1 Identifying loci under selection via

2 explicit demographic models

- 3
- 4 Hirzi Luqman^{1*}, Alex Widmer¹, Simone Fior^{1†}, Daniel
- 5 Wegmann^{2,3†*}
- 6
- 7 ¹ Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092 Zürich,
- 8 Switzerland
- 9 ² Department of Biology, University of Fribourg, Fribourg, Switzerland
- 10 ³ Swiss Institute of Bioinformatics, Fribourg, Switzerland
- 11 [†] denotes joint senior authors
- 12
- 13 Corresponding authors: hirzi.luqman@env.ethz.ch and daniel.wegmann@unifr.ch
- 14

15 Abstract

16	Adaptive genetic variation is a function of both selective and neutral forces. In
17	order to accurately identify adaptive loci, it is hence critical to account for
18	demographic history. Theory suggests that signatures of selection can be inferred
19	using the coalescent, following the premise that the genealogies of selected loci
20	deviate from neutral expectations. Here, we build on this theory to develop an
21	analytical framework to identify Loci under Selection via explicit Demographic
22	models (LSD). Under this framework, signatures of selection are inferred by
23	demographic parameters, rather than through isolated summary statistics, and
24	demographic history is accounted for explicitly. Given that demographic models can
25	incorporate directionality, we show that LSD can provide information on the
26	environment in which selection acts on a population. This can prove useful in
27	dissecting the genomics of local adaptation, by characterising genetic trade-offs and
28	extending the concepts of antagonistic pleiotropy and conditional neutrality from
29	ecological theory to practical application in genomic data. We implement LSD via
30	Approximate Bayesian Computation and demonstrate, via simulations, that LSD has
31	high power to identify selected loci across a large range of demographic-selection
32	regimes, including complex demographies, and that the directionality of selection
33	can be inferred accurately for identified candidates. Using the same simulations, we
34	further characterise the behaviour of isolation-with-migration models conducive to
35	the study of local adaptation under regimes of selection. Finally, we apply LSD to the

36	detection and characterisation of loci underlying floral guides in Antirrhinum majus,
37	and find consistent results with previous studies.
38	
39	Keywords
40	Approximate Bayesian computation, demography, genetic trade-offs, genome scan,
41	local adaptation, selection
42	
43	1 INTRODUCTION
44	Elucidating the genetic basis of adaptation and identifying genetic determinants
45	of population and species divergence are key foci in evolutionary biology. In natural
46	systems, genetic variation is shaped by the demographic history, driven by the
47	neutral processes of mutation, migration and drift, together with natural selection on
48	loci underlying adaptive traits. Conceptually, while all gene genealogies are
49	constrained by the demographic history of the population, the genealogies of loci
50	affected by selection are perturbed and may differ in key characteristics compared to
51	those evolving under neutrality, though converging patterns can arise (Bierne,
52	Welch, Loire, Bonhomme, & David, 2011; Edmonds, Lillie, & Cavalli-Sforza, 2004;
53	Excoffier, Foll, & Petit, 2009; J. Li et al., 2012; Montgomery Slatkin & Excoffier, 2012).
54	Disentangling the genomic signatures of these two processes, e.g. correctly
55	identifying adaptive loci, remains a prevailing challenge in the field of population

56	genetics (Biswas & Akey, 2006; Horscroft, Ennis, Pengelly, Sluckin, & Collins, 2019;
57	Luikart, England, Tallmon, Jordan, & Taberlet, 2003).
58	
59	A multitude of methods have been developed that identify loci under selection as
60	those whose summary statistics deviate from the genome-wide distribution. These
61	"outlier" approaches can generally be grouped into three classes: those that 1)
62	highlight regions of elevated differentiation between populations (via e.g. <i>F</i> sT-related
63	statistics), 2) highlight regions of perturbed site frequency spectrum (SFS) via
64	diversity or diversity-related estimators (e.g. π , Tajima's D) and 3) highlight regions
65	of extensive linkage disequilibrium (LD) via haplotype statistics (e.g. EHH, iHS)
66	(Beaumont & Nichols, 1996; Biswas & Akey, 2006; Luikart et al., 2003; Oleksyk,
67	Smith, & O'Brien, 2010; Vitti, Grossman, & Sabeti, 2013). While in empirical studies
68	inference of selection is often achieved through corroborating evidence from multiple
69	measures, each approach generally builds upon a single statistic that individually
70	captures only a partial aspect of the effect of selection on the underlying genealogies.
71	Additionally, reliance on statistics that describe the sample rather than on
72	parameters that define the population imply that these approaches provide an
73	incomplete description of the system. Combining the information from multiple
74	statistics, either indirectly to inform underlying parameters via demographic
75	modelling or directly via composite statistics, has the potential to provide insight and

76	increase power in	the localisation	of targets of selection	(Grossman et al., 2010;

77 Sugden et al., 2018; Vitti et al., 2013; Zeng, Shi, & Wu, 2007).

78

79	Under the premise that adaptive genetic variation is a function of both selective
80	and neutral forces, accounting for the demographic history of the study system is
81	critical for the correct identification of selected loci (François, Martins, Caye, &
82	Schoville, 2016; Hoban et al., 2016). To achieve this, empirical studies generally
83	employ a demographic null model which describes the neutral distribution of the
84	statistics used to infer selection (e.g. <i>F</i> st; Beaumont & Nichols, 1996; Eckert et al.,
85	2010; Excoffier et al., 2009; Hofer, Ray, Wegmann, & Excoffier, 2009), or estimates of
86	sample relatedness or covariance to correct for neutral population structure
87	(Bonhomme et al., 2010; Engelhardt & Stephens, 2010; Gautier, 2015; Günther &
88	Coop, 2013; Price et al., 2006). These approaches can be successful in controlling the
89	confounding influence of demography, however they generally suffer from one or
90	more of the following caveats; relying on post-hoc treatment (Eckert et al., 2010;
91	Excoffier et al., 2009; Hofer et al., 2009), not providing direct estimates for underlying
92	demographic parameters (sample covariance approaches) or assuming a set of rather
93	simple demographic models (Foll & Gaggioti 2008, Beaumont & Nichols 1996).
94	Alternatively, a (complex) demographic model might be inferred from putatively
95	neutral sites and loci under selection may be identified as those for which the an
96	additional selection parameter is required (e.g. Williamson et al., 2005) or as those for

97	which locus-specific estimates of demographic parameters differ from genome-wide
98	estimates (e.g. Sousa, Carneiro, Ferrand, & Hey, 2013). Such an approaches may not
99	only account for demography explicitly and concurrently with the inference of
100	selection, but may also directly estimate the probability of a locus being under
101	selection if performed in a Bayesian framework, and hence avoid arbitrary
102	thresholds.
103	
104	Coalescent theory provides a powerful framework to infer the demographic
105	processes that drive observed genetic variation (Kingman, 1982; Wakeley, 2001).
106	While the coalescent was derived to model neutral variation, theory suggests that it
107	can be exploited to infer signatures of selection following the premise that the
108	genealogies of selected loci are expected to deviate from neutral expectations (Barton
109	& Bengtsson, 1986; Charlesworth, 2009; Charlesworth, Nordborg, & Charlesworth,
110	1997; Fusco & Uyenoyama, 2011; Galtier, Depaulis, & Barton, 2000; Gossmann,
111	Woolfit, & Eyre-Walker, 2011; Petry, 1983; Sousa, Carneiro, Ferrand, & Hey, 2013).
112	Under coalescent theory, demographic models are parametrised by effective
113	population size(s) (N_E) and in the case of multiple populations additionally by
114	effective migration rate(s) (m_E), which respectively describe the level of drift and
115	gene flow within and between populations (Charlesworth, 2009; Petry, 1983).
116	Importantly, both N_E and m_E may change through time. Different modes of selection
117	and adaptive processes can be expected to alter these demographic parameters in

118	different ways. In a single population, imprints of selection may be reflected in
119	variations in N_{E_t} which is expected to be reduced in regions undergoing selective
120	sweeps and increased in regions undergoing diversifying selection (Galtier et al.,
121	2000; Gossmann et al., 2011). In the case of two or more populations connected by
122	gene flow, divergent selection is expected to reduce m_E at selected and linked sites
123	(Petry, 1983), while balancing selection and adaptive introgression may be expected
124	to increase m_E at affected regions. Such theory implies that information can be
125	acquired not just on the strength (via the magnitude of deviation of N_E or m_E from
126	neutral expectations) and mode of selection (i.e. whether these deviations in N_E or m_E
127	are characterised by a reduction or elevation relative to neutral expectations), but
128	also potentially of the population (environment) in which selection acts (i.e. whether
129	the reduction in m_E is in a particular direction, in a multi-population model). This
130	paradigm presents a unique opportunity to address the genetic basis of local
131	adaptation, a key concept in ecological genetics.
132	
133	The framework to describe the genetic basis of local adaptation derives from
134	ecological theory that relates the fitness advantage of alternate alleles under different
135	environmental conditions (Savolainen, Lascoux, & Merilä, 2013). Specifically,

136 alternate alleles may confer higher fitness in their respective local environment but

137 reduced fitness in the foreign environment, i.e. antagonistic pleiotropy (AP), or

alleles may confer higher fitness in their local environment but have no differential

