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Abstract 15 

Adaptive genetic variation is a function of both selective and neutral forces. In 16 

order to accurately identify adaptive loci, it is hence critical to account for 17 

demographic history. Theory suggests that signatures of selection can be inferred 18 

using the coalescent, following the premise that the genealogies of selected loci 19 

deviate from neutral expectations. Here, we build on this theory to develop an 20 

analytical framework to identify Loci under Selection via explicit Demographic 21 

models (LSD). Under this framework, signatures of selection are inferred by 22 

demographic parameters, rather than through isolated summary statistics, and 23 

demographic history is accounted for explicitly. Given that demographic models can 24 

incorporate directionality, we show that LSD can provide information on the 25 

environment in which selection acts on a population. This can prove useful in 26 

dissecting the genomics of local adaptation, by characterising genetic trade-offs and 27 

extending the concepts of antagonistic pleiotropy and conditional neutrality from 28 

ecological theory to practical application in genomic data. We implement LSD via 29 

Approximate Bayesian Computation and demonstrate, via simulations, that LSD has 30 

high power to identify selected loci across a large range of demographic-selection 31 

regimes, including complex demographies, and that the directionality of selection 32 

can be inferred accurately for identified candidates. Using the same simulations, we 33 

further characterise the behaviour of isolation-with-migration models conducive to 34 

the study of local adaptation under regimes of selection. Finally, we apply LSD to the 35 
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detection and characterisation of loci underlying floral guides in Antirrhinum majus, 36 

and find consistent results with previous studies. 37 

 38 

Keywords 39 

Approximate Bayesian computation, demography, genetic trade-offs, genome scan, 40 

local adaptation, selection 41 

 42 

1  INTRODUCTION 43 

Elucidating the genetic basis of adaptation and identifying genetic determinants 44 

of population and species divergence are key foci in evolutionary biology. In natural 45 

systems, genetic variation is shaped by the demographic history, driven by the 46 

neutral processes of mutation, migration and drift, together with natural selection on 47 

loci underlying adaptive traits. Conceptually, while all gene genealogies are 48 

constrained by the demographic history of the population, the genealogies of loci 49 

affected by selection are perturbed and may differ in key characteristics compared to 50 

those evolving under neutrality, though converging patterns can arise (Bierne, 51 

Welch, Loire, Bonhomme, & David, 2011; Edmonds, Lillie, & Cavalli-Sforza, 2004; 52 

Excoffier, Foll, & Petit, 2009; J. Li et al., 2012; Montgomery Slatkin & Excoffier, 2012). 53 

Disentangling the genomic signatures of these two processes, e.g. correctly 54 

identifying adaptive loci, remains a prevailing challenge in the field of population 55 
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genetics (Biswas & Akey, 2006; Horscroft, Ennis, Pengelly, Sluckin, & Collins, 2019; 56 

Luikart, England, Tallmon, Jordan, & Taberlet, 2003). 57 

 58 

A multitude of methods have been developed that identify loci under selection as 59 

those whose summary statistics deviate from the genome-wide distribution. These 60 

“outlier” approaches can generally be grouped into three classes: those that 1) 61 

highlight regions of elevated differentiation between populations (via e.g. FST-related 62 

statistics), 2) highlight regions of perturbed site frequency spectrum (SFS) via 63 

diversity or diversity-related estimators (e.g. π, Tajima’s D) and 3) highlight regions 64 

of extensive linkage disequilibrium (LD) via haplotype statistics (e.g. EHH, iHS) 65 

(Beaumont & Nichols, 1996; Biswas & Akey, 2006; Luikart et al., 2003; Oleksyk, 66 

Smith, & O’Brien, 2010; Vitti, Grossman, & Sabeti, 2013). While in empirical studies 67 

inference of selection is often achieved through corroborating evidence from multiple 68 

measures, each approach generally builds upon a single statistic that individually 69 

captures only a partial aspect of the effect of selection on the underlying genealogies. 70 

Additionally, reliance on statistics that describe the sample rather than on 71 

parameters that define the population imply that these approaches provide an 72 

incomplete description of the system.  Combining  the information from multiple 73 

statistics, either indirectly to inform underlying parameters via demographic 74 

modelling or directly via composite statistics, has the potential to provide insight and 75 
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increase power in the localisation of targets of selection (Grossman et al., 2010; 76 

