's minimum variance method 
(Ward, 1963). 
 
Phylogenetic analysis 
Gene sequences of 16S and 18S rRNAs were used to construct the reference phylogenetic tree, 
as they traditionally portray the evolutionary proximities of species. The ClustalW tool (Sievers 
& Higgins, 2018) was used to quantify the pairwise distances and construct the final distance 
matrix, based on an ad hoc multiple sequence alignment (MSA). Furthermore, the amino acid 
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sequences of HSP40 and HSP70 families were analyzed to examine their potential as surrogate, 
evolutionary markers. Consensus sequences for the HSP proteins were established, as heat 
shock proteins of the same molecular weight could vary significantly, even in the same 
organism. Each protein class consists of different members, which encompass certain, identical, 
functional domains, yet other additional components or their tertiary structure might be 
different. For instance, the human genome encodes 13 proteins of the HSP70 family and around 
50 members of HSP40, which are divided in three main sub-families (Kampinga et al., 2009). 
Members of the same HSP family clustered to a consensus sequence pattern for each organism. 
Starting from the whole set of amino acid sequences, fragments were filtered out. The trimmed 
part fed the CD-HIT clustering algorithm with similarity threshold to 95% (Li & Godzik, 2006). 
CD-HIT keeps the longest sequence, as a representative feature of each cluster, conserving as 
much information as possible for each one. If the output included more than one clusters, then 
an extra step was performed, by constructing their multiple sequence alignment (MSA) with 
ClustalW and the respective hidden Markov model (HMM) with the HMMER3 hmmbuild 
algorithm (Finn et al., 2011). The final consensus sequence was generated using the hmmemit 
function of HMMER3. ClustalW was used to calculate the distance matrices of consensus 
sequences, similar to the case of ribosomal sequences.  

To compare the phylogenetic dendrograms and evaluate their discriminative power, as 
well as their efficiency to reproduce well-shaped taxonomic clusters, organisms were projected 
on a two-dimensional plot, based on their distances. Specifically, the distance matrix of each 
phylogenetic approach was transformed into a two-dimensional orthogonal space, using the 
Multidimensional Scaling (MDS) technique (Borg & Groenen, 2005). MDS performs non-
linear dimensionality reduction, projecting the data on a new orthogonal space, where distances 
among samples converge to the initial values, under a relative tolerance of cost function. The 
generated scatter plots illustrate the adjacency of species groups, indicating the divergence of 
each criterion through evolution. 
 
Identification of proteostasis components 
To identify which biological processes, (as they are described on the standardized GO-BP 
graph), are significantly associated with proteostasis and how their profile changes across the 
three taxonomic kingdoms, we developed and implemented a two-steps clustering workflow 
(Fig. S1.1). The enriched GO-BP terms were first substituted by the respective sets of ancestral 
terms in the standardized graph. Then, the following workflow was applied to the three separate 
taxonomic kingdoms: i) Terms which were enriched in more than 90% of species were 
identified and filtered to reduce the semantic redundancy. Terms, whose descendants were also 
included in this set, were filtered out too. Hence, only uniquely defined terms remained in the 
list, namely the most semantically specific terms that were omnipresent in the examined PN 
semantic profiles. ii) Terms enriched in less than 90% of species were screened towards their 
ancestral paths to reveal their generic ancestors. As generic terms were designated all those 
having two edges distance from the graph root. If a generic term was identified to be linked 
with enriched terms in more than the 50% of kingdom species, then it was considered as 
significant. While these terms were not included in the initial enriched sets, the accumulation 
of enriched terms in their semantic branches made them indirectly associated with the PN 
semantic profile of many species in the same kingdom. The union of the term sets, derived from 
these two clustering steps, constituted the definite set of PN-related GO-BP terms, to represent 
the scaffold for the comparative analysis.  

All generic biological processes, included directly or indirectly in the results of pathway 
analysis, for the majority of species entities in a taxonomic kingdom, were assumed as PN-
related terms. Next, we quantified the association of species with these terms, using the results 
of the pathway analysis. For each PN-related term, the negative logarithm of its corresponding 
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adjusted p-value or that of the minimum adjusted p-value of its descendant terms was kept, 
based on its inclusion or not in the results of pathway analysis, representing a reliable index of 
the enrichment of the given gene set in the PN of the examined organism. Finally, we 
decomposed the constructed association matrix, using the method of non-negative matrix 
factorization (NMF), in order to cluster the PN-related terms into three functional eigen-
components and reveal the common and differential components of proteostasis across the 
different taxonomies. 
 
