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Abstract 24 

Background: Children born extremely preterm are at heightened risk for intellectual and social 25 

impairment, including Autism Spectrum Disorder (ASD). There is increasing evidence for a key role of the 26 

placenta in prenatal developmental programming, suggesting that the placenta may explain origins of 27 

neurodevelopmental outcomes.  28 

 29 

Methods: We examined associations between placental genomic and epigenomic profiles and assessed 30 

their ability to predict intellectual and social impairment at age 10 years in 379 children from the 31 

Extremely Low Gestational Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and 32 

social function was completed with the Differential Ability Scales-II (DAS-II) and Social Responsiveness 33 

Scale (SRS), respectively. Examining IQ and SRS allows for studying ASD risk beyond the diagnostic 34 

criteria, as IQ and SRS are continuous measures strongly correlated with ASD. Genome-wide mRNA, 35 

CpG methylation and miRNA were assayed with the Illumina Hiseq 2500, HTG EdgeSeq miRNA Whole 36 

Transcriptome Assay, and Illumina EPIC/850K array, respectively. We conducted genome-wide 37 

differential mRNA/miRNA and epigenome-wide placenta analyses. These molecular features were 38 

integrated for a predictive analysis of IQ and SRS outcomes using kernel aggregation regression. We 39 

lastly examined associations between ASD and the genomically-predicted component of IQ and SRS. 40 

 41 

Results: Genes with important roles in placenta angiogenesis and neural function were associated with 42 

intellectual and social impairment. Kernel aggregations of placental multi-omics strongly predicted 43 

intellectual and social function, explaining approximately 8% and 12% of the variance in SRS and IQ 44 

scores via cross-validation, respectively. Predicted in-sample SRS and IQ showed significant positive and 45 

negative associations with ASD case-control status. 46 

 47 

Limitations: The ELGAN is a cohort of children born pre-term, andgeneralization may be affected by 48 

unmeasured confounders associated with low gestational age. We conducted external validation of 49 

predictive models, though the sample size of the out-sample dataset (𝑁 =  49) and the scope of the 50 

available placental datasets are limited. Further validation of the models is merited. 51 
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 52 

Conclusions: Aggregating information from biomarkers within and between molecular data types 53 

improves prediction of complex traits like social and intellectual ability in children born extremely preterm, 54 

suggesting that traits influenced by the placenta-brain axis may be omnigenic. 55 

 56 

Keywords: prenatal neurodevelopmental programming, social and cognitive impairment, placental gene 57 

regulation, epigenome-wide association, differential expression analysis, multi-omic aggregation  58 
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Background 59 

Despite substantial research efforts to elucidate the etiology of neurodevelopmental impairment [1], little 60 

is known about genomic and epigenomic factors influencing trajectories of neurodevelopment, such as 61 

those associated with preterm delivery [2]. Children born extremely preterm are at increased risk not only 62 

for intellectual impairment but also for Autism Spectrum Disorder (ASD) [3,4], often accompanied by 63 

intellectual disability. In addition, preterm-born children have consistently been observed to manifest 64 

social difficulties (e.g., fewer prosocial behaviors) in childhood and adolecense that do not meet 65 

diagnostic criteria for ASD [5].  66 

 67 

The placenta is posited as a critical determinant of both immediate and long-lasting neurodevelopmental 68 

outcomes in children [1]. The placenta is involved in hormone and neurotransmitter production and 69 

transfer of nutrients to the fetus, thus having direct influence on brain development. This connection 70 

between the placenta and the brain is termed the placenta-brain axis [6]. Epidemiological and animal 71 

studies have linked genomic and epigenomic alterations in the placenta with neurodevelopmental 72 

disorders and normal neurobehavioral development [7–9]. For example, the Markers of Autism Risk in 73 

Babies: Learning Early Signs (MARBLES) study has identified differentially methylated region containing 74 

putative fetal brain enhancer between in placentas from ASD (𝑁 =  24) and typically developing (n = 23) 75 

children [10]. However, identifying genomic signatures of risk for neurodevelopmental disorders such as 76 

ASD in placenta is a challenging. Further study of molecular interactions representing the placenta-brain 77 

axis may advance our understanding of fetal mechanisms involved in aberrant neurodevelopment [6].  78 

 79 

Most prior studies have investigated single molecular levels of the placenta genome or epigenome, 80 

precluding analysis of possible interactions that could be linked to neurodevelopmental outcomes. 81 