139	effect relative to the alternative allele in the foreign environment, i.e. conditional
140	neutrality (CN) (Anderson, Lee, Rushworth, Colautti, & Mitchell-Olds, 2013;
141	Kawecki & Ebert, 2004; Savolainen et al., 2013). Such genetic trade-offs are generally
142	investigated via estimates of fitness in genetic crosses grown in reciprocal transplant
143	experiments (Kawecki & Ebert, 2004; Savolainen et al., 2013). In such experiments, as
144	well as in natural populations inhabiting different environments and connected by
145	gene flow, directional selection acting on phenotypic traits modulates fitness and
146	purges individuals that carry maladaptive alleles, e.g. via hybrid (Naisbit, Jiggins, $\&$
147	Mallet, 2001; Rundle & Whitlock, 2001; Schluter, 2000) or immigrant (Nosil, Vines, &
148	Funk, 2005) inviability, or lower fecundity. This effectively reduces m_E at these
149	(selected) loci between these populations, with the reduction (from neutral
150	expectations) proportional to the strength of selection imposed on the alternative
151	alleles in each environment. Such genetic trade-offs have long been assumed to
152	underlie phenotypic trade-offs in populations connected by gene flow and the
153	modelling of selection in terms of m_E via the coalescent provides a means to explicitly
154	describe and disentangle such processes.
155	

In this paper, we outline a conceptual and methodological framework for identifying Loci under Selection via explicit Demographic models called LSD, that scales to genomic data. Our approach explicitly accounts for demography in the identification of candidate loci, avoids reliance on singular summary statistics, and

160	elucidates the driving parameters underlying differentiation at putative selected loci.
161	Furthermore, applied in a probabilistic Bayesian framework, our approach does not
162	rely on arbitrary thresholds to delimit candidate loci, addressing an inherent
163	limitation of many outlier approaches. While LSD is flexible regarding the choice of
164	demographic model and can in principle accommodate any discrete population
165	model (including single population and stepping-stone models) as well as detect
166	different modes of selection, we here demonstrate LSD's utility in studies of local
167	adaptation by focusing on the detection of loci under divergent selection under
168	isolation-with-migration (IM) models. We validate and assess the performance of
169	LSD via extensive simulations, and apply the method to the detection of functionally
170	validated loci underlying floral guides in two parapatric subspecies of Antirrhinum
171	<i>majus</i> (common snapdragon) (Schwinn et al., 2006; Tavares et al., 2018).
170	

172

173 2 MATERIALS AND METHODS

174 2.1 Model

We begin by outlining the conceptual framework underlying LSD. Consider a demographic model \mathcal{M} , parametrised by demographic parameters $\boldsymbol{\theta}$, that generates genetic data \boldsymbol{D} . To quantify deviations from neutrality, LSD first estimates the demographic parameters $\hat{\boldsymbol{\theta}}$ from a collection of loci assumed to be neutral (Figure S1). In a second step, LSD performs demographic inference on all loci and

180	determines the posterior distribution $\pi_l = \pi(\boldsymbol{\theta} \boldsymbol{D}_l)$ for each locus. Finally, LSD
181	assesses the concordance of $\widehat{oldsymbol{ heta}}$ with π_l by determining p_l , the highest posterior
182	density interval (HPDI) of π_l that contains $\widehat{\theta}$. Here, $q_l = 1 - p_l$ corresponds to the
183	false-discovery-rate (FDR) of identifying locus l as incompatible with $\widehat{oldsymbol{ heta}}$. The joint
184	posterior distribution π_l may further provide information on the magnitude and
185	directionality of selection.
186	
187	Given that the evaluation of the likelihood is non-trivial and may be
188	intractable under more complex models, we resort to an approximate approach
189	(Marjoram & Tavaré, 2006) (Figure 1). Under an Approximate Bayesian Computation
190	(ABC) framework, the likelihood is approximated by simulations, the outcomes of
191	which are compared with observed data in terms of summary statistics. That is, we
192	find the set of parameters $m{ heta}$ that minimise the distance between the observed data $m{D}$
193	and the simulated data ${m D}'$. To efficiently evaluate this, we reduce the dimensionality
194	of the data via summarising them into a set of lower-dimensional summary statistics
195	S and S ', which are selected to capture the relevant information in D and D ',
196	respectively (Joyce & Marjoram, 2008; Peter, Huerta-Sanchez, & Nielsen, 2012).
197	
198	An appropriate model for generating simulated genetic data is provided by
199	coalescent theory (Kingman, 1982; Wakeley, 2001), parametrised by population
200	demographic parameters $\boldsymbol{\theta} = \{\boldsymbol{N}_E, \boldsymbol{M}_E, \boldsymbol{\mu}\}$, where \boldsymbol{N}_E refers to the vector of effective

201 population sizes, M_E to the vector of effective migration rates, and μ to the mutation 202 rate. We stress that population sizes and migration rates may vary through time. To 203 minimise the distance D from D', model space in addition to parameter space should 204 be explored.

205

206 2.2 Implementation

207	The analytical framework described above is practically implemented as
208	follows (Figure 1). Coalescent simulations are generated by a coalescent simulator,
209	e.g. msms (Ewing & Hermisson, 2010), under a user-defined demographic model.
210	Definition and choice of the demographic model should i) be informed by
211	knowledge of the study system, ii) be motivated by the model's capacity to provide a
212	useful approximation of a biological process of interest, and iii) be sufficiently simple
213	to remain computationally tractable. Additionally, given that we condition the
214	inference of selection on demographic parameters, the model should be formulated
215	according to whether deviation in N_E or M_E is desired for the inference of selection.
216	Importantly, the model should be validated by demonstrating that the observed data
217	can be accurately and sufficiently captured (Figure S7).
218	
219	The processing, format and final output of observed genetic data will often
220	differ from that of raw coalescent simulations, given that observed genetic data may
221	be subject to various pre-sequencing (e.g. pooling), sequencing (e.g. sequencing

222	errors, stochastic sampling of reads) and post-sequencing (e.g. filters) events that
223	perturb and reformat the data from the original source. We thus implemented two
224	complimentary programs that interface with coalescent simulators to replicate
225	observed sequencing pipelines and generate simulated sequencing data: LSD-High
226	can accommodate and simulate both individual and pooled data and assumes mid to
227	high coverage (>10x) data, while <i>LSD-Low</i> accepts individual data and can
228	additionally accommodate low coverage (>2x) data by utilising genotype likelihoods
229	via msToGLF and ANGSD (Korneliussen, Albrechtsen, & Nielsen, 2014). A suite of
230	summary statistics is then calculated for the simulated and observed data via the
231	same programs. Summary statistics currently implemented include the number of
232	segregating sites (S), private S, nucleotide diversity (π), Watterson's estimator (θ w),
233	Tajima's $D(\theta_0)$, relative divergence (F_{ST}), absolute divergence (D_{XY}), and site
234	frequencies, though in principle any summary statistic can be included, contingent
235	on the data and appropriate additions to the programs' scripts. To account for
236	potential correlation between summary statistics and to retain only their informative
237	components, we apply a Partial Least Squares transformation (Wegmann,
238	Leuenberger, & Excoffier, 2009).
239	
240	The estimation of demographic parameters is performed using ABCtoolbox
241	(Wegmann, Leuenberger, Neuenschwander, & Excoffier, 2010), via the ABC-GLM

algorithm using the subset of *n* simulations closest to the observed summary

243	statistics, separately for the putative neutral regions and for a sliding window across
244	the genome. Here, windows may be interpreted as loci, and for modelling simplicity
245	we assume that recombination is free between loci and fixed within. To acquire a set
246	of putative neutral regions, we assume that sites belonging to a particular structural
247	or functional class are selectively neutral (Williamson et al., 2005). We may for
248	instance rely on genomic regions outside all structural annotations unlinked to all
249	structural genomic elements (i.e. with a conservative flanking distance, informed by
250	the linkage disequilibrium decay distance). Alternatively, a more naïve
251	approximation may rely on the whole genome to provide genome-wide expectations,
252	which may in some cases, but not always (Begun et al., 2007; Fay, Wyckoff, & Wu,
253	2002; H. Li & Stephan, 2006), reflect the neutral case. In order to remain
254	computationally tractable, departure from neutrality is evaluated only for that subset
255	of demographic parameters informative of selection, while assuming the others to be
256	shared among neutral and selected loci.
257	

258 2.3 Simulations

259 **Demography** To test the performance of the LSD implementation, we 260 simulated pseudo-observed genomes using the program msms under different 261 demographic and selection parameter values (regimes), focusing on isolation-with-262 migration (IM) models relevant for the characterisation of local adaptation. We

263	simulated three models representing different levels of complexity in terms of
264	population structure and evolutionary history (Figure 2): i) A simple 2-deme IM
265	model (model \mathcal{M}_1), with effective population sizes $N_1 = N_2 = 10,000$ and symmetric
266	migration rates $M_{12} = M_{21} = M$. ii) A 6-deme IM model comprising 2 contrasting
267	environments of 3 demes each (model \mathcal{M}_2), structured as 'islands' with effective
268	population size $N_i = 1,000$ connected via migration $M_{ic} = 100$ to meta-population
269	'continents' of size $N_1 = N_2 = 100,000$. These continents exchange migrants at
270	symmetric rates $M_{12} = M_{21} = M$. iii) A 2-deme divergence with bottleneck and
271	exponential growth model (model \mathcal{M}_3). Under this model, two demes split from an
272	ancestral population of size $N_A = 10,000$ at $T_D = 200,000$ generations ago. Following
273	divergence, deme 2 stays constant at $N_2 = 10,000$, while deme 1 undergoes a sudden
274	bottleneck, immediately followed by exponential growth with rate $\alpha = 2$ until
275	$T_G = 160,000$ generations ago, at which $N_1 = 10,000$ is reached and thereafter
276	remains constant. Demes 1 and 2 are initially separated with no gene flow between
277	demes (isolation period), after which secondary contact is established at $T_c = 20,000$
278	generations ago with symmetric migration rates $M_{12} = M_{21} = M$. In all models, we
279	used neutral migration rates $M = 0.5, 5$ and 50 migrants per generation and inferred
280	selection as deviations from these rates. We use model \mathcal{M}_1 to represent a simplified,
281	generalised model of local adaptation, model \mathcal{M}_2 to represent a more complex case of
282	local adaptation comprising multiple, structured populations and model \mathcal{M}_3 to
283	reflect a scenario typical of glacial-induced secondary contact population dynamics.