Evaluation of the classification performances of other evolutionary conserved 
mechanisms 
GO-BP annotation was also exploited to inspect, similarly to PN, the clustering performance of 
20 other fundamental biological processes, conserved across all analyzed species. Gene sets 
were retrieved from GO-BP for each species and biological process. Using these gene sets in 
pathway analysis could lead to significantly biased results (very high enrichment scores and 
artificially small p-values for the selected GO term, as well as its ancestral path). In order to 
mitigate potential bias infiltration due to the annotated content and the size of a specific gene 
set we introduced a randomization process to select the appropriate subset of genes of each pair 
of species and GO term (Fig. S1.2).  

Specifically, the depth of genomic annotation and the distribution of hypergeometric p-
values of the respective PN-related pathway analysis, were used as criteria to assert the optimal 
gene set size. If the annotation comprised less than 10 genes, then all of them were used as input 
for the pathway analysis, as this size is considered fairly small to generate critically biased 
results. For larger genomic sets, a random sampling procedure was implemented to generate 
different lists of genes, which sizes were selected, so as to produce approximately similar, 
extreme hypergeometric p-values, to those observed during the analysis of the respective PN-
related gene set. An iterative binary search was employed to estimate the maximum subset of 
GO term annotation necessary for the pathway analysis, to yield the lowest log-transformed 
hypergeometric p-value to the order of magnitude of the average of the 10 lowest log-
transformed p-values of the respective PN-analysis. As this procedure is based on the random 
selection of gene sets, the final solution is erratic, namely the optimal size changes based on the 
number and annotation of the selected genes. Thus, it was iterated 30 times, to create a 
distribution of optimal gene set sizes. Finally, different gene sets were generated with size 
randomly selected from this distribution, or equal to 10, in case the distribution mean was less 
than 10. The adoption of all these criteria by the workflow, attenuated the creation of either 
completely biased or non-informative semantic networks. 

Prioritized pathway analysis of these sets of genes was implemented to obtain a 
semantic network profile for each species. If random gene sets were generated for a species 
based on the above workflow, then only the GO-BP terms enriched in more than 20% of the 
outputs were considered as part of the final semantic profile. Comparative analysis was used to 
calculate the final semantic distance matrix and its phylogenetic clustergram. Each 
phylogenetic tree was divided in three clusters, aiming to evaluate whether the examined 
biological process could reproduce the three taxonomic domains. Their efficiency was 
estimated with homogeneity and silhouette scores. 
 
PN contribution to other evolutionary conserved mechanisms 
To derive semantic network profiles limited to the non-PN components of these biological 
processes and therefore assess the contribution of PN for taxonomic classification, PN-related 
terms were excluded from the semantic profiles of the examined conserved mechanisms. The 
comparative analysis was performed on these shortened profiles.  
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Results 
Process implemented to evaluate evolution of the proteostasis network 
As proteostasis maintenance is essential to sustain proper proteome functionality and cellular 
fitness, it represents de facto a conserved actor during evolution. We sought to study how the 
PN changes from prokaryotes to eukaryotes and to delineate the subsequent hierarchical tree, 
taking into account functional differences and commonalities recorded in its topology. As such, 
a common vocabulary was necessary to adequately describe the topology of the PN for all the 
species investigated. Thus, we used the Gene Ontology Biological Process (GO-BP) annotation 
to build the PN semantic profile in 405 species, based on gene lists associated with proteostasis. 
We also used the available rRNA nucleotide sequences and heat shock protein (HSP) amino 
acid sequences, to perform phylogenetic analyses on the same group of organisms, allowing 
therefore their comparison with PN-based trees. An exhaustive analysis of biological data 
public repositories (Ensembl (Cunningham et al., 2018), UniprotKB (The UniProt Consortium, 
2018), and ENA (Leinonen et al., 2010)) was performed to collect the raw data. Organisms 
were included in the analysis by meeting the following criteria: i) genomic annotation in the 
GO-BP corpus; ii) availability of gene sequences of 16S (for Prokaryotes) and 18S (for 
Eukaryotes) rRNAs and iii) at least one annotated amino acid sequence of HSP40 (dnaJ) and 
HSP70 (dnaK). Using both manual and automated procedures (see 2. Materials & Methods), 
we generated comprehensive lists of rRNA, HSP40, HSP70 sequences and a gene list related 
to proteostasis for 405 organisms (93 Eukaryotes, 250 Bacteria and 62 Archaea; Fig. 1A, step 
II). Pathway analysis was used to translate each gene list into GO-BP terms, which imprinted 
the PN-associated networks (Fig. 1B, step I, for gene lists and pathway analysis results see 
Code and Data Availability section). A phylogenetic comparison of these functional profiles 
was performed through the calculation of their semantic similarities. Specifically, we used a 
standardized version of GO-BP in conjunction with semantic operators, to quantify the 
similarities of term lists and create a phylogenetic dendrogram by clustering together species 
with high semantic similarities (Fig. 1B, step II). Such clustergram entailed the use of a 
reference version of GO-BP, for the calculation of the inter-species topological similarities, 
neutralizing annotation imbalances which incurred bias in the description of proteostasis among 
different organisms. This was achieved by the exclusion of terms which reside low in densely 
populated ontological branches, through the application of cutoff criteria for two metrics, 
Information Content (IC) and Semantic Value (SV). Following this method, a pruned graph of 
2693 terms was generated (Fig. 1C). Finally, the PN-based hierarchical tree, as well as those 
of rRNA and HSP sequences, were built using agglomerative clustering (Ward, 1963). 
 