Sugden et al., 2018; Vitti et al., 2013; Zeng, Shi, & Wu, 2007). 77 

 78 

Under the premise that adaptive genetic variation is a function of both selective 79 

and neutral forces, accounting for the demographic history of the study system is 80 

critical for the correct identification of selected loci (François, Martins, Caye, & 81 

Schoville, 2016; Hoban et al., 2016). To achieve this, empirical studies generally 82 

employ a demographic null model which describes the neutral distribution of the 83 

statistics used to infer selection (e.g. FST; Beaumont & Nichols, 1996; Eckert et al., 84 

2010; Excoffier et al., 2009; Hofer, Ray, Wegmann, & Excoffier, 2009), or estimates of 85 

sample relatedness or covariance to correct for neutral population structure 86 

(Bonhomme et al., 2010; Engelhardt & Stephens, 2010; Gautier, 2015; Günther & 87 

Coop, 2013; Price et al., 2006). These approaches can be successful in controlling the 88 

confounding influence of demography, however they generally suffer from one or 89 

more of the following caveats; relying on post-hoc treatment (Eckert et al., 2010; 90 

Excoffier et al., 2009; Hofer et al., 2009), not providing direct estimates for underlying 91 

demographic parameters (sample covariance approaches) or assuming a set of rather 92 

simple demographic models (Foll & Gaggioti 2008, Beaumont & Nichols 1996). 93 

Alternatively, a (complex) demographic model might be inferred from putatively 94 

neutral sites and loci under selection may be identified as those for which the an 95 

additional selection parameter is required (e.g. Williamson et al., 2005) or as those for 96 
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which locus-specific estimates of demographic parameters differ from genome-wide 97 

estimates (e.g. Sousa, Carneiro, Ferrand, & Hey, 2013). Such an approaches may not 98 

only account for demography explicitly and concurrently with the inference of 99 

selection, but may also directly estimate the probability of a locus being under 100 

selection if performed in a Bayesian framework, and hence avoid arbitrary 101 

thresholds. 102 

 103 

Coalescent theory provides a powerful framework to infer the demographic 104 

processes that drive observed genetic variation (Kingman, 1982; Wakeley, 2001). 105 

While the coalescent was derived to model neutral variation, theory suggests that it 106 

can be exploited to infer signatures of selection following the premise that the 107 

genealogies of selected loci are expected to deviate from neutral expectations (Barton 108 

& Bengtsson, 1986; Charlesworth, 2009; Charlesworth, Nordborg, & Charlesworth, 109 

1997; Fusco & Uyenoyama, 2011; Galtier, Depaulis, & Barton, 2000; Gossmann, 110 

Woolfit, & Eyre-Walker, 2011; Petry, 1983; Sousa, Carneiro, Ferrand, & Hey, 2013). 111 

Under coalescent theory, demographic models are parametrised by effective 112 

population size(s) (NE) and in the case of multiple populations additionally by 113 

effective migration rate(s) (mE), which respectively describe the level of drift and 114 

gene flow within and between populations (Charlesworth, 2009; Petry, 1983). 115 

Importantly, both NE and mE may change through time. Different modes of selection 116 

and adaptive processes can be expected to alter these demographic parameters in 117 
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 7 

different ways. In a single population, imprints of selection may be reflected in 118 

variations in NE, which is expected to be reduced in regions undergoing selective 119 

sweeps and increased in regions undergoing diversifying selection (Galtier et al., 120 

2000; Gossmann et al., 2011). In the case of two or more populations connected by 121 

gene flow, divergent selection is expected to reduce mE at selected and linked sites 122 

(Petry, 1983), while balancing selection and adaptive introgression may be expected 123 

to increase mE at affected regions. Such theory implies that information can be 124 

acquired not just on the strength (via the magnitude of deviation of NE or mE from 125 

neutral expectations) and mode of selection (i.e. whether these deviations in NE or mE 126 

are characterised by a reduction or elevation relative to neutral expectations), but 127 

also potentially of the population (environment) in which selection acts (i.e. whether 128 

the reduction in mE is in a particular direction, in a multi-population model). This 129 

paradigm presents a unique opportunity to address the genetic basis of local 130 

adaptation, a key concept in ecological genetics. 131 

 132 

The framework to describe the genetic basis of local adaptation derives from 133 

ecological theory that relates the fitness advantage of alternate alleles under different 134 