Examining only a single molecular feature, or a single type of features even at a genomic scale can still 82 

result in much unexplained variation in phenotype due to potentially important interactions between 83 

multiple features [11,12]. This observation is in line with Boyle et al.’s omnigenic model [13,14], which 84 

proposes that gene regulatory networks are so highly interconnected that a large portion of the heritability 85 

of complex traits can be explained by effects on genes outside core pathways. Molecular integration to 86 
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identify pathways for fetal neurodevelopment in children has been unexplored but may prove to be 87 

insightful in associations with complex diseases [15]. 88 

 89 

We conducted a genome-wide analysis of DNA methylation, miRNA, and mRNA expression in the 90 

placenta, examining individual associations with social and intellectual impairment at 10 years of age in 91 

children from the Extremely Low Gestational Age Newborn (ELGAN) study [16]. We then combined the 92 

genomic and epigenomic data to identify correlative networks of placental genomic and epigenomic 93 

biomarkers predictive of social and intellectual impairment as continuous scales, thus allowing us to study 94 

neurodevelopmental difficulties beyond the ASD diagnostic categories [17]. To assess the convergent 95 

validity of our behavioral findings, we also examined the association of social and intellectual impairment 96 

in relation to ASD diagnoses [18]. To our knowledge, this is the first study to use multiple placental 97 

molecular signatures to predict intellectual and social impairment, which may inform a framework for 98 

predicting risk of adverse neurocognitive and neurobehavioral outcomes in young children. 99 

 100 

Methods 101 

ELGAN recruitment and study participants 102 

From 2002-2004, women who gave birth at under 28 weeks gestation at one of 14 medical centers 103 

across five U.S. states enrolled in the ELGAN study [16]. The Institutional Review Board at each 104 

participating institution approved study procedures. Included were 411 of 889 children with both placental 105 

molecular analysis and a 10-year follow-up assessment. 106 

 107 

Social and cognitive function and ASD at 10 years of age 108 

Trained child psychologist examiner [5,19] evaluated general cognitive ability (IQ) with the School-Age 109 

Differential Ability Scales-II (DAS-II) Verbal and Nonverbal Reasoning subscales [20]. The Social 110 

Responsiveness Scale (SRS) was used to assess severity of ASD-related social deficits in 5 subdomains: 111 

social awareness, social cognition, social communication, social motivation, and autistic mannerisms [21]. 112 

We used the gender-normed T-score (SRS-T; intended to correct gender differences observed in 113 

normative samples) as continuous measure of social deficit [22]. All participants were assessed for ASD 114 
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[18]. Diagnostic assessment of ASD was conducted with three well-validated measures, administered 115 

sequentially. First, the Social Communication Questionnaire (SCQ) was administered to screen for 116 

potential ASD, using a score ≥ 11 to increase sensitivity relative to the standard criterion score of ≥ 15 117 

[18,23]. For children who screened positive on the SCQ criterion, we conducted the Autism Diagnostic 118 

Interview–Revised (ADI-R) with the primary caregiver [24]. All children who met ADI-R criteria for ASD, or 119 

who had a prior clinical diagnosis of ASD and/or exhibited symptoms of ASD during cognitive testing 120 

according to the site psychologist) were then assessed with the Autism Diagnostic Observation Schedule, 121 

Second Version (ADOS-2), which served as the criterion measure of ASD in this study [25]. All ADOS-2 122 

administrations were independently scored by a second rater with autism diagnostic and ADOS-2 123 

expertise. In cases of scoring disagreements, consensus was reached via discussion between raters. 124 

Item-by-item inter-rater agreement for the 14 ADOS-2 diagnostic algorithm scores was on average 0.93 125 

(𝑆𝐷 =  0.12). These developmental assessment procedures and all relevant test scores for ASD and 126 

intellectual function are reported in a prior publication [19].  127 

 128 

Placental DNA and RNA extraction 129 

After delivery, placentas were biopsied under sterile conditions. We collected a piece of the chorion, 130 

representing the fetal side of the placenta [26]. More specifically, placentas were placed in a sterilized 131 

basin and biopsied by pulling back the amnion to expose the chorion at the midpoint of the longest 132 

distance between the cord insertion and edge of the placental disk. A sample from the fetal side of the 133 

placenta was removed by applying traction to the chorion and underlying trophoblast tissue. The 134 

specimen was placed in a cryogenic vial and immersed in liquid nitrogen. To preserve DNA and RNA 135 

integrity, specimens were stored at -80oC until processed. For processing, a 0.2g subsection of the 136 

placental tissue was cut from the frozen biopsy and washed with sterile 1x phosphate-buffered saline to 137 

remove any remaining blood. Samples were homogenized using a lysis buffer, and the homogenate was 138 

separated into aliquots. This process was detailed in a prior publication [27]. Nucleic acids were extracted 139 

from the homogenate using AllPrep DNA/RNA/miRNA Universal kit (Qiagen, Germany). The quantity and 140 

quality of DNA and RNA were analyzed using the NanoDrop 1000 spectrophotometer and its integrity 141 

verified by the Agilent 2100 BioAnalyzer. 142 
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 143 