285	Selection Each simulated pseudo-genome comprised $n_n = 1,000$ neutral loci
286	and $n_s = 50$ selected loci of 5kb length, for a total (pseudo-genome) size of 5.25Mb.
287	We assumed a diploid system and all loci to be biallelic with ancestral allele <i>a</i> and
288	derived allele <i>A</i> . In order to generate a certain fraction of segregating sites per locus
289	(~2%), the mutation μ varied from 2.5 x 10-3 (model \mathcal{M}_1) to 2.5 x 10-4 (model \mathcal{M}_3) and
290	5 x 10-5 (model \mathcal{M}_2) per locus per generation.
291	
292	To simulate genetic trade-offs, selection was simulated on alternate alleles in
293	the contrasting environments. Specifically, we assumed the beneficial alleles to be
294	dominant such that the relative fitness was $1 + s_1$, 1, 1 and 1, 1, $1 + s_2$ for the three
295	genotypes AA, Aa and aa in the demes or meta-populations occupying the two
296	environments, respectively. For the selection coefficients s_1 and s_2 , we used all
297	combinations of coefficient values 0, 0.001, 0.01 and 0.1 and thus included cases of
298	conditional neutrality (CN) in which either $s_1 > 0$, $s_2 = 0$ or $s_1 = 0$, $s_2 > 0$ as well as
299	cases of antagonistic pleiotropy (AP) with $s_1 > 0, s_2 > 0$ with both symmetric ($s_1 =$
300	s_2) and asymmetric ($s_1 \neq s_2$) regimes. CN regimes are by definition always
301	asymmetric and AP regimes are defined such that both alleles confer higher fitness in
302	their respective local environments but reduced fitness in the other, both with respect
303	to the alternate allele and to the fitness conferred in their home environments. We

further varied the time of the onset of selection from $T_s = 400, 4,000, 40,000$ and 400,000 generations ago.

306

307	For all models, we considered selection on standing variation with the initial
308	frequency of the derived allele at $f_1 = f_2 = 0.1$ in all demes. For model \mathcal{M}_1 , we
309	additionally investigated the case of <i>de-novo</i> mutations with initial frequencies
310	$f_1 = 1/2N_1$ and $f_2 = 0$. These two cases represent the often-considered starting points
311	for local adaptation (Peter et al., 2012). Dependent on the selection regime and due to
312	the stochasticity of drift, the derived allele A may sometimes be lost and hence be
313	absent in the simulation of selected loci (especially in the <i>de-novo</i> case). Because such
314	a scenario contains no signal for detection of selection, we excluded such simulations
315	(via the -SFC parameter in msms).
316	
316 317	Assessing accuracy We inferred selection by contrasting the locus-specific
	Assessing accuracy We inferred selection by contrasting the locus-specific migration rates m_{12} and m_{21} against their neutral estimates \hat{m}_{12} and \hat{m}_{21} (Figure 3).
317	
317 318	migration rates m_{12} and m_{21} against their neutral estimates \hat{m}_{12} and \hat{m}_{21} (Figure 3).
317 318 319	migration rates m_{12} and m_{21} against their neutral estimates \hat{m}_{12} and \hat{m}_{21} (Figure 3). We evaluated the performance of our LSD implementation at identifying selected
317 318 319 320	migration rates m_{12} and m_{21} against their neutral estimates \hat{m}_{12} and \hat{m}_{21} (Figure 3). We evaluated the performance of our LSD implementation at identifying selected loci under these simulations by plotting the true positive rate (TPR) against the false
317318319320321	migration rates m_{12} and m_{21} against their neutral estimates \hat{m}_{12} and \hat{m}_{21} (Figure 3). We evaluated the performance of our LSD implementation at identifying selected loci under these simulations by plotting the true positive rate (TPR) against the false positive rate (FPR) under the choice of HDPI thresholds from 0 to 1, and reporting

325 coefficients, under the expectation that deviations from symmetry in the joint

326 posterior should reflect asymmetry in selection regimes. Specifically, we determined

327 for each locus *l* the posterior mass

$$\sigma_l = \int I\left(\frac{m_{21}}{m_{12}} < \frac{\widehat{m}_{21}}{\widehat{m}_{12}}\right) \pi_l d_{\theta},$$

where the indicator function $I(\cdot)$ limits the integral to cases in which the deviation of one of the migration rates has reduced more than the reciprocal migration rate compared to a proportional deviation of both migration rates from their neutral estimates \hat{m}_{12} and \hat{m}_{21} . From this, we calculate the asymmetry as

$$a = \log \frac{\sigma}{1 - \sigma},$$

332 where $\sigma = \frac{1}{n_s} \sum \sigma_l$ across loci simulated under selection.

333

334 **2.4 Case study**

335 To evaluate the performance of LSD on real data, we applied it to the detection of 336 loci underlying floral guides in two parapatric subspecies of Antirrhinum majus. 337 *A majus* is an herbaceous, perennial, flowering plant native to the western 338 Mediterranean. Owing to its diploid inheritance, relatively short generation time, 339 ability for both self- and cross-pollination and rich and varied flower morphology, 340 A.majus has lent itself as a model organism for over a century, with several key floral 341 genes being first identified within this genus (Schwarz-Sommer, Davies, & Hudson, 342 2003; Schwinn et al., 2006). Two subspecies, A.m. striatum and A.m. pseudomajus, differ

343	in the flower colouration that signposts the pollinator entry point, and form a natural
344	hybrid zone in the Pyrenees that constitutes a benchmark example of divergent
345	selection driven by assortative mating (Whibley et al., 2006). Several genetic loci have
346	been shown to control the differences in these floral patterns (Bradley et al., 2017;
347	Schwinn et al., 2006), and recently, Tavares et al. (2018) produced evidence of
348	genomic signatures of selection at the ROS and EL loci, of which the former has been
349	further functionally validated. Here, we apply LSD to sequencing data from this
350	study to isolate the ROS and EL loci and to characterise their underlying selection
351	signal.
352	
353	We modelled this study system via a simple representation (model \mathcal{M}_1) of one
354	population on either side of the hybrid zone (YP1 (<i>A.m.striatum</i>) vs MP2
355	(<i>A.m.pseudomajus</i>); populations 2.5km apart) and via a more inclusive island-
356	continent model (model \mathcal{M}_2) comprising three (distant) populations each per
357	subspecies (CAM, ML, YP1 (<i>A.m.striatum</i>) vs MP2, CHI, CIN (<i>A.m.pseudomajus</i>);
358	Figure S5), allowing all N_E and m_E parameters to be free. Given that these populations
359	were previously sequenced using pool-seq (Tavares et al., 2018), we simulated
360	pooling of individuals in-silico by pooling twice the amount of msms coalescent
361	(haploid) samples as (diploid) individuals in the pooled populations via LSD-High.
362	Samples were drawn from a parametric (negative binomial) distribution fitted to the

364	Dutang, 2015) and LSD-High. We focused our analysis on chromosome 6 on which
365	the ROS and EL loci lie. To acquire empirical estimates of neutral demographic
366	parameters, we excluded all genomic regions present in the structural annotation
367	plus 10kb flanking regions to generate a subset of putatively neutral regions on that
368	chromosome. The inference of selection was then performed in sliding windows of
369	size 10kb with a 1kb step-size. The mutation rate for the simulations (1.7*10-8 per site
370	per generation) and the filtering of the empirical and simulated data followed those
371	reported in the original study, though we mapped on a more recent and complete
372	version of the <i>A.majus</i> reference (version 3.0; M. Li et al., 2019).
373	
374	3 RESULTS
375	3.1 Two-deme IM case (model \mathcal{M}_1)
376	Power to identify selected loci Our LSD implementation demonstrated a high
377	diagnostic ability to discriminate between neutral and selected loci (AUC $>> 0.9$)

across a large range of migration-selection regimes (Figure 4). Notably, our results

point towards an optimal, intermediate rate of migration (*M*=5) at which selection is

380 best detectable with high AUC values across a large set of selection coefficients. As

381 migration rates increase (*M*=50), migration from the foreign deme where selection

acts on the alternate allele increasingly inhibits the build-up of beneficial

383 polymorphisms in the local deme, in which case the power to detect selected loci

384	becomes limited to scenarios under longer regimes of strong selection. At lower
385	migration rates (M =0.5), long regimes of selection permit the detection of loci under
386	the lowest selection coefficients, but power decreases for younger times compared to
387	scenarios simulated under intermediate migration rates. This owes to LSD relying on
388	the reduction of effective migration relative to neutral or genome-wide expectations,
389	which in this case is already at a low level.
390	
391	The power to detect selection increased with increasing selection coefficients
392	in the case of AP if selection coefficients were similar ($s_1 \approx s_2$, cells along diagonal of
393	sub-panels in Figure 4). In such cases, stronger selection coefficients on alternate
394	alleles increasingly polarise and ultimately maintain larger allele frequency
395	differences between the two environments. In tandem, the power to detect selection
396	also generally increased with the time since the onset of selection T_S . However, in
397	most cases of CN or when $s_1 \gg s_2$ or $s_1 \ll s_2$, one of the two alleles may proceed to
398	fixation, in which case the power to detect selection decays or is lost (e.g. cells along
399	bottom row and left-most column of sub-panels in Figure 4). This is particularly
400	evident when the onset of selection is more distant in the past and implies that cases
401	of CN may be harder to detect than AP as their signatures of selection are often more
402	transient and decay more rapidly.