Ribosomal RNA, HSP40, HSP70 and PN-based phylogenies 
Clustergrams (Fig. S2.1-4) were constructed to compare rRNA nucleotide sequences, HSP40, 
HSP70 amino-acid sequences and the semantic topology of PN profiles. To further explore the 
characteristics of each evolutionary tree, species were projected on a two-dimensional space 
(Fig. 2A) using the Multidimensional Scaling (MDS) algorithm (Borg & Groenen, 2005). Both 
rRNA sequences and PN semantic profiles produced nearly independent sub-groups for each 
established taxonomic domain. The only inconsistency of rRNA-based phylogenetic 
clustergram with the reference was observed with a group of Streptophyta, which clustered 
close to Bacterial species (Fig. S2.1). In a related way, regarding the PN-based classification, 
seven Bacteria (mainly Planctomycetes) were embedded into the branch of archaea (Fig. S2.2). 
PN evolution appeared more constrained than that of rRNA, which led to distantly separated 
kingdoms. The distributions of PN- and rRNA-based distances corroborated this finding (Fig. 
S2.5-6), as the PN semantic profiles produced systematically lower inter- and intra-distances 
among the taxonomic domains. This probably reflects the heterogeneity of the PN content, 
bisected into taxonomy-specific components and others that are conserved across evolution. 
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Nevertheless, the pairwise distances among species for rRNA and PN showed high correlation 
(Fig. 2B). Concerning the HSP-derived classification, a poor correlation of the HSP40 and 
HSP70 sequences with evolution was observed, as they only succeeded to separate eukaryotic 
and prokaryotic kingdoms, even so not flawlessly. A weaker but not negligible correlation with 
rRNA sequence-based distances suggests that the intra-distances of taxonomic clusters follow 
approximately the same distribution to their inter-distances (Fig. S2.7-8). These observations 
imply that HSPs, which are individual components of the PN, lack informative power as a 
marker of species evolution. 

We next sought to compare the accuracy of PN, as well as rRNA and HSPs sequences 
to classify species of the same taxonomic domain. As such, we examined the Class-level 
categorization of Archaea and that of Phylum-level for Eukarya and Bacteria. For each 
criterion, different clustering models of species, for a range of predefined number of clusters, 
were generated and the consistency of each model with the reference classification was 
assessed, using the homogeneity score (see Appendix). The output corroborated the findings 
inferred from the rRNA sequences and revealed an overall homogeneity of PN profiles in 
Bacteria and Archaea (Fig S2.9). None of the criteria succeeded to impeccably reproduce the 
number of clusters of the reference taxonomic groups, indicating that species of different lower-
level taxonomies share similar profiles. In general, the results confirm the appropriateness of 
the rRNA sequence homology as an insightful, evolutionary measure. Regarding the PN-based 
clustering models, the low homogeneity scores for the prokaryotic domains demonstrate high 
conservation of PN semantic profile in each domain, regardless of the lower-level taxonomic 
classifications. In contrast, the accuracy of PN-based models was significantly improved for 
the case of Eukaryotes, suggesting that a key avenue of their evolutionary adaptation resides in 
the diversification of the plasticity of their genetic circuitry, enabling novel, emergent cellular 
functions. Hence, PN encompasses variations that coherently segregate eukaryotic species, 
rescuing phyla segregations to a large extent. HSP-derived clusters were similar to those 
obtained with rRNA sequences in Prokaryotes, but declined among Eukaryotes, probably due 
to the high variation of protein families in species-specific profiles. To sum up, the efficiency 
of PN as a taxonomic marker in the lower evolutionary taxonomies is inverse to that of HSP-
sequences, implying that the profile of proteostasis is more informative for complex organisms, 
while lower species have significantly similar PN semantic topologies. 
 