Epigenome-wide placental DNA methylation 144 

Extracted DNA sequences were bisulfate-converted using the EZ DNA methylation kit (Zymo Research, 145 

Irvine, CA) and followed by quantification using the Infinium MethylationEPIC BeadChip (Illumina, San 146 

Diego, CA), which measures CpG loci at a single nucleotide resolution, as previously described [26–29]. 147 

Quality control and normalization were performed resulting in 856,832 CpG probes from downstream 148 

analysis, with methylation represented as the average methylation level at a single CpG site (𝛽-value) 149 

[27,30–32]. DNA methylation data was imported into R for pre-processing using the minfi package [30]. 150 

Quality control was performed at the sample level, excluding samples that failed and technical duplicates; 151 

411 samples were retained for subsequent analyses. Functional normalization was performed with a 152 

preliminary step of normal-exponential out-of band (noob) correction method [33] for background 153 

subtraction and dye normalization, followed by the typical functional normalization method with the top 154 

two principal components of the control matrix [31,34]. Quality control was performed on individual probes 155 

by computing a detection 𝑃 value and excluded 806 (0.09%) probes with non-significant detection (𝑃 > 156 

0.01) for 5% or more of the samples. A total of 856,832 CpG sites were included in the final analyses. 157 

Lastly, the ComBat function was used from the sva package to adjust for batch effects from sample plate 158 

[83]. The data were visualized using density distributions at all processing steps. Each probe measured 159 

the average methylation level at a single CpG site. Methylation levels were calculated and expressed as 160 

𝛽 values (𝛽 = intensity of the methylated allele (𝑀))/(intensity of the unmethylated allele (𝑈) + intensity of 161 

the methylated allele (𝑀) + 100). 𝛽 values were logit transformed to 𝑀 values for statistical analyses [35]. 162 

 163 

Genome-wide placental mRNA and miRNA expression 164 

mRNA expression was determined using the Illumina QuantSeq 3′ mRNA-Seq Library Prep Kit, a method 165 

with high strand specificity. mRNA-sequencing libraries were pooled and sequenced (single-end 50 bp) 166 

on one lane of the Illumina Hiseq 2500. mRNA were quantified through pseudo-alignment with Salmon 167 

v.14.0 [36] mapped to the GENCODE Release 31 (GRCh37) reference transcriptome. miRNA expression 168 

profiles were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay (HTG Molecular 169 

Diagnostics, Tucson, AZ). miRNA were aligned to probe sequences and quantified using the HTG 170 
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EdgeSeq System [37]. Genes and miRNAs with less than 5 counts for each sample were filtered, 171 

resulting in 11,224 genes and 2,047 miRNAs for downstream analysis. Distributional differences between 172 

lanes were first upper-quartile normalized [38]. Unwanted technical and biological variation (e.g. tissue 173 

heterogeneity) was then estimated using RUVSeq [39], where we empirically defined transcripts not 174 

associated with outcomes of interest as negative control housekeeping probes [40]. One dimension of 175 

unwanted variation was removed from the variance-stabilized transformation of the gene expression data 176 

using the limma package [40–43]  177 

 178 

Statistical Analysis 179 

All code and functions used in the statistical analysis can be found at https://github.com/bhattacharya-a-180 

bt/multiomics_ELGAN. 181 

 182 

Correlative analyses between SRS, IQ, and ASD 183 

Associations among SRS scores, IQ and ASD were assessed using Pearson correlations with estimated 184 

95% confidence intervals, and the difference in distributions of SRS and IQ across ASD case-control was 185 

assessed using Wilcoxon rank-sum tests. Associations between demographic variables (race, sex, 186 

maternal age, number of gestational days, maternal smoking status, placental inflammation, birth weight 187 

𝑍-score and mother’s insurance) with SRS and IQ were assessed using multivariable regression, 188 

assessing the significance of regression parameters using Wald tests of significance and adjusting for 189 

multiple testing with the Benjamini-Hochberg procedure [44]. 190 

 191 

Genome-wide molecular associations with SRS and IQ 192 

Once associations between SRS and IQ and ASD were confirmed, we utilized continuous SRS and IQ 193 

measures as the main outcomes of interest. Associations between mRNA expression or miRNA 194 

expression with SRS and IQ were estimated through a negative binomial linear model using DESeq2 [43]. 195 