404	To evaluate the false discovery rate (FDR) of LSD at different migration rates,
405	we also conducted simulations in the absence of selection. For intermediate
406	migration rates (M =5), LSD performed better than FDR expectations (Figure S2B); at
407	a defined threshold of 0.95, LSD resulted in a false positive rate of 2%. For the low
408	and high migration rates (M =0.5, 50) however, LSD performed worse than FDR
409	expectations, producing false positive rates higher than expected with false positive
410	rates of 44% and 8% respectively at a threshold of 0.95 (Figures S2A and S2C). This
411	optimal, intermediate rate of migration for minimising FDR is consistent with the
412	optimal migration rate for detecting selection.
413	
414	Power to characterise (a)symmetry A benefit of LSD over classic outlier
415	approaches is that it can provide insight into trade-offs underlying selection, by
415 416	
	approaches is that it can provide insight into trade-offs underlying selection, by
416	approaches is that it can provide insight into trade-offs underlying selection, by identifying cases in which selection acts at equal strength in the two demes or
416 417	approaches is that it can provide insight into trade-offs underlying selection, by identifying cases in which selection acts at equal strength in the two demes or metapopulations (symmetric AP), or whether selection coefficients differ
416 417 418	approaches is that it can provide insight into trade-offs underlying selection, by identifying cases in which selection acts at equal strength in the two demes or metapopulations (symmetric AP), or whether selection coefficients differ considerably (CN or asymmetric AP). As shown in Figure 5, the inferred
416 417 418 419	approaches is that it can provide insight into trade-offs underlying selection, by identifying cases in which selection acts at equal strength in the two demes or metapopulations (symmetric AP), or whether selection coefficients differ considerably (CN or asymmetric AP). As shown in Figure 5, the inferred (a)symmetry generally reflected the true (a)symmetry of the underlying selection
416 417 418 419 420	approaches is that it can provide insight into trade-offs underlying selection, by identifying cases in which selection acts at equal strength in the two demes or metapopulations (symmetric AP), or whether selection coefficients differ considerably (CN or asymmetric AP). As shown in Figure 5, the inferred (a)symmetry generally reflected the true (a)symmetry of the underlying selection coefficients well, particularly for regimes with high power to correctly identify
416 417 418 419 420 421	approaches is that it can provide insight into trade-offs underlying selection, by identifying cases in which selection acts at equal strength in the two demes or metapopulations (symmetric AP), or whether selection coefficients differ considerably (CN or asymmetric AP). As shown in Figure 5, the inferred (a)symmetry generally reflected the true (a)symmetry of the underlying selection coefficients well, particularly for regimes with high power to correctly identify selected loci (AUC > 0.95). In lower powered regimes, we observe a few cases where

425

426	Standing variation vs de-novo A lower initial frequency of the derived allele
427	may be expected to affect LSD's power to identify selected loci and its power to
428	capture the underlying (a)symmetry of selection coefficients. However, we find that
429	results for simulations building on selection from the <i>de-novo</i> and standing variation
430	cases showed generally very similar patterns (Figures 4, 5 and S3). One notable
431	exception however was the inaccurate inference of (a)symmetry in a few regimes
432	with high power (AUC > 0.95) in the <i>de-novo</i> case (e.g. blue cells along diagonals in
433	sub-panels at $T_s = 4,000$ in Figure S3B). This we attribute to the lower initial
434	frequency of the derived allele A and consequently longer time needed to reach drift-
435	migration-selection equilibrium for the <i>de-novo</i> cases. This is explored further in the
436	discussion.
437	
438	3.2 More complex cases (models \mathcal{M}_2 and \mathcal{M}_3)

A key feature of LSD is its potential for explicit accommodation of complex demographies, which when not properly accounted for can lead to an inflation in false positives (De Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014; Foll & Gaggiotti, 2008; Lotterhos & Whitlock, 2014). Despite the added complexity of models \mathcal{M}_2 and \mathcal{M}_3 , results were generally very similar to that of model \mathcal{M}_1 , with high power to identify selected loci (AUC >> 0.9) across a large range of migrationselection regimes, an optimal migration rate at an intermediate value (M=5), a similar

446	dependence of power to detect selection on s_1 , s_2 and T_s , and inferences of
447	(a)symmetry that reflected well the underlying (a)symmetry of selection coefficients
448	(Figures 6 and S4). A notable difference compared to model ${\mathcal M}_1$ was the longer
449	amount of time needed to generate a high power to detect selection across a range of
450	migration values in models ${\cal M}_2$ (Figures 6A) and especially ${\cal M}_3$ (Figure S4A), which
451	we attribute to the lower mutation rates used in these models compared to ${\mathcal M}_1$.
452	
453	3.3 Case study results
454	We identified a region of reduced effective migration between 52.9-53.2MB on
455	chromosome 6 (Figure 7), consistent with the location of the ROS and EL loci
456	(Tavares et al., 2018). Under model ${\cal M}_1$, this region is characterised by a set of
457	smaller, multiple peaks (posterior probability of being divergent from neutral
458	expectations > 99.9%) reflecting signatures identified by previous authors, with the
459	left-most peaks (shaded in red) corresponding to ROS1 and ROS2 and the right peaks
460	(shaded in green) to EL (Figure 7B). The joint posterior probability distributions
461	reveal symmetric selection acting on both regions, implying that selection acts with
462	similar strength in the two populations. Under Model ${\mathcal M}_{2\prime}$ we find fewer outliers in
463	the ROS-EL region than in model ${\cal M}_1$, with the left-most peak in this region
464	corresponding to ROS2 and the right peaks consistent with EL. ROS1 appears to be
465	less of an outlier than in model \mathcal{M}_1 (posterior probability of being divergent ~99.8%).

In contrast to model *M*₁, the ROS2 and EL peaks in model *M*₂ are characterised by
asymmetry, specifically with stronger selection acting in the populations of *A.m.pseudomajus* than in the populations of *A.m.striatum*.

469

470 **4 DISCUSSION**

471 The trajectory of selected loci depends on demographic and selection 472 parameters that define the system, namely the effective population sizes, effective 473 migration rates and selection coefficients, as well as the intrinsic properties of 474 mutation and recombination. Despite well-developed theory which relates the effect 475 of population parameters on the trajectory of selected alleles, few methods or 476 empirical studies have combined estimates of differential selection with explicit 477 quantification of migration rates and effective population sizes to examine the 478 conditions under which local adaptation can arise. In this study, we condition the 479 identification of candidate loci on divergent population parameters using explicit 480 demographic models, and demonstrate that under certain demographic-selection 481 regimes, we can both detect and elucidate the processes underlying signatures of 482 selection. While LSD is flexible regarding the choice of demographic models employed, we focus here specifically on those processes that are expected to lead to 483 484 selection against gene flow, namely local adaptation and extrinsic reproductive 485 barriers, that can be inferred via their expectation to reduce effective migration rates. 486

487 4.1 Identifying selection

488	In our simulations, we demonstrate that LSD has high diagnostic power (AUC
489	>> 0.9) to identify selected loci across a large range of demographic-selection regimes.
490	This power relies upon two fundamental aspects that contribute to generating
491	observable patterns. First, selection must effectively be realised, i.e. result in a
492	frequency shift of the beneficial allele. This requires that the strength of selection and
493	initial frequency of the beneficial allele be sufficient to both counter the
494	homogenising effect of migration (Felsenstein, 1976; Haldane, 1930; Lenormand,
495	2002; M. Slatkin, 1973; Yeaman, 2015) and the eroding effect of drift (Wright, 1931).
496	Secondly, the genomic data must contain signatures of selection that can be detected.
497	In the case of LSD, this requires that the signatures of selection are discernible from
498	the underlying noise (drift and migration) that characterises the system, as well as
499	requires sufficient time for said signatures to be reflected in the employed statistics
500	and hence in the inferred parameters N_E or m_E . A lack of power in LSD must be
501	interpreted considering these two conceptually different perspectives. Notably, the
502	lack of discrimination power for high migration rates and low selection coefficients
503	can be attributed to selection failing to realise as a consequence of local, beneficial
504	alleles being swamped by immigrant, maladaptive alleles. In contrast, the lack of
505	signal under low migration rates constitutes a methodological limitation of our
506	implemented model, as it becomes increasingly difficult to detect reductions in
507	effective migration when neutral or genome-wide migration rates are already at a

508	low level; even when selection is effectively being realised in the demes. This is
509	analogous in effect to the loss of power to detect selection in highly differentiated
510	populations in F_{ST} outlier tests (Hoban et al., 2016). Under the same principle, we
511	argue that the converse expectation can be assumed to hold for loci underlying
512	adaptive introgression or balancing selection. That is, we expect power to detect such
513	loci to be low when populations are minimally differentiated, as the detection of
514	candidate loci in these cases is informed by increased effective migration.
515	
516	The power of LSD to correctly identify selected loci generally increased with
517	stronger selection coefficients and longer time since the onset of selection, though
518	with exceptions related to differential selection on alternate alleles in multiple
519	populations. Specifically, when selection is of similar or equal strength in both demes
520	or meta-populations, we observed a strong correlation between the power to detect
521	selection and the true underlying selection coefficients. This follows theory which
522	states that the reduction in effective migration is proportional to the strength of
523	selection (Petry, 1983). However, we defer from translating these changes to explicit
524	selection coefficients because in addition to the strength of selection, changes in
525	effective migration are also a function of the recombination rate between linked and
526	selected loci (Cutter & Payseur, 2013; Lotterhos, 2019; Petry, 1983). On the other
527	hand, if selection is highly divergent in strength ($s_i \gg s_j$) between the demes or meta-
528	populations or when the onset of selection is sufficiently distant in the past, one of