Proteostasis as a functional metric to trace evolution 
The detection of quasi-omnipresent GO-BP terms in the PN semantic profiles and their 
agglomerative clustering, led to the identification of 50 PN-related semantic groups (generic 
biological processes) and the quantification of their association with the examined species (Fig. 
3A). The NMF-based transformation of the association matrix into a matrix of three eigen-
components (Fig. S2.10), each showing a noticeable kingdom-specificity (Fig. S2.11), revealed 
the conserved, as well the differential parts of PN-profiles across the three kingdoms. Metabolic 
processes (both catabolic and biosynthetic), transport- and localization-related processes, 
protein folding and cellular responses, especially due to temperature stimulus, were enriched in 
all tested species, thereby representing the PN “conserved core”. 

The obtained PN-related term groups presented significant semantic relevance or even 
overlap. For example, the “conserved core” included many terms which correspond to catabolic 
processes. All these generic terms have been identified because different components of 
catabolism were found enriched for all the PN-related gene sets. Protein catabolism is one of 
these components. However, the identification of “protein metabolic process” in the “conserved 
core”, signifies that additional processes related to the modification of protein in cell have been 
found in the PN semantic profiles (such as “protein maturation”, “proteolysis”, “formation of 
translation preinitiation complex”, “protein peptidyl-prolyl isomerization” and “histidyl-tRNA 
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aminoacylation”), apart from “protein catabolic process”. Two other biological processes, 
highly represented in the “conserved core”, are localization and transport. Additionally, terms 
related to response to stress designate another distinct set of processes. “Response to 
temperature stimulus” is the semantic parent of “response to heat”, so their co-existence in the 
“conserved core” produces semantic redundancy. This result has been caused due to genomic 
annotation resolution imbalances, across species of different taxonomies. Particularly, 
“response to heat” has been found as a quasi-omnipresent term in Archaea, while “response to 
temperature stimulus” has been detected in the PN profiles of Bacteria and Eukaryotes. Both of 
them imply the association of proteostasis with components of cellular response to abiotic 
stimulus. 

The “conserved core” includes the main PN-profile of Archaea (eigen-component 3). 
This profile lacks regulatory mechanisms, which have been assigned to that of Bacteria (eigen-
component 1) and Eukaryotes (eigen-component 2). While prior knowledge about the 
regulatory processes in Archaea exists and has been integrated within the genomic annotation 
of GO-BP, this finding implies that they do not have a strong contribution to proteostasis 
machinery. For instance, the concept of “post-transcriptional regulation of gene expression” 
exists in both Archaea and Bacteria. Its genomic annotation in Archaea contains translation 
initiation (aif5A, tef5A, tif5A, eif2g, eif5a) and elongation (efp) factors, synthases (dph2, dph5, 
dph6, dphB), reductases (cbiJ) and ribosomal proteins (rpl1, rpl13, rpl1P, rpl1p, rplA, rps4), 
which participate in the process of translation and protein biosynthesis. On the other hand, the 
same regulatory process is neatly equipped in Bacteria, containing genes, which regulate the 
translation and consequently could be considered as molecular entities of proteostasis 
apparatus, such as small heat shock proteins (ibpA), ribosome hibernation factors (hpf), 
elongation factors that act under stress conditions (lepA) and proteins which monitor the 
translation of Sec system components (secM). Hence, the expression of such regulatory entities 
forms a more complex PN semantic profile for Bacteria compared to that of Archaea.  

In addition, specific processes related to programmed cell death and signaling pathways 
were enriched in Eukaryotes. Enrichment in terms associated with the response to endoplasmic 
reticulum (ER) homeostasis imbalance was effective in all examined eukaryotic species, as 
expected, pointing out this compartment as a hotspot for proteostasis. Regarding the process of 
autophagy, many descendant terms identified exclusively in Eukaryotes, related to either 
associated membranous structures (“autophagosome assembly”) or subprocesses and 
mechanisms (“lysosomal microautophagy”, “autophagy of nucleus”, “chaperone-mediated 
autophagy”). The extended PN profiles of Eukaryotes were further enriched by the integration 
of protein glycosylation and additional regulatory and cellular response mechanisms. 