Epigenome-wide associations (EWAS) of CpG methylation sites with outcomes were assessed using 196 

robust linear regression [45] with test statistic modification through an empirical Bayes procedure [42], 197 

described previously [27]. Both the differential mRNA and miRNA expression and EWAS models 198 
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controlled for the following covariates: race, age, sex, number of gestational age days, birth weight 𝑍-199 

score, and education level of the mother. Multiple testing was adjusted for using the Benjamini-Hochberg 200 

procedure [44]. 201 

 202 

Placental multi-molecular prediction of SRS and IQ 203 

We next assessed how well an aggregate of one or more of the molecular datasets (CpG methylation, 204 

mRNA expression, and miRNA expression) predicted continuous SRS and IQ scores. The analytical 205 

scheme is summarized in Figure 1, using 379 samples with data for all three molecular datasets (DNA 206 

methylation, miRNA, and mRNA). Briefly, we first adjusted the outcome variables and molecular datasets 207 

for above noted demographic and clinical covariates using limma [46] to account for associations 208 

between the outcomes and these coviarates in the eventual predictive models. Next, to model the 209 

covariance between samples within a single molecular profile, we aggregated the molecular datasets with 210 

thousands of biomarkers each into a molecular kernel matrix. A molecular kernel matrix represents the 211 

inter-sample similarities in a given molecular profile (Supplementary Methods). A linear or non-linear 212 

kernel aggregation may aid in prediction of complex traits by capturing non-additive effects [47–50], which 213 

represents a sizable portion of phenotypic variation [51,52]. Using all individual, pairwise, and triplet-wise 214 

combinations of molecular kernel matrices, we fitted predictive models of SRS and IQ based on linear 215 

mixed modeling [50] or kernel regression least squares (KRLS) [53] and assessed predictive performance 216 

with McNemar’s adjusted 𝑅2 via Monte Carlo cross validation [54]. We also optimized predictive models 217 

for the number of included biomarkers per molecular profile. Extensive model details, as well as 218 

alternative models considered, are detailed in Supplemental Methods. 219 

 220 

Validation in external dataset 221 

Lack of studies that consider placental mRNA, CpG methylation and miRNA data with long-term child 222 

neurodevelopment limit the ability to extablish external validation. We obtained one external placental 223 

CpG methylation dataset from the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) 224 

cohort [10]. To assess out-of-sample performance of kernel models for methylation, we downloaded 225 

MethylC-seq data for 47 placenta samples, 24 of which identified as ASD cases (NCBI Gene Expression 226 
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Omnibus accession numbers GSE67615) [10]. 𝛽-values for DNA methylation were extracted from BED 227 

files and transformed into 𝑀-values with an offset of 1 [35], and used the best methylation-only predictive 228 

model to predict SRS and IQ in these 47 samples, as detailed in Supplemental Methods. 229 

 230 

Correlative networks 231 

In the final KRLS predictive models for both IQ and SRS including all three molecular profiles, we 232 

extracted the top 50 most predictive (largest point-wise effect sizes) CpGs, miRNAs, and mRNAs of SRS 233 

and IQ. A sparse correlative network was inferred among these biomarkers that links biomarkers based 234 

on the strength of correlative signals using graphical lasso in qgraph [55,56]. 235 

 236 

Results 237 

SRS and IQ are well associated with ASD 238 

Although the sample is enriched for ASD cases (𝑁 = 35 cases, 9.3% of the sample) relative to non-239 

preterm cohorts, there is still a relatively low case-control ratio for a genome-wide study of this sample 240 

size (descriptive statistics for relevant covariates in Table 1). Therefore, we considered continuous 241 

measures of social impairment (SRS) and cognitive development (IQ) at age 10 for both associative and 242 

predictive analyses. Using continuous variables for SRS and IQ allow us to to study complexities beyond 243 

the ASD diagnostic categories [15,17]. Figure 2A-B shows the relationship between SRS, IQ, and ASD. 244 

The mean SRS is significantly higher in ASD cases compared to controls (mean difference of 1.74, 245 

95% 𝐶𝐼: (1.41, 2.07)). Mean IQ is significantly lower in ASD cases versus controls (mean difference of -246 

2.23, 95% 𝐶𝐼 (−2.46, −1.96)). Furthermore, SRS and IQ are negatively correlated (Pearson 𝜌 =247 

 −0.47, 95% 𝐶𝐼: (−0.55, −0.39)). We also measured associations between demographic characteristics 248 

with SRS and IQ (Figure 2C) using multivariable regression. Male sex is associated with lower IQ, while 249 

public health insurance is associated with both lower IQ and increased social impairment. Demographic 250 

variables included in the multivariable regression explain approximately 12% and 15% of the total 251 

variance explained in IQ and SRS, as measured by adjusted 𝑅2, with a summary of regression 252 

parameters in Table 2. Based on the associations identified here and the value of inclusion of continuous 253 

measures, subsequent genomic and epigenomic analyses control for demographic covariates. 254 
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Table 1: Descriptive statistics for demographi and clinical covariates 255 