529	the two selected alleles may have fixed in the system. In such a case, the signal to
530	detect selection rapidly decays (Huber, DeGiorgio, Hellmann, & Nielsen, 2016;
531	Przeworski, 2002). Finally, we observed little power to detect very recent selection,
532	intrinsically related to our choice of summary statistics (Hohenlohe, Phillips, &
533	Cresko, 2010). While a signal of selection necessarily requires time to build up, we
534	note that extending LSD to include additional statistics sensitive to linkage
535	disequilibrium such as extended haplotype homozygosity (EEH) (Szpiech &
536	Hernandez, 2014) or single density score (SDS) (Field et al., 2016) may increase the
537	power to detect more recent selection.
538	
539	From our simulations, we find that the effect of the tested selection regimes on
540	the power to detect selection is similar between the <i>de-novo</i> and standing genetic
541	variation cases (model \mathcal{M}_1 ; Figures 4 and S3A). This result relies on the fact that we
E 4 2	
542	only kept simulations of selected loci (comprising the pseudo-genomes) in which
542	only kept simulations of selected loci (comprising the pseudo-genomes) in which derived allele <i>A</i> was not lost. This particularly affected the <i>de-novo</i> case, where most
543	derived allele <i>A</i> was not lost. This particularly affected the <i>de-novo</i> case, where most
543 544	derived allele <i>A</i> was not lost. This particularly affected the <i>de-novo</i> case, where most simulations of selected loci were observed to result in the loss of allele <i>A</i> . This
543 544 545	derived allele <i>A</i> was not lost. This particularly affected the <i>de-novo</i> case, where most simulations of selected loci were observed to result in the loss of allele <i>A</i> . This implies firstly, that in most observed cases, signals of selection are most likely to
543 544 545 546	derived allele <i>A</i> was not lost. This particularly affected the <i>de-novo</i> case, where most simulations of selected loci were observed to result in the loss of allele <i>A</i> . This implies firstly, that in most observed cases, signals of selection are most likely to arise from standing variation (Jones et al., 2012; Lai et al., 2019; Reid et al., 2016), and

550

551 4.2 Revealing trade-offs underlying selection

552	A major benefit of genome scans performed under a demographic framework
553	is the capacity to infer the directionality of selection. In our simulations, we observe
554	that the (a)symmetry in the reduction of reciprocal migration rates between demes or
555	meta-populations as inferred by LSD reflects the (a)symmetry of underlying selection
556	coefficients accurately for older onsets of selection ($T_s > 4,000$, red cells inhabiting
557	left-upper triangle, blue in right-lower triangle; Figures 5, 6B, S3B, S4B), but less so
558	for more recent onsets of selection ($T_s \leq 4,000$; Figures 5, 6B, S3B, S4B). This is
559	because prior to reaching drift-migration-selection equilibrium, estimated
560	asymmetries in effective migration rates are also affected by asymmetry in allele
561	frequencies (Figure 8). This is highlighted when contrasting the standing variation
562	and <i>de-novo</i> simulation results for model ${\mathcal M}_1$, where incorrectly inferred
563	(a)symmetries are more evident in the <i>de-novo</i> case due to the lower initial frequency
564	of the derived allele ($T_s \leq 4,000$; Figures 5 and S3B). A direct link between the
565	(a)symmetry in inferred migration rates and selection coefficients is only established
566	through time as the beneficial allele increases in frequency towards an equilibrium.
567	From this, we deduce that if a strong asymmetry between effective migration rates is
568	inferred, the system may still be in the process of evolving towards an equilibrium
569	state, which may include cases in which one allele will ultimately be lost. If
570	symmetry between effective migration rates is inferred on the other hand, the system

571	is likely near-equilibrium and we can expect both alleles to be maintained in the
572	system. We note that in practice, however, the interpretation of the results is
573	straightforward. This is because the inference of directionality is only relevant if the
574	targets of selection can be detected accurately (e.g. in regimes with AUC > 0.9). For
575	these cases, we generally find the inferred (a)symmetries in migration rates to reflect
576	the true (a)symmetry in selection coefficients (Figure 5, 6B, S3B, S4B) accurately,
577	mostly because the power to detect selection is generally low if selection started
578	acting only very recently.
579	
580	The ability of LSD to infer the directionality of selection directly from genomic
581	data can greatly facilitate investigations of genetic trade-offs underlying adaptation,
582	which are seldom performed due to the considerable effort required to set up field
583	trials of recombinant lines. As shown above, the inference of symmetry in LSD-
584	identified candidates accurately reflects cases of AP with equal strength of selection
585	on alternate alleles in the contrasting environments. The inference of asymmetry on
586	the other hand can either indicate AP with stronger selection in one environment
587	than the other, or CN. From our simulations, we find that scenarios reflecting AP are
588	generally more readily detected than those reflecting CN. Given that selection acts
589	only upon one of the two alleles in the latter case, fixation becomes likely and the
590	ability to detect selection is transient. This implies that there may be an observation
591	bias between AP and CN; such that the inference of CN may be comparatively

592	under-represented. This bias appears to contrast with that reported in ecological
593	literature, where instances of AP are more rarely detected compared to CN due to
594	the additional power required to detect variance in fitness concurrently in two
595	environments (Anderson et al., 2013). LSD may further complement field trials as
596	such experiments typically test genetic trade-offs under contemporary selective
597	environments, which may not reflect past conditions driving the observed adaptive
598	responses, but whose signature may still be inferred from genomic data. Using LSD
599	to formulate expectations about fitness effects and to inform the choice of
600	environmental conditions under which to validate identified candidate genes can
601	thus greatly aid such experiments.

602

603 **4.3 Real-world application**

604 We demonstrate a real-world application of LSD by successfully isolating and 605 characterising the selection signal of loci underlying an extrinsic reproductive barrier 606 in *A* majus. Our results from contrasting a single population (model \mathcal{M}_1) and three 607 populations (model \mathcal{M}_2) per subspecies both identified the ROS and EL loci which 608 were previously reported to underlie differences in floral patterns between these 609 subspecies (Tavares et al., 2018). Interestingly however, our results show a different signal of (a)symmetry between the tested models \mathcal{M}_1 and \mathcal{M}_2 , with the peaks 610 611 corresponding to the ROS and EL loci characterised by symmetry under model \mathcal{M}_{1} 612 in contrast to a pattern of asymmetry under model $\mathcal{M}_{2\prime}$ specifically with stronger

613 selection inferred to act in the populations of *A.m.pseudomajus* than in the

614	populations of <i>A.m.striatum</i> . We stress that the interpretation of LSD genome scans is
615	conditional on the model and populations used, such that in our example model \mathcal{M}_1
616	uncovers population-pair specific differences at the contact zone (YP1 vs MP2) while
617	model \mathcal{M}_2 reveals common (global) differences between the two subspecies. We do
618	not necessarily expect these two signals to be identical, and indeed, Tavares et al.
619	(2018) also found differences between distant and close A.m.striatum-A.m.pseudomajus
620	population pairs in terms of observed $ heta$ w and $F_{ m ST}$ summary statistics. Given that there
621	is no evident difference in environment or pollinators on opposite sides of the hybrid
622	zone, reproductive barriers in this system have often been proposed to be maintained
623	through assortative mating mediated by pollinator preference for the dominant
624	(most common) flower phenotype in a given area and the subspecies' distinct flower
625	colouration. However, whether selection on alternate alleles follows the same
626	positive frequency-dependence across the broader scale including more distant
627	populations is currently unknown. The difference in signal between local pairs at the
628	contact zone (\mathcal{M}_1) and the global set (\mathcal{M}_2) may be generated by different frequency-
629	dependent selection curves for the alternate alleles and potentially loss of AP away
630	from the contact zone (Figure S6).
631	

631

632 5 CONCLUSION

633	When selection occurs in the presence of gene flow, selected sites are
634	predicted to exhibit gene genealogies with demographic parameters divergent from
635	those of neutral non-linked sites, leading to heterogeneity in demography across the
636	genome. In this study, we condition the identification of candidate loci on divergent
637	population parameters using explicit demographic models, and demonstrate that
638	under certain conditions of migration, selection strength and onset time, we can both
639	detect and elucidate the underlying processes driving signatures of selection.
640	Incorporating and utilising the inference of demographic parameters in the
641	identification of candidate loci address some key issues and assumptions that prevail
642	in the discrimination of selected variants, namely 1) the explicit consideration of
643	demography, 2) heterogeneity in drift and gene flow across the genome, 3)
644	information synthesis of multiple, complementary summary statistics, and 4)
645	transparency towards underlying driving mechanisms.
646	
647	Our power analysis using simulations shows that LSD, and our
648	implementation of it, represents a powerful method for detecting selection that is
649	robust to different and complex demographies. Furthermore, given that certain
650	demographic parameters e.g. migration are not inherently commutative, we show
651	that the directionality or population-specificity in selection can be inferred. This can
652	facilitate identifying in which environment selection acts and hence elucidate genetic
653	trade-offs; bridging an analytical divide between experimental ecology and

654	population genomics. Importantly, the proposed approach as well as our
655	implementation is not limited to the demographic models investigated here, nor the
656	explicit choice of simulation programs or summary statistics used. This flexibility
657	and customisability of LSD can facilitate e.g. more realistic accommodation of
658	recombination (via different coalescent simulators), improved detection of more
659	recent selection (via linkage-informative statistics), and inference of other modes of
660	selection (e.g. balancing selection) and adaptive introgression by conditioning the
661	detection of selection on e.g. increase (rather than reduction) of m_E or changes in N_E
662	relative to neutral expectations.
663	
664	ACKNOWLEDGEMENTS
665	We would like to thank Niklaus Zemp for providing IT support. This work

666 was supported by the Swiss National Science Foundation (SNSF) grants

667 31003A_160123 and 31003A_182675 awarded to AW and grant 31003A_173062

awarded to DW.