We next used the association of species with each GO-BP group, to derive their two-
dimensional representations for the whole PN (Fig. 3B, left), the common PN (Fig. 3B, middle) 
and the differential PN (Fig. 3B, right). PN profiling produced independent sub-groups for each 
taxonomic domain, as it was expected from the previous results. These sub-groups increased 
their density when analyzing the PN “conserved core” (Fig. 3C, middle) and seemed sparser 
when analyzing the differential PN (Fig. 3C, right). In the case of Archaea, the great sparsity 
in the differential PN reflects maximum semantic distances among species, which have been 
caused by the removal of the PN “conserved core” and the subsequent elimination of their 
semantic profiles. Collectively, these data unveil conservation and divergence within the PN, 
highlighting circuits of ubiquitous functions and emerging mechanisms indicative of each 
taxonomic domain. 

 
Impact of PN evolution on other functional networks 
To evaluate the robustness of our methodology and to depict the association of the PN with 
other cellular processes, we examined the semantic profiles of other evolutionary conserved 
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mechanisms. The ability of each mechanism to separate the main taxonomic domains was 
evaluated using the homogeneity (HS) and silhouette (SS) scores (see Appendix). To this end, 
we analyzed 20 conserved processes, as defined in the GO-BP, and both semantic and 
phylogenetic analysis were performed based on their genomic annotation. Then, GO-BP terms 
included in those semantic profiles, which were also related to the obtained PN semantic 
groups, were excluded to repeat the phylogenetic analysis upon their exclusion. This showed 
that biological processes, which emerge as gains of functions during species evolution, or those, 
which evolved through higher functional complexity, segregate sufficiently the three kingdoms 
(Fig. 4; S2.12A-S2.31A). The biological processes identified through this approach are related 
to cell compartmentalization, regulatory networks, lipid metabolism and DNA recombination. 
Some performed marginally better in terms of accuracy, as taxonomic metric, compared to 
proteostasis or to rRNA sequences - i.e. slightly higher HS values due to the erroneously 
classified Bacteria in the case of PN, and the group of plants in the case of rRNA sequences. 
Nevertheless, the phylogenies of these biological processes exhibited lower SS values than 
those obtained for PN (Fig. 4B), which means that the produced clusters were sparser 
(especially within Prokaryotes) and consequently, the phylogenetic trees contained broader 
clades. In addition, parts of the aforementioned processes or those with narrower functional 
networks showed weaker performance, concerning clustering efficiency, especially due to their 
strong commonalities among the Prokaryotes. HS measurements were below 0.8, because many 
Archaeal species were classified in Bacteria, and vice versa. To evaluate the contribution of the 
PN to those machineries, we artificially removed proteostasis-related components from each 
semantic profile and measured the impact of such action on HS and SS (Fig. 4; S2.12B-
S2.31B). Only a few processes (“cellular component assembly” and “lipid metabolism”) 
retained adequate information to distinguish accurately the taxonomic domains, implying that 
their mechanistic frameworks can differentiate the taxonomic kingdoms. In general, all the 
processes with accurate performance suffered from low silhouette scores, and some lost their 
phylogenetic congruity. This analysis indicates that a significant part of the semantic 
description and components of PN is included in other mechanisms involved in cell homeostasis 
and functions. 
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Discussion 
Taxonomies based on molecular sequences have increased our understanding of evolutionary 
processes. Phylogenies based on isolated macromolecules conserved among evolution, such as 
nucleic (DNA/RNA) or protein sequences, have their limits as they do not accurately represent 
the complexity of life evolution. In this study, we designed and applied a novel approach for 
phylogenetic comparison which uses the semantic graph as a new metric, to evaluate the 
complexity of protein homeostasis through monitoring the proteostasis network (PN). To the 
best of our knowledge, it is the first time that semantic network analysis is used to define an 
evolutionary marker. Regardless of the ability of the PN topology to indicate the main 
taxonomic characteristics of a species, the proposed approach stands as a novel strategy for 
taxonomic classification. It relies on the semantic comparison of ontological graphs, and the 
quantification of their divergence across different species, rather than the analysis of individual 
sequences. Using a standardized ontological framework, the semantic interpretation of 