Continuous Variable Mean, SD, Median 

Maternal age 29.6, 6.61, 29.5 
Gestational days 182.5, 9.17, 184.0 
  
Categorical Variable Number (Proportion) 

ASD  
Case 35 (9.3%) 

Control 344 (90.7%) 
 

Race  
White 233 (61.5%) 
Black 112 (29.5%) 
Other 34 (9.0%) 

Sex of baby  
Female 180 (47.5%) 

Male 199 (52.5%) 
Mother’s smoking status  

Non-smoker 340 (89.7%) 
Smoker 39 (10.3%) 

Mother’s insurance status  
Private 251 (66.2%) 

Medicaid 128 (33.8%) 
 256 

 257 

Table 2: Summary of regressions of SRS and IQ against clinical covariates. 258 

 SRS IQ 

Parameter Estimate (SE) FDR-adjusted  
𝑷-value 

(Raw 𝑷-value) 

Estimate (SE) FDR-adjusted  
𝑷-value 

(Raw 𝑷-value) 
Race     

Black 0.219 (0.13) 0.165 (0.091) -0.369 (0.13) 0.012 (0.004) 
Other 0.375 (0.19) 0.087 (0.043) -0.113 (0.18) 0.684 (0.533) 

Sex     
Male 0.119 (0.10) 0.342 (0.243) -0.288 (0.10) 0.012 (0.004) 

Maternal age -0.002 (0.01) 0.800 (0.800) -0.003 (0.01) 0.792 (0.748) 
Smoking status     

Yes 0.215 (0.17) 0.334 (0.204) 0.337 (0.17) 0.087 (0.043) 
Mother’s insurance     

Medicaid 0.454 (0.13) 0.002 (0.001) -0.453 (0.13) 0.003 (0.001) 
Gestational days -0.017 (0.01) 0.012 (0.002) 0.012 (0.01) 0.087 (0.043) 
Birthweight Z-score -0.060 (0.05) 0.342 (0.247) 0.179 (0.05) 0.003 (0.001) 
Placental inflammation -0.042 (0.11) 0.793 (0.705) -0.046 (0.11) 0.793 (0.677) 

 259 

 260 

Genome-wide associations of mRNA, miRNA, and CpGs with SRS and IQ 261 

Genome-wide association tests between each of the individual placental molecular datasets (e.g. the 262 

placental mRNA data, the CpG methylation, or the miRNA datasets) in relation to SRS and IQ (see 263 
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Methods) identified two genes with mRNA expression significantly associated with SRS at FDR-adjusted 264 

𝑃 < 0.01 (Hdc Homolog, Cell Cycle Regulator [HECA], LIM Domain Only 4 [LMO4]). We did not find CpG 265 

sites or miRNAs associated with SRS (Table 3). Associations between IQ and the mRNA expression, at 266 

FDR-adjusted 𝑃 <  0.01, were observed at four genes, namely Ras-Related Protein Rab-5A (RAB5A), 267 

Transmembrane Protein 167A (TMEM167A), Signal Transducer and Activator of Transcription 2 (STAT2), 268 

ITPRIP Like 2 (ITPRIPL2).  One CpG site (cg09418354 located in the gene Carbohydrate 269 

Sulfotransferase 11 (CHST11) displayed an association with IQ, and no miRNAs were associated with IQ 270 

(Table 3). Manhattan plots (Supplemental Figure 1) show the strength of associations of all biomarkers 271 

by genomic position. Summary statistics for these associations are provided in Supplemental Materials. 272 

No mRNAs, CpG sites, or miRNAs were significantly associated with both SRS and IQ, though effect 273 

sizes for associations with the same features were in opposite directions (see Supplemental Materials). 274 

 275 

Table 3: Summary of genome-wide associations of molecular profiles with SRS and IQ at FDR-adjusted 276 
𝑃 < 0.01. 277 

SRS 

Biomarker Effect size FDR-adjusted  
𝑷-value 

mRNA expression   
HECA 0.571 0.001 
LMO4 0.467 0.001 

   

IQ 

Biomarker   
   

mRNA expression   
RAB5A -0.516 0.002 

TMEM167A -0.632 0.004 
ITPRIPL2 -0.557 0.004 

STAT2 -0.584 0.004 
   

CpG methylation site   
cg09418354 -0.005 0.002 

 278 

 279 

Kernel regression shows predictive utility in aggregating multiple molecular datasets 280 