670 **REFERENCES**

672	Anderson, J. T., Lee, C. R., Rushworth, C., Colautti, R., & Mitchell-Olds, T. (2013).
673	Genetic tradeoffs and conditional neutrality contribute to local adaptation.
674	Molecular Ecology, 22(3), 699–708. https://doi.org/10.1038/jid.2014.371
675	Barton, N., & Bengtsson, B. O. (1986). The barrier to genetic exchange between
676	hybridising populations. <i>Heredity</i> , 57(3), 357–376.
677	https://doi.org/10.1038/hdy.1986.135
678	Beaumont, M. A., & Nichols, R. A. (1996). Evaluating loci for use in the genetic

- analysis of population structure. *Proceedings of the Royal Society B: Biological Sciences*, 263(1377), 1619–1626. https://doi.org/10.1098/rspb.1996.0237
- Begun, D. J., Holloway, A. K., Stevens, K., Hillier, L. W., Poh, Y. P., Hahn, M. W., ...
 Langley, C. H. (2007). Population genomics: Whole-genome analysis of
 polymorphism and divergence in Drosophila simulans. *PLoS Biology*, 5(11),
- 684 2534–2559. https://doi.org/10.1371/journal.pbio.0050310
- Bierne, N., Welch, J., Loire, E., Bonhomme, F., & David, P. (2011). The coupling
 hypothesis: Why genome scans may fail to map local adaptation genes. *Molecular Ecology*, 20(10), 2044–2072. https://doi.org/10.1111/j.1365294X.2011.05080.x
- Biswas, S., & Akey, J. M. (2006). Genomic insights into positive selection. *Trends in Genetics*, 22(8), 437–446. https://doi.org/10.1016/j.tig.2006.06.005
- Bonhomme, M., Chevalet, C., Servin, B., Boitard, S., Abdallah, J., Blott, S., &
 SanCristobal, M. (2010). Detecting selection in population trees: The Lewontin
 and Krakauer test extended. *Genetics*, 186(1), 241–262.
- 694 https://doi.org/10.1534/genetics.110.117275
- Bradley, D., Xu, P., Mohorianu, I. I., Whibley, A., Field, D., Tavares, H., ... Coen, E.
 (2017). Evolution of flower color pattern through selection on regulatory small
 RNAs. *Science*, 358(6365), 925–928. https://doi.org/10.1126/science.aao3526
- Charlesworth, B. (2009). Fundamental concepts in genetics: Effective population size
 and patterns of molecular evolution and variation. *Nature Reviews Genetics*, 10(3),
 195–205. https://doi.org/10.1038/nrg2526
- Charlesworth, B., Nordborg, M., & Charlesworth, D. (1997). The effects of
 background and interference selection on patterns of genetic variation in
 subdivided populations. *Genetics Research*, 70, 155–174.
- 704 https://doi.org/10.1534/genetics.115.178558
- Cutter, A. D., & Payseur, B. A. (2013). Genomic signatures of selection at linked sites:
 Unifying the disparity among species. *Nature Reviews Genetics*, 14(4), 262–274.
 https://doi.org/10.1038/nrg3425
- 708 De Villemereuil, P., Frichot, É., Bazin, É., François, O., & Gaggiotti, O. E. (2014).
- Genome scan methods against more complex models: When and how much
 should we trust them? *Molecular Ecology*, 23(8), 2006–2019.

711 https://doi.org/10.1111/mec.12705 Delignette-Muller, M. L., & Dutang, C. (2015). fitdistrplus: An R package for fitting 712 713 distributions. Journal of Statistical Software, 64(4), 1–34. 714 https://doi.org/10.18637/jss.v064.i04 715 Eckert, A. J., Van Heerwaarden, J., Wegrzyn, J. L., Nelson, C. D., Ross-Ibarra, J., González-Martínez, S. C., & Neale, D. B. (2010). Patterns of population structure 716 717 and environmental associations to aridity across the range of loblolly pine (Pinus 718 taeda L., Pinaceae). Genetics, 185(3), 969–982. 719 https://doi.org/10.1534/genetics.110.115543 720 Edmonds, C. a, Lillie, A. S., & Cavalli-Sforza, L. L. (2004). Mutations arising in the 721 wave front of an expanding population. Proceedings of the National Academy of 722 Sciences of the United States of America, 101(4), 975–979. 723 https://doi.org/10.1073/pnas.0308064100 724 Engelhardt, B. E., & Stephens, M. (2010). Analysis of population structure: A unifying 725 framework and novel methods based on sparse factor analysis. PLoS Genetics, 726 6(9). https://doi.org/10.1371/journal.pgen.1001117 727 Ewing, G., & Hermisson, J. (2010). MSMS: A coalescent simulation program 728 including recombination, demographic structure and selection at a single locus. 729 Bioinformatics, 26(16), 2064–2065. https://doi.org/10.1093/bioinformatics/btq322 730 Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic Consequences of Range 731 Expansions. Annual Review of Ecology, Evolution, and Systematics, 40(1), 481–501. 732 https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 733 Fay, J. C., Wyckoff, G. J., & Wu, C. I. (2002). Testing the neutral theory of molecular 734 evolution with genomic data from Drosophila. *Nature*, 415(6875), 1024–1026. 735 https://doi.org/10.1038/4151024a 736 Felsenstein, J. (1976). The theoretical population genetics of variable selection and 737 migration. Annu. Rev. Genet, 10, 253-280. 738 Field, Y., Boyle, E. A., Telis, N., Gao, Z., Gaulton, K. J., Yengo, L., ... Pritchard, J. K. 739 (2016). Detection of human adaptation during the past 2000 years, 354(6313), 740 760–764. https://doi.org/10.1126/science.aag0776.Detection 741 Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci 742 appropriate for both dominant and codominant markers: A Bayesian 743 perspective. Genetics, 180(2), 977-993. https://doi.org/10.1534/genetics.108.092221 744 François, O., Martins, H., Caye, K., & Schoville, S. D. (2016). Controlling false 745 discoveries in genome scans for selection. *Molecular Ecology*, 25(2), 454–469. 746 https://doi.org/10.1111/mec.13513 Fusco, D., & Uyenoyama, M. K. (2011). Sex-specific incompatibility generates locus-747 748 specific rates of introgression between species. *Genetics*, 189(1), 267–288. 749 https://doi.org/10.1534/genetics.111.130732 750 Galtier, N., Depaulis, F., & Barton, N. H. (2000). Detecting bottlenecks and selective 751 sweeps from DNA sequence polymorphism. *Genetics*, 155(2), 981–987.

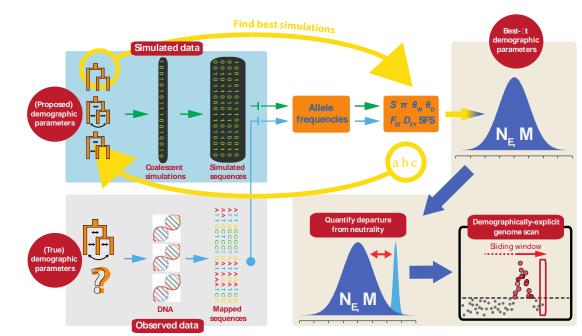
752 Gautier, M. (2015). Genome-wide scan for adaptive divergence and association with 753 population-specific covariates. *Genetics*, 201(4), 1555–1579. 754 https://doi.org/10.1534/genetics.115.181453 Gossmann, T. I., Woolfit, M., & Eyre-Walker, A. (2011). Quantifying the variation in 755 756 the effective population size within a genome. *Genetics*, 189(4), 1389–1402. 757 https://doi.org/10.1534/genetics.111.132654 758 Grossman, S. R., Shylakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., 759 ... Sabeti, P. C. (2010). A Composite of Multiple Signals Distinguishes Causal 760 Variants in Regions of Positive Selection. Science, 327, 883-886. 761 Günther, T., & Coop, G. (2013). Robust identification of local adaptation from allele 762 frequencies. Genetics, 195(1), 205–220. https://doi.org/10.1534/genetics.113.152462 763 Haldane, J. B. S. (1930). A mathematical theory of natural and artificial selection. 764 (Part VI, Isolation.). Math. Proc. Cambridge Philos. Soc., 26, 220–230. 765 Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., ... 766 Whitlock, M. C. (2016). Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. American Naturalist, 188(4), 379–397. 767 768 https://doi.org/10.1086/688018 769 Hofer, T., Ray, N., Wegmann, D., & Excoffier, L. (2009). Large allele frequency 770 differences between human continental groups are more likely to have occurred 771 by drift during range expansions than by selection. Annals of Human Genetics, 772 73(1), 95–108. https://doi.org/10.1111/j.1469-1809.2008.00489.x 773 Hohenlohe, P. A., Phillips, P. C., & Cresko, W. A. (2010). Using population genomics 774 to detect selection in natural populations: Key concepts and methodological 775 considerations. International Journal of Plant Sciences, 171(9), 1059–1071. 776 https://doi.org/10.1086/656306 777 Horscroft, C., Ennis, S., Pengelly, R. J., Sluckin, T. J., & Collins, A. (2019). Sequencing 778 era methods for identifying signatures of selection in the genome. Briefings in 779 Bioinformatics, 20(6), 1997-2008. https://doi.org/10.1093/bib/bby064 780 Huber, C. D., DeGiorgio, M., Hellmann, I., & Nielsen, R. (2016). Detecting recent 781 selective sweeps while controlling for mutation rate and background selection. 782 Molecular Ecology, 25(1), 142–156. https://doi.org/10.1111/mec.13351 783 Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., ... Kingsley, D. M. (2012). The genomic basis of adaptive evolution in threespine 784 785 sticklebacks. Nature, 484(7392), 55-61. https://doi.org/10.1038/nature10944 786 Joyce, P., & Marjoram, P. (2008). Approximately sufficient statistics and bayesian 787 computation. Statistical Applications in Genetics and Molecular Biology, 7(1). 788 https://doi.org/10.2202/1544-6115.1389 789 Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. *Ecology* 790 Letters, 7(12), 1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x 791 Kingman, J. F. C. (1982). The coalescent. Stochastic Processes and Their Applications, 792 13(3), 235–248. https://doi.org/10.1016/0304-4149(82)90011-4