gene/protein sets for different species provided biological insights about the impacts of the 
evolutionary pressure, and the extent of conservation of mechanisms among Eukaryotes, 
Archaea and Bacteria. In this premise, our study aimed at illustrating the complexity of the 
modular architecture of proteostasis. In addition, our analysis measured species-specific 
topological differences, and translated them into evolutionary branches. We show that 
monitoring PN characteristics provides reliable information about the evolution of living 
organisms in the level of kingdoms, whereas monitoring its individual components has limited 
interpretation. 
 First, PN data succeeded to separate the three main taxonomic domains almost 
infallibly, performing as accurately as rRNA sequences do. Moreover, PN performed much 
better than isolated PN components (conserved families of heat shock proteins, Fig. 2). This 
primarily indicates that the proposed new method is able to disclose evolutionary differences 
among species of different taxa. It also demonstrates the utility of PN as a reliable evolutionary 
marker, able to classify species according to their main taxonomy, contrary to the limitations 
of the sequence-based approaches. The efficiency of the PN metric to increase taxonomic 
resolution dropped in Bacteria and Archaea, likely due to the deficiency of the proposed method 
to adequately quantify nuances in the respective semantic topologies. GO-BP provides a 
descriptive genomic annotation which might not be suitable to elucidate slight functional 
differentiations between species. However, the impediment is that at the moment, there is not 
any controlled vocabulary, which describes the universe of cellular functionality at the level of 
pathways’ topology for thousand species. For instance, the BioCyc database (Karp et al., 2019) 
contains curated and computationally inferred annotation for thousands of species only for 
metabolic pathways, while Reactome Pathways (Jassal et al., 2020) provides curated annotation 
for the network of pathways of a few model-species. A way to resolve this issue could be the 
massive integration of data from different vocabularies into a unified, ontological schema. In 
addition, the weaker segregating capacity of the PN in the two prokaryotic kingdoms might also 
imply that their evolutionary pressure was managed through the functional diversification of 
selected genes (e.g. mutagenesis) or chromosome variations. In Eukaryotes, the complexity and 
adaptability of molecular circuitries became a major driving force. For the Eukaryotes, the 
evolution of compartmentalization impinges on the complexity of protein circuitry, prompting 
evolution of the PN to cope with these additional constraints (Powers & Balch, 2013).  
 Deconvolution of the PN in various molecular sets revealed that many, if not all cellular 
processes, are connected to the PN, especially for Eukaryotes. The obtained semantic profile of 
Eukaryotes contains the majority of systemic processes that delineate the proteostasis network 
of Homo sapiens (The Proteostasis Consortium, Overall coordination et al., 2022). The 
conserved PN component across the vast majority of species is linked with protein production, 
folding and degradation. It is also linked with responses to external or internal stimuli, 
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activation or repression of anabolic and catabolic processes, to maintain cell homeostasis, as 
well as the proper localization of macromolecules. This comprises heat shock proteins, which 
perform poorly in terms of separating the taxonomic kingdoms, but were recently shown to 
organize beyond the “de novo versus stress-inducible” scheme, into a layered core-variable 
architecture in multi-cellular organisms (Shemesh et al., 2021). In addition to this, in order to 
cope with proteome complexity that arises with evolution, conserved core chaperones increased 
in abundance and new co-chaperone families appeared (Rebeaud et al., 2021). Other functional 
modules, considered as ‘gain- or loss-’ of adaptive functions, were also found to be connected 
to the PN. This, in turn, could help identify the role of PN in maintaining those functional 
changes (Fig. 4). The instrumental role of proteostasis as a robust indicator of cellular and 
organismal adaptation to evolutionary cues, is highlighted by the taxonomic underperformance 
that the other mechanisms linked to PN exhibit when PN components are excluded (Fig. 4). 
This provides evidence for a tight coupling between proteostasis and other major biological 
processes. As such, the architecture of the PN encapsulates critical biological information to 
categorize species according to their complexity and acts as a clear-cut fingerprint of evolution, 
as it has co-evolved with the cell proteome and provided a driving force for adaptation to favor 
emergence of new traits.  