Because the genome wide association analyses revealed few mRNAs, CpG sites or miRNAs that were 281 

associated with SRS or IQ with large effect sizes, we next assessed the impact of aggregating these 282 

molecular datasets on prediction of SRS and IQ. This was done to account for the considerable number 283 
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of biomarkers that have moderate effect sizes on outcome. To find the most parsimonious model with the 284 

greatest predictive performance, we first selected the optimal number of biomarkers per molecular profile 285 

for each outcome that gave the largest mean adjusted 𝑅2 in predictive models with only one of the three 286 

molecular datasets (see Supplemental Methods). Figure 3A shows the relationship between the 287 

number of biomarkers from the mRNA expression, CpG level, miRNA expression datasets and their 288 

predictive performance. In general, predictive performance steadily increased as the number of biomarker 289 

features increased until reaching a tipping point where predictive performance decreased (Figure 3A). 290 

Overall, for CpG methylation, the top (lowest 𝑃-values of association) 5,000 CpG features showed the 291 

greatest predictive performance, and for the mRNA and miRNA expression datasets, the top 1,000 292 

features showed the greatest predictive performance. 293 

 294 

Using the fully-tuned 7,000 biomarkers (5,000 for CpG methylation and 1,000 for both mRNA and miRNA 295 

expression) per molecular dataset with feature selection done in the training set, we trained predictive 296 

models (both linear and Gaussian kernel models) using all individual, pair-wise, and triplet-wise 297 

combinations of the three molecular datasets. Figure 3B shows that whereas the mRNA had the lowest 298 

predicted performance to both IQ (𝑅2 = 0.025) and SRS (𝑅2 = 0.025), aggregating the mRNA expression, 299 

CpG methylation and miRNA expression datasets tends to increase the predictive performance. 300 

Specifically, in relation to both outcomes (SRS and IQ), the model using all three integrated datasets 301 

shows the greatest predictive performance (mean adjusted 𝑅2 = 0.11 in IQ and 𝑅2 = 0.08 in SRS).  302 

 303 

Correlative networks of placental biomarkers 304 

To gain further understanding of the associations among the identified mRNA, CpG and miRNA 305 

biomarkers in the context of IQ and SRS, we extracted (𝑛 = 50) mRNA, CpGs, and miRNAs that have the 306 

largest effect sizes on IQ and SRS in the kernel regression models and inferred sparse correlative 307 

networks using the graphical lasso [55,56] (see Methods). In the networks (Supplemental Figure 2), 308 

each molecular dataset clusters by itself, with minimal nodes extending between molecular datasets, and 309 

more interconnection is observed between miRNAs and CpG methylation versus mRNAs. These 310 

networks point to genes that play important roles in placental angiogenesis and neural function, such as 311 
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SMARCA2 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, 312 

Member 2), SLIT3 (Slit Guidance Ligand 3), and LZTS2 (Leucine Zipper Tumor Suppressor 2) that have 313 

been previously associated with neurodevelopmental disorders, including intellectual disability, social 314 

impairment, mood disorders, and ASD [57–62]. 315 

 316 

Validation of in-sample and out-sample SRS and IQ prediction with ASD case and control 317 

To contextualize our predictions, we tested whether the predicted SRS and IQ scores generated by our 318 

kernel models are associated with ASD case-control status; these predicted SRS and IQ scores 319 

represent the portion of the observed SRS and IQ values that our models can predict from placental 320 

genomic features. We used the optimal 7,000 biomarker features identified with a 10-fold cross-validation 321 

process, splitting samples into 10 hold-out sets and using the remaining samples as a training set to 322 

predict SRS and IQ for all 379 samples. After accounting for covariates, the predicted SRS and IQ values 323 

from the biomarker data were well-correlated with the observed clinical SRS and IQ values, explaining 324 

approximately 8% (approximate Spearman 𝜌 = 0.29, cross-validatation 𝑅2 P-value 𝑃 = 7.5 × 10−9) and 325 

12% (Spearman 𝜌 = 0.35, 𝑃 =  3.6 × 10−12) of the variance in the observed SRS and IQ variables, 326 

respectively. In addition, we found strong association between the predicted SRS and IQ with ASD case 327 

and controls, mean difference of −0.56 (test statistc 𝑊 = 8121, 𝑃 = 6.6 × 10−4) for IQ, and mean 328 

difference of 0.33 (𝑊 =  4717, 𝑃 =  0.03) for SRS (Figure 4). 329 

 330 

Because we lacked an external dataset with all three molecular data (mRNA, CpG methylation, and 331 

miRNA) and cognitive, social impairment and ASD data, we assessed the out-of-sample predictive 332 

performance of the CpG methylation-only models using MethylC-seq data from the MARBLES cohort 333 

(GEO GSE67615) [10]. We computed predicted IQ and SRS values for 47 placental samples (24 cases of 334 

ASD) and assessed differences in mean predicted IQ and SRS across ASD case and control groups. The 335 

direction of the association is similar to our data for IQ yet the differences in mean predicted IQ 336 