environmental conditions (Savolainen, Lascoux, & Merilä, 2013). Specifically, 135 

alternate alleles may confer higher fitness in their respective local environment but 136 

reduced fitness in the foreign environment, i.e. antagonistic pleiotropy (AP), or 137 

alleles may confer higher fitness in their local environment but have no differential 138 
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effect relative to the alternative allele in the foreign environment, i.e. conditional 139 

neutrality (CN) (Anderson, Lee, Rushworth, Colautti, & Mitchell-Olds, 2013; 140 

Kawecki & Ebert, 2004; Savolainen et al., 2013). Such genetic trade-offs are generally 141 

investigated via estimates of fitness in genetic crosses grown in reciprocal transplant 142 

experiments (Kawecki & Ebert, 2004; Savolainen et al., 2013). In such experiments, as 143 

well as in natural populations inhabiting different environments and connected by 144 

gene flow, directional selection acting on phenotypic traits modulates fitness and 145 

purges individuals that carry maladaptive alleles, e.g. via hybrid (Naisbit, Jiggins, & 146 

Mallet, 2001; Rundle & Whitlock, 2001; Schluter, 2000) or immigrant (Nosil, Vines, & 147 

Funk, 2005) inviability, or lower fecundity. This effectively reduces mE at these 148 

(selected) loci between these populations, with the reduction (from neutral 149 

expectations) proportional to the strength of selection imposed on the alternative 150 

alleles in each environment. Such genetic trade-offs have long been assumed to 151 

underlie phenotypic trade-offs in populations connected by gene flow and the 152 

modelling of selection in terms of mE via the coalescent provides a means to explicitly 153 

describe and disentangle such processes.  154 

 155 

In this paper, we outline a conceptual and methodological framework for 156 

identifying Loci under Selection via explicit Demographic models called LSD, that 157 

scales to genomic data. Our approach explicitly accounts for demography in the 158 

identification of candidate loci, avoids reliance on singular summary statistics, and 159 
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elucidates the driving parameters underlying differentiation at putative selected loci. 160 

Furthermore, applied in a probabilistic Bayesian framework, our approach does not 161 

rely on arbitrary thresholds to delimit candidate loci, addressing an inherent 162 

limitation of many outlier approaches. While LSD is flexible regarding the choice of 163 

demographic model and can in principle accommodate any discrete population 164 

model (including single population and stepping-stone models) as well as detect 165 

different modes of selection, we here demonstrate LSD’s utility in studies of local 166 

adaptation by focusing on the detection of loci under divergent selection under 167 

isolation-with-migration (IM) models. We validate and assess the performance of 168 

LSD via extensive simulations, and apply the method to the detection of functionally 169 

validated loci underlying floral guides in two parapatric subspecies of Antirrhinum 170 

majus (common snapdragon) (Schwinn et al., 2006; Tavares et al., 2018). 171 

 172 

2  MATERIALS AND METHODS 173 

2.1  Model 174 

We begin by outlining the conceptual framework underlying LSD. Consider a 175 

demographic model �, parametrised by demographic parameters �, that generates 176 

genetic data �. To quantify deviations from neutrality, LSD first estimates the 177 

demographic parameters �� from a collection of loci assumed to be neutral (Figure 178 

S1). In a second step, LSD performs demographic inference on all loci and 179 
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determines the posterior distribution �� � ���|��	 for each locus. Finally, LSD 180 

assesses the concordance of �� with ��  by determining 
� , the highest posterior 181 

density interval (HPDI) of ��  that contains ��. Here, �� � 1  
�  corresponds to the 182 

false-discovery-rate (FDR) of identifying locus � as incompatible with ��. The joint 183 

posterior distribution ��  may further provide information on the magnitude and 184 

directionality of selection.  185 

 186 

Given that the evaluation of the likelihood is non-trivial and may be 187 

intractable under more complex models, we resort to an approximate approach 188 

(Marjoram & Tavaré, 2006) (Figure 1). Under an Approximate Bayesian Computation 189 

(ABC) framework, the likelihood is approximated by simulations, the outcomes of 190 

which are compared with observed data in terms of summary statistics. That is, we 191 

find the set of parameters � that minimise the distance between the observed data � 192 

and the simulated data ��. To efficiently evaluate