Encouraged by the finding that PN sets a novel and reliable evolution metric for the 
main taxonomies, we feel tempted to propose the investigation of the use of this integrated 
information, as a quantitative trait to categorize diseases, and possibly their treatments. 
Approaches relying on the analysis of PN sub-networks (e.g. the “chaperome”) were proposed 
to be effective in various pathologies, such as cancers or degenerative diseases (Brehme et al., 
2014; Hadizadeh Esfahani et al., 2018; Taldone et al., 2014), or in cell differentiation (Vonk et 
al., 2020). Considering that the “chaperome” represents an evolutionary conserved part of the 
PN, one might envision an approach relying on the PN, as defined in our study, to assess how 
its deregulation could mark disease appearance, evolution, or even propose specific nodes as 
potential therapeutic targets. At last, at a time of an unprecedented world pandemic with SARS-
CoV2, one might also consider PN evolution, and its quantitative measurement, as a tool to 
predict the evolution of human and animal pathogens. The evolution of influenza virus is 
affected by the targeted alteration of the host’s cells PN, mostly through perturbations of HSF1 
and HSP90 expression, once again belonging to the conserved core of the PN (Phillips et al., 
2017). It may illustrate the needs for any pathogens to rely on a given host’s PN, which could 
be evaluated using molecular data sets (e.g. protein-protein interactions, gene expression). Our 
results could pave the way to investigate PN alterations and their consequences for the 
physiology and pathology of their hosts.  
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Appendix 
 

 
Gain Ratio, Homogeneity and Silhouette Scores  
Gain Ratio (Han et al., 2011) is used as a feature selection measure in data mining. Given a 
dataset A, with samples belonging to a set of classes 𝐶 = {𝑐', 𝑐", … , 𝑐(} and D a subset of A, 
the entropy of the classes’ distribution in subset D is defined as follows: 

𝐻(𝐷) = 	−1

|/%|

01'

K𝐶0,3K
|𝐷| 𝑙𝑜𝑔 L

K𝐶0,3K
|𝐷| M 

where	K𝐶0,3K is the number of samples in partition D, which belong to class 𝐶0. 𝐻(𝐷)	quantifies 
the expected information, to classify correctly a sample 𝑎0 in D. This entropy is maximized 
when each sample belongs to a different class. During the training process of decision trees, 
discrete or continuous variables (features) are examined to separate samples, with respect to 
their classes. Assume that a feature F is selected to separate further the samples in D, producing 
M groups. Then, the entropy of D is re-calculated, taking into account that partitioning: 

𝐻4(𝐷) = 	1
|,|
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which is the weighted mean entropy of the derived M subsets. Information Gain of feature F is 
equal to the reduction of entropy after the split: 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐹) = 	𝐻(𝐷) −	𝐻4(𝐷) 
Another useful measure is the Split Entropy, which is defined as the derived uncertainty due to 
the partitioning of samples: 

𝐻𝑠𝑝𝑙𝑖𝑡4(𝐷) = −	1
|,|
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|𝐷| × 𝑙𝑜𝑔 L

K𝑀5K
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Split Entropy value increases in function with the amount of the produced subsets and it is 
maximized when feature F creates a novel branch for each sample. It could function as a penalty 
factor, in order to avoid the selection of features, which tend to segregate the dataset into 
numerous clusters. Gain Ratio uses that factor to normalize the Information Gain, providing an 
unbiased measure of splitting information: 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐹) = 	
𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐹)
𝐻𝑠𝑝𝑙𝑖𝑡4(𝐷)

 

Homogeneity (HS) (Rosenberg & Hirschberg, 2007) and silhouette (SS) (Rousseeuw, 
1987) scores evaluate specific properties of an unsupervised clustering outcome, given the true 
classes of the data samples and their pairwise distances. Assuming that the samples of dataset 
A are being classified into a set of clusters 𝐾 = {𝑘', 𝑘", … , 𝑘-} by an unsupervised clustering 
algorithm. The number of samples of class 𝑖 which are assigned to cluster 𝑗 is denoted as	K𝐴05K. 
HS evaluates the quality of the derived K clusters to contain objects belonging to a unique class, 
by measuring the conditional entropy of the classes’ distribution given the proposed clustering: 

𝐻(𝐾) = −	1
|6|

71'

1
|/|

81'

|𝐴87|
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Formally, 𝐻(𝐾) quantifies the uncertainty about the distribution of samples in the set of 𝐶 
classes, given the K clusters. If each cluster	𝑘 is homogenous (i.e. it contains samples from 

only one class), then the conditional entropy 𝐻(𝐾) is equal to zero. The conditional entropy is 
maximum (equal to 	𝐻(𝐴) - the entropy of the classes’ distribution in A) when the proposed 
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K-clustering does not provide any information about the real classification. Homogeneity 
score is defined as: 