(−0.22, 𝑃 =  0.37) and SRS (−0.42, 𝑃 =  0.12) across ASD groups in MARBLES is not significant (Figure 337 

4). This external validation provides some evidence of the portability of our models and merits further 338 

future validation of these models, as more placental multi-omic datasets are collected. 339 
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 340 

Discussion 341 

We evaluated the predictive capability of three types of genomic and epigenomic molecular biomarkers  342 

(mRNA, CpG methylation, and miRNA) in the placenta on cognitive and social impairment in relation to 343 

ASD at 10 years of age. Genes that play important roles in placenta angiogenesis and neural function 344 

were associated with SRS and IQ. The multi-omic predictions of SRS and IQ are strong and explain up to 345 

8% and 12% of the variance in the observed SRS and IQ variables in 5-fold cross-validation, respectively. 346 

This study supports the utility of aggregating information from biomarkers within and between molecular 347 

datasets to improve prediction of complex neurodevelopmental outcomes like social and intellectual 348 

ability, suggesting that traits on the placenta-brain axis may be omnigenic. 349 

 350 

Several genes with known ties to neurodevelopmental disorders distinguished individuals with and 351 

without intellectual and social impairmenats. For example, CpG methylation in SLIT3 was associated with 352 

intellectual (IQ) disability. SLIT3 is highly expressed in trophoblastic endothelial cells [63] and plays a 353 

critical role in placental angiogenesis and in the development of neuronal connectivity. Human and animal 354 

genetic studies support that SLIT3 is associated with mood disorders, IQ, and ASD [61,64–66]. LZTS2, 355 

another gene we found to be associated with IQ, is involved in regulating embryonic development by the 356 

Wnt signaling pathway [67,68]. Genetic and miRNA expression studies have linked LZTS2 to social 357 

impairment and ASD [69–71]. Furthermore, LZTS2 is bound by the Chromodomain Helicase DNA Binding 358 

Protein 8 gene (CHD8), which is associated with brain development in mice and neurodevelopmental 359 

disorders in humans [72–74]. In relation to social impairment, ADAMTS6 was found to be associated with 360 

SRS.The ADAMTS6 gene is a member of the ADAMTS protein family and is regulated by the cytokine 361 

TNF-alpha [75]. In previous studies, ADAMTS6 has been implicated in intellectual disability and growth 362 

development and with socially affected traits in pigs [76,77]. 363 

 364 

Looking into the individual molecular datasets, DNA methylation effects showed the strongest prediction 365 

of both SRS and IQ impairment. There is strong evidence suggesting inverse correlation between DNA 366 

methylation of the first intron and gene expression across tissues and species [78]. We found that many 367 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.07.19.211029doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211029
http://creativecommons.org/licenses/by-nc/4.0/


 16 

of the CpG loci with the largest effect sizes on SRS and IQ identified in our analysis are located near 368 

DNAase hyperactivity or active regulatory elements for the placenta [79,80], suggesting that these loci 369 

likely play regulatory functions. Experimental studies have demonstrated regions of the genome in which 370 

DNA methylation is causally important for gene regulation and those in which it is effectively silent [81]. 371 

We found that aggregating biomarkers within and between molecular datasets improves prediction of 372 

social and cognitive impairment. Specifially, this observation suggests new possibilities to the discovery of 373 

candidate genes in the placenta that convey neurodevelopmental risk, improving the understanding of the 374 

placenta-brain axis. Recent work in transcriptome-wide association studies (TWAS) are a promising tool 375 

that aggregates genetics and transcriptomics to identify candidate trait-associated genes [82,83]. 376 

Incorporating information from regulatory biomarkers, like transcription factors and miRNAs, into TWAS 377 

increases  study power to  generate hypotheses about  regulation [84,85]. Given our observations in this 378 

analysis and the number of the integrated molecular datasets, we believe that the ELGAN study can be 379 

used to train predictive models for placental transcriptomics from genetics, enriched for regulatory 380 

elements [85]. These transcriptomic models can then be applied to genome-wide association study 381 

cohorts to study the regulation of gene-trait associations in the placenta. 382 

 383 

Limitations 384 

When interpreting the results of this study, some factors should be considered. Extremely preterm birth is 385 

strongly associated with increased risk for neurodevelopmental disorders [18]. This association may lead 386 

to bias in estimated associations between the molecular biomarkers and outcomes, especially when 387 

unmeasured confounders are linked to both pre-term birth and autism [86]. Still, to our knowledge the 388 