793	Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of Next
794	Generation Sequencing Data. <i>BMC Bioinformatics</i> , 15(1), 356.
795	https://doi.org/10.1186/s12859-014-0356-4
796	Lai, Y. T., Yeung, C. K. L., Omland, K. E., Pang, E. L., Hao, Y., Liao, B. Y., Li, S. H.
797	(2019). Standing genetic variation as the predominant source for adaptation of a
798	songbird. Proceedings of the National Academy of Sciences of the United States of
799	<i>America</i> , 116(6), 2152–2157. https://doi.org/10.1073/pnas.1813597116
800 801	Lenormand, T. (2002). Gene flow and the limits to natural selection. <i>Trends in Ecology</i> & <i>Evolution</i> , 17(4), 183–189. https://doi.org/10.1111/j.1365-2184.1976.tb01248.x
802	Li, H., & Stephan, W. (2006). Inferring the demographic history and rate of adaptive
803	substitution in Drosophila. <i>PLoS Genetics</i> , 2(10), 1580–1589.
804	https://doi.org/10.1371/journal.pgen.0020166
805	Li, J., Li, H., Jakobsson, M., Li, S., SjÖdin, P., & Lascoux, M. (2012). Joint analysis of
806	demography and selection in population genetics: Where do we stand and
807	where could we go? <i>Molecular Ecology</i> , 21(1), 28–44.
808	https://doi.org/10.1111/j.1365-294X.2011.05308.x
809	Li, M., Zhang, D., Gao, Q., Luo, Y., Zhang, H., Ma, B., Xue, Y. (2019). Genome
810	structure and evolution of Antirrhinum majus L. Nature Plants, 5(2), 174–183.
811	https://doi.org/10.1038/s41477-018-0349-9
812	Lotterhos, K. E. (2019). The effect of neutral recombination variation on genome
813	scans for selection. G3: Genes, Genomes, Genetics, 9(6), 1851–1867.
814	https://doi.org/10.1534/g3.119.400088
815	Lotterhos, K. E., & Whitlock, M. C. (2014). Evaluation of demographic history and
816	neutral parameterization on the performance of FST outlier tests. <i>Molecular</i>
817	<i>Ecology</i> , 23(9), 2178–2192. https://doi.org/10.1111/mec.12725
818	Luikart, G., England, P. R., Tallmon, D., Jordan, S., & Taberlet, P. (2003). The power
819	and promise of population genomics: From genotyping to genome typing.
820	Nature Reviews Genetics, 4(12), 981–994. https://doi.org/10.1038/nrg1226
821	Marjoram, P., & Tavaré, S. (2006). Modern computational approaches for analysing
822	molecular genetic variation data. <i>Nature Reviews Genetics</i> , 7(10), 759–770.
823	https://doi.org/10.1038/nrg1961
824	Naisbit, R. E., Jiggins, C. D., & Mallet, J. (2001). Disruptive sexual selection against
825	hybrids contributes to speciation between Heliconius cydno and Heliconius
826	melpomene. Proceedings of the Royal Society B: Biological Sciences, 268(1478), 1849–
827	1854. https://doi.org/10.1098/rspb.2001.1753
828	Nosil, P., Vines, T. H., & Funk, D. J. (2005). Perspective: Reproductive Isolation
829	Caused By Natural Selection Against Immigrants From Divergent Habitats.
830	Evolution, 59(4), 705. https://doi.org/10.1554/04-428
831	Oleksyk, T. K., Smith, M. W., & O'Brien, S. J. (2010). Genome-wide scans for
832	footprints of natural selection. <i>Philosophical Transactions of the Royal Society B:</i>
833	<i>Biological Sciences</i> , 365(1537), 185–205. https://doi.org/10.1098/rstb.2009.0219

834 835 836 837 838 839 840 841 842	 Peter, B. M., Huerta-Sanchez, E., & Nielsen, R. (2012). Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation. <i>PLoS</i> <i>Genetics</i>, 8(10). https://doi.org/10.1371/journal.pgen.1003011 Petry, D. (1983). The effect on neutral gene flow of selection at a linked locus. <i>Theoretical Population Biology</i>, 23(3), 300–313. https://doi.org/10.1016/0040- 5809(83)90020-5 Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome- wide association studies. <i>Nature Genetics</i>, 38(8), 904–909.
843	https://doi.org/10.1038/ng1847
844	Przeworski, M. (2002). The Signature of Positive Selection at Randomly Chosen Loci.
845	Genetics, 162(4), 1179–1189.
845 846	Reid, N. M., Proestou, D. A., Clark, B. W., Warren, W. C., Colbourne, J. K., Shaw, J.
847	R., Whitehead, A. (2016). The genomic landscape of rapid repeated
848	evolutionary adaptation to toxic pollution in wild fish. <i>Science</i> , 354(6317), 1305–
849	1308. https://doi.org/10.1126/science.aah4993
850	Rundle, H. D., & Whitlock, M. C. (2001). A genetic interpretation of ecologically
851	dependent isolation. Evolution, 55(1), 198–201.
852	Savolainen, O., Lascoux, M., & Merilä, J. (2013). Ecological genomics of local
853	adaptation. Nature Reviews Genetics, 14(11), 807-820.
854	https://doi.org/10.1038/nrg3522
855	Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford University Press, Oxford,
856	U.K. Retrieved from https://global.oup.com/academic/product/the-ecology-of-
857	adaptive-radiation-9780198505228?cc=ch⟨=en&
858	Schwarz-Sommer, Z., Davies, B., & Hudson, A. (2003). An everlasting pioneer: The
859	story of Antirrhinum research. <i>Nature Reviews Genetics</i> , 4(8), 655–664.
860	https://doi.org/10.1038/nrg1127
861	Schwinn, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., Martin, C.
862	(2006). A Small Family of MYB-Regulatory Genes Controls Floral Pigmentation
863	Intensity and Patterning in the Genus Antirrhinum. The Plant Cell, 18(April),
864	831–851. https://doi.org/10.1105/tpc.105.039255.1
865	Slatkin, M. (1973). Gene flow and selection in a cline. <i>Genetics</i> , 75(4), 733–756.
866	Slatkin, Montgomery, & Excoffier, L. (2012). Serial founder effects during range
867	expansion: A spatial analog of genetic drift. <i>Genetics</i> , 191(1), 171–181.
868	https://doi.org/10.1534/genetics.112.139022
869	Sousa, V. C., Carneiro, M., Ferrand, N., & Hey, J. (2013). Identifying loci under
870	selection against gene flow in isolation-with-migration models. <i>Genetics</i> , 194(1),
871	211–233. https://doi.org/10.1534/genetics.113.149211
872	Sugden, L. A., Atkinson, E. G., Fischer, A. P., Rong, S., Henn, B. M., &
873	Ramachandran, S. (2018). Localization of adaptive variants in human genomes
874	using averaged one-dependence estimation. <i>Nature Communications</i> , 9(1).

875	https://doi.org/10.1038/s41467-018-03100-7
876	Szpiech, Z. A., & Hernandez, R. D. (2014). Selscan: An efficient multithreaded
877	program to perform EHH-based scans for positive selection. <i>Molecular Biology</i>
878	and Evolution, 31(10), 2824–2827. https://doi.org/10.1093/molbev/msu211
879	Tavares, H., Whibley, A., Field, D. L., Bradley, D., Couchman, M., & Copsey, L.
880	(2018). Selection and gene flow shape genomic islands that control floral guides,
881	1–6. https://doi.org/10.1073/pnas.1801832115
882	Vitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting Natural Selection in
883	Genomic Data. Annual Review of Genetics, 47(1), 97–120.
884	https://doi.org/10.1146/annurev-genet-111212-133526
885	Wakeley, J. (2001). The coalescent in an island model of population subdivision with
886	variation among demes. Theoretical Population Biology, 59(2), 133–144.
887	https://doi.org/10.1006/tpbi.2000.1495
888	Wegmann, D., Leuenberger, C., & Excoffier, L. (2009). Efficient approximate Bayesian
889	computation coupled with Markov chain Monte Carlo without likelihood.
890	Genetics, 182(4), 1207–1218. https://doi.org/10.1534/genetics.109.102509
891	Wegmann, D., Leuenberger, C., Neuenschwander, S., & Excoffier, L. (2010).
892	ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC
893	<i>Bioinformatics</i> , 11, 116. https://doi.org/10.1186/1471-2105-11-116
894	Whibley, A. C., Langlade, N. B., Andalo, C., Hanna, A. I., Bangham, A., Thébaud, C.,
895	& Coen, E. (2006). Evolutionary paths underlying flower color variation in
896	Antirrhinum. <i>Science</i> , 313(5789), 963–966. https://doi.org/10.1126/science.1129161
897	Williamson, S. H., Hernandez, R., Fledel-alon, A., Zhu, L., Nielsen, R., & Bustamante,
898	C. D. (2005). Simultaneous inference of selection and population growth from
899	patterns of variation in the human genome. PNAS, 102(22), 7882–7887. Retrieved
900	from
901	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1142382&tool=pmce
902	ntrez&rendertype=abstract
903	Wright, S. (1931). Evolution in Mendelian Populations. <i>Genetics</i> , 16(2), 97–159.
904	Yeaman, S. (2015). Local adaptation by alleles of small effect. American Naturalist,
905	186(october), S74–S89. https://doi.org/10.1086/682405
906	Zeng, K., Shi, S., & Wu, C. I. (2007). Compound tests for the detection of hitchhiking
907	under positive selection. <i>Molecular Biology and Evolution</i> , 24(8), 1898–1908.
908	https://doi.org/10.1093/molbev/msm119
909	
910	
911	DATA ACCESSIBILITY
912	
913	We provide scripts to perform LSD genome scans at the GitHub repository:

- 914 https://github.com/hirzi/LSD.
- 915

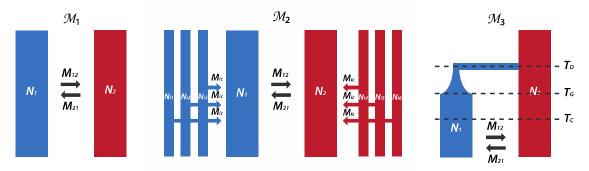

916

917 AUTHOR CONTRIBUTIONS

- 919 HL, DW, AW and SF designed the study. HL wrote the LSD scripts and performed the
- 920 simulations and analyses. HL and DW developed the methods. HL wrote the manuscript,
- 921 which all authors critically revised.
- 922
- 923

924 FIGURES

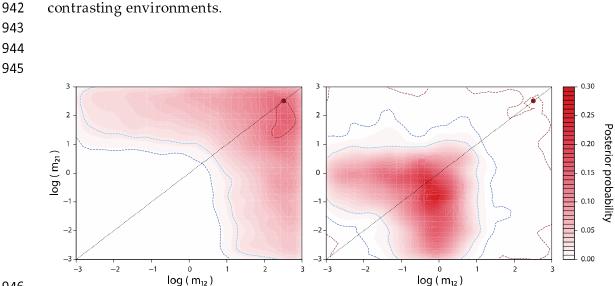
925


927 Figure 1. Identifying Loci under Selection via explicit Demographic models (LSD).

928 LSD identifies loci under selection by first estimating demographic parameters and

929 then quantifying the departure of these parameters from neutral expectations. Our

930 specific implementation of LSD employs Approximate Bayesian Computation (ABC)


- 931 for parameter estimation, and is performed in a genome scan approach.
- 932

933

Figure 2. Models used in the simulations and case study. Model \mathcal{M}_1 represents a simple 2-deme isolation-with-migration (IM) model with reciprocal migration. Model \mathcal{M}_2 represents a 6-deme island-continent model where common differences between environments are modelled by connecting the sampled demes (i.e. islands) to respective meta-population continents via gene flow. Model \mathcal{M}_3 represents a 2deme divergence with bottleneck and exponential growth model. Different deme

940 colours reflect contrasting environments. In all models, selection is inferred from the

941 deviation from neutrality of the reciprocal migration rates between the two

946

Figure 3. Joint posterior distribution of the reciprocal migration parameters, *m*¹² and 947 948 m_{21} . The neutral joint parameter estimate, as informed by the global posterior distribution of all neutral regions (Fig. S1), is indicated by the red dot in the top right 949 950 corner. The red contours represent the joint posterior distribution of a genomic region (i.e. window), with the blue contours representing the 95% (light blue) and 951 99% (dark blue) highest density region (HDR) credible intervals. Left - a window not 952 953 significantly divergent from the neutral estimate; right – a window significantly 954 divergent from the neutral estimate, with slightly higher relative reduction in m_{12} 955 than in *m*₂₁. 956 957

958

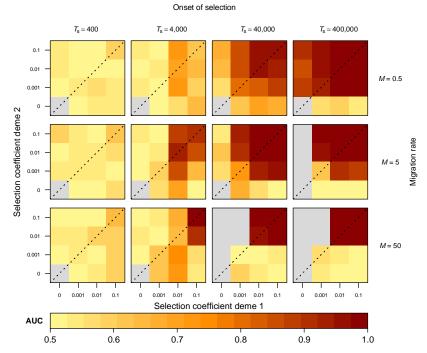
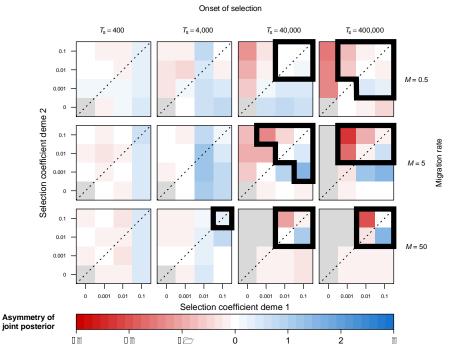



Figure 4. Simulation results showing the effect of migration rate, time of onset of 961 962 selection and deme-specific selection coefficients on LSD diagnostic performance (AUC), for the 2-deme IM model (model \mathcal{M}_1 ; standing genetic variation case). Each 963 964 cell represents a pseudo-genome simulated under a specific selection regime. The cell colours reflect the AUC calculated by the correct discrimination of 1000 neutral loci 965 966 and 50 selected loci in the 1050 loci simulated pseudo-genomes. An AUC value of 0.5 967 reflects random assignment while that of 1 reflects perfect classification (i.e. TPR=1, 968 FPR=0). Grey cells indicate selection regimes where the derived allele is always lost. 969 970

972 **Figure 5**. Simulation results showing the effect of migration rate, time of onset of

973 selection and deme-specific selection coefficients on LSD inferred (a)symmetry of

selection, for the 2-deme IM model (model \mathcal{M}_1 ; standing genetic variation case).

975 Each cell represents a pseudo-genome simulated under a specific selection regime.

976 The cell colours reflect the (a)symmetry values inferred by LSD, where a value of 0

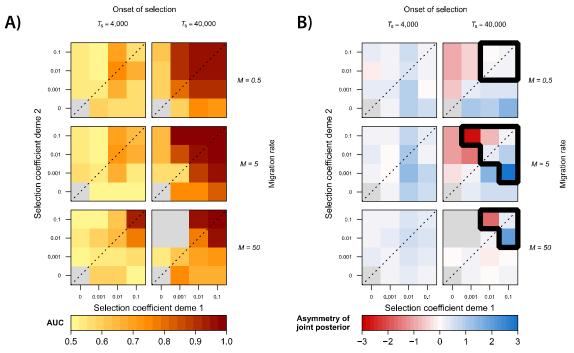
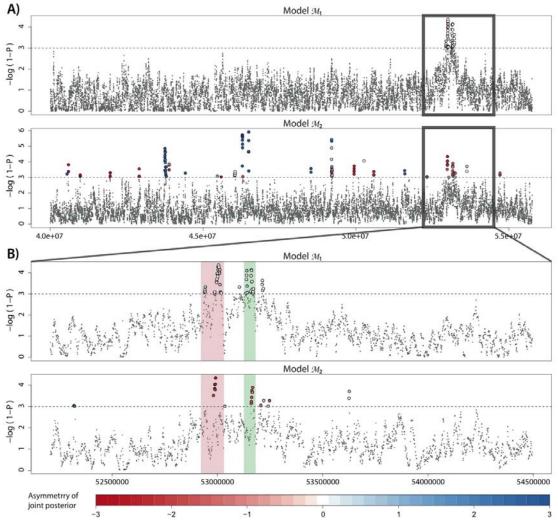
977 reflects perfect symmetry of the joint posterior while values divergent from this

978 reflect asymmetry. Cells surrounded by thick lines indicate the values of

979 (a)symmetry for regimes expected to generate meaningful signal (i.e. AUC>0.95).

980 Grey cells indicate selection regimes where the derived allele is always lost.

981

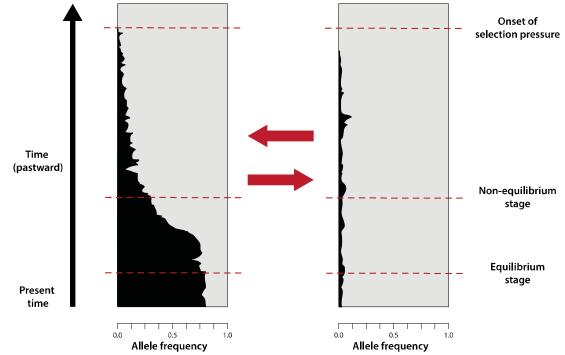


Figure 6. Simulation results for a 2-deme divergence with bottleneck and exponential 984 985 growth model (model \mathcal{M}_{3} ; standing genetic variation case) showing the effect of migration rate, time of onset of selection and deme-specific selection coefficients on 986 987 A) LSD diagnostic performance (AUC) and B) LSD inferred (a)symmetry of selection. 988 Divergence time of the two populations, *T*_D, is 200,00 generations ago. Each coloured 989 cell represents a pseudo-genome simulated under a specific selection regime. Grey 990 cells indicate selection regimes where the derived allele is always lost. B) Cells 991 surrounded by thick lines indicate the values of (a)symmetry for regimes expected to 992 generate meaningful signal (i.e. AUC>0.95). 993

996 **Figure 7.** Manhattan plot for the LSD scan of the *A.m. striatum-A.m. pseudomajus* system. The posterior probability of observing the neutral estimate for 10kb windows 997 998 (1kb step-size) is plotted for A) a 16Mb region of chromosome 6, under models \mathcal{M}_1 999 and \mathcal{M}_{2} , and B) a 2Mb zoomed-in region of chromosome 6 focusing on the ROS-EL region, under the same two models. The horizontal dashed line indicates a 99.9% 1000 1001 posterior probability of deviating from neutral expectations. Colour for loci above 1002 this threshold denotes the joint (*m*₁₂-*m*₂₁) posterior (a)symmetry, and reflects the 1003 relative strengths of selection in the two divergent demes or subspecies. A large 1004 divergent peak centered around the ROS-EL region (A) is composed of a set of 1005 smaller peaks (B), consistent with the ROS (red) and EL (green) loci. 1006

1008

Figure 8. Conceptual illustration of allele frequency trajectories over time in a 2-deme IM model (\mathcal{M}_1), for an example *de-novo* case and antagonistic pleiotropic selection regime. The frequency of derived allele *A* is indicated in black and that of ancestral allele *a* in grey. Red arrows represent migration. Prior to reaching drift-migrationselection equilibrium, estimated asymmetries in effective migration rates are also affected by asymmetry in allele frequencies.