𝐻𝑆 = 	1 −	
𝐻(𝐾)
𝐻(𝐴) 

Using both the normalized entropy and the subtraction, HS is bounded in the range [0, 1] and 
its desirable value is equal to 1. Silhouette score is a measure of cluster cohesion membership, 
as it quantifies the trade-off between intra- and inter-distances of the derived clusters. Given 
the aforementioned K-clustering, for each sample i assigned to cluster 𝑘+, the factors 𝑓'(𝑖) 
and	𝑓"(𝑖) are defined as follow: 
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1
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where	𝑑(𝑖, 𝑗) is the distance between samples i and j. The factor 𝑓'(𝑖) is the average distance 
of sample i to the other samples in cluster	𝑘+ and indicates the merit of the assignment to that 
cluster. The factor 𝑓"(𝑖) is the minimum average distance of sample i to all samples in any other 
cluster, apart from cluster	𝑘+. Namely 𝑓"(𝑖) measures the inter-distance of sample i to its 
neighboring cluster. The silhouette coefficient of sample i is defined as: 

𝑆𝑆0 = {
𝑓"(𝑖) − 𝑓'(𝑖)
{𝑓'(𝑖), 𝑓"(𝑖)}	

													𝑖𝑓	|𝑘+| > 1		0																																											𝑖𝑓	|𝑘+| = 1	 

𝑆𝑆0 	ranges from -1 to +1, where a high value implies that i is well-located in its group and far 
from the other clusters (without considering if it is correctly classified). The mean silhouette 
over all data samples measures the average cohesion of the derived clusters: 

𝑆𝑆 = 	
1
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Legends of Figures 
 
Figure 1: Schematic analytical workflow – (A) Process of data acquisition. Proteostasis-
related gene lists were constructed manually for model organisms (step I). Then, public 
databases were used to collect genomic homologies to expand species collection and 
concentrate specific data for rRNA, HSP40 and HSP70 sequences. Only species with ample 
annotation were selected in the final set (step II). (B) Analysis workflow. Gene lists were 
translated into semantic networks through pathway analysis of GO-BP (step I). A standardized 
version of the GO-BP graph was constructed to remove potential annotation bias from the 
results. Finally, comparative analysis was performed to calculate the differences among 
proteostasis-related networks (step II). (C) Construction of the standardized GO-BP graph: 
Terms residing low in the branches of the graph bear high IC (red and blue nodes). Some of 
them are located in deep, densely populated branches (red nodes), reflecting the fact that these 
processes are more extensively studied than others. This imbalance in knowledge representation 
is a source of annotation bias, which was neutralized by filtering out terms in voluminous 
ontological regions (elongated and abundant branches), with high information content (red 
nodes). 
 
Figure 2: Establishment of PN-based phylogenetic trees – (A) Two-dimensional 
representation of organisms in function with their taxonomy. The derived evolutionary distance 
matrix of each criterion (rRNA, proteostasis and HSPs), was transformed into a 2-dimensional 
orthogonal space through the Multidimensional Scaling (MDS) algorithm, reflecting the two 
larger, dimensions of observed variation (termed eigen-components). Similarity distances of 
each organism from the centroid of the single class problem are projected in those exploratory 
scatter plots. (B) Pearson correlation of pairwise distances of rRNA sequences with the other 
three measures. Correlation is unbiased from taxonomic domain sizes, as we used 80 randomly 
selected species from each domain for the calculation. 
 
Figure 3: PN composition evolution throughout various phyla – (A) The association matrix 
of proteostasis-related semantic groups with the examined species. The score of each semantic 
group corresponds to the average negative log-transformed adjusted p-value of the GO-BP 
terms, which have been clustered into this group. (C) Two-dimensional representation of 
species based on their proteostasis semantic profiles. Conserved and differential components 
were used separately to investigate their contribution to taxonomic domain separation. 
 
Figure 4: PN contribution to other evolutionary conserved mechanisms – Homogeneity 
score (A, red) refers to the separating ability of each biological process regarding the three 
main taxonomic domains, through the respective semantic network, derived from the pathway 
analysis of related genes. Silhouette score (B, green) indicates the degree of cohesion of cluster 
inference, by measuring the trade-off between intra- and inter-distances of each cluster member. 
Bars display these scores for the entire machinery of each process whereas the solid lines 
illustrate the same scores calculated after the removal of proteostasis related components from 
the semantic profile of each process. 
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