ELGAN cohort is currently the largest available placental repository with both multiple molecular datasets 389 

and long-term neurodevelopmental assessment of the children. Second, as the placenta is comprised of 390 

several heterogeneous cell types, tissue-specific molecular patterns in the placenta should be taken into 391 

consideration when interpreting these findings in relation to other tissue samples; future comparison 392 

between tissues will not be straightforward. Lastly, to test the reproducibility and robustness of our kernel 393 

models, we believe further out-of-sample validation is required, using datasets with larger sample sizes 394 

and similar molecular datasets. Though in-sample predictive performance is strong, platform differences 395 
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between the ELGAN training set (assayed with EPIC BeadChip) and validation set (MethylC-seq) may 396 

lead to loss of predictive power. As our optimal models all aggregate various datasets, the dearth of data 397 

for the placenta, in the context of social and intellectual impairment, makes out-of-sample validation 398 

especially challenging. Lack of external validation may render our analysis exploratory in nature, but we 399 

provide evidence of a link between molecular features within the fetal placenta and social and cognitive 400 

outcomes in children that merits future investigation. 401 

 402 

Conclusions 403 

Our analysis underscores the importance of synthesizing data representing various levels of biological 404 

data to understand distinct genomic and epigenomc underpinnings of complex developmental deficits, 405 

like intellectual and social impairment. This study provides novel evidence for the omnigenicity of the 406 

placenta-brain axis in the context of social and intellectual impairment. 407 

 408 
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Figure Captions 

Figure 1: Scheme for kernel aggregation and prediction models. (1) Design matrices for CpG sites, 

mRNAs, and miRNAs are aggregated to form a linear or Gaussian kernel matrix that measures the 

similarity of samples. (2) Clinical variables are regressed out of the outcomes IQ and SRS and from the 

omic kernels to limit influence from these variables. (3) Using 50-fold Monte Carlo cross-validation on 

75%-25% training-test splits, we train prediction models with the kernel matrices for IQ and SRS in the 

training set and predict in the test sets. Prediction is assessed in every fold with adjusted 𝑅2 and 

averaged for an overall prediction metric. 

 

Figure 2: Associations between SRS, IQ, and ASD and with clinical variables. (A) Scatter plot of SRS 

(X-axis) and IQ (Y-axis) colored by ASD case (orange) and control (blue) status. (B) Boxplots of SRS and 

IQ across ASD case-control status. P-value from a two-sample Mann-Whitney test is provided. (C) 

Caterpillar plot of multivariable linear regression parameters of IQ and SRS using clinical variables. Points 

give the regression parameter estimates with error bars showing the 95% FDR-adjusted confidence 

intervals [44]. The null value of 0 is provided for reference with the dotted line. 

 

Figure 3: In-sample predictive performance of kernel models. (A) Adjusted mean 𝑅2 (Y-axis) of best 

kernel models over various numbers of the top biomarkers (X-axis) in the CpG (dark blue), miRNA 

(orange), and mRNA (light blue) omics over 50 Monte Carlo folds. The X-axis scale is logarithmic. (B) Bar 

plots of adjusted mean 𝑅2 (Y-axis) for optimally tuned kernel predictive models using all combinations of 

omics (X-axis) over 50 Monte Carlo folds. The error bar gives a spread of one standard deviation around 

the mean adjusted 𝑅2. 

 

Figure 4: Association of ASD case/control status with predicted SRS and IQ. (A) Box-plots of in-

sample predicted IQ (left) and SRS (right) over ASD case/control in ELGAN over 10-fold cross-validation. 

(B) Box-plots of out-sample predicted IQ (left) and SRS (right) over ASD case/control in MARBLES 

external validation dataset. 𝑃-values presented as from a Mann-Whitney test of differences across the 

ASD case/control groups. 
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Genome-wide molecular associations with IQ and SRS
Objective: Find biomarkers associated with outcomes
Methods: DEG analysis for mRNA/miRNA, EWAS for CpG sites

Clinical/demographic associations with IQ and SRS
Objective: Find clinical/demographic variables associated 

with IQ and SRS
Methods: Multivariable linear regression with least squares

Kernel aggregation of molecular profiles
Objective: Combine molecular profiles based on 

inter-sample similarities
Methods: Linear or Gaussian kernel functions with 

full width

Feature selection of molecular kernels
Objective: Find the optimal number of CpGs, mRNAs, and 

miRNAs for prediction
Methods: Monte Carlo cross-validation across various 

numbers of top biomarkers

Predictive modeling using molecular kernels
Objective: Assess predictive power of combinations of molecular 

profiles on outcome using Monte Carlo cross-validation
Methods: Linear mixed modeling or kernel-based least squares

Out-of-sample validation
Objective: Assess portability of models in external data
Methods: Prediction in MethylC-seq data from MARBLES 

using the optimal methylation-only kernel model

Correlative sparse networks of biomarkers
Objective: Identify inter-biomarker correlations
Methods: Graphical lasso using the top 50 most predictive CpGs, 

mRNAs, and miRNAs from the final predictive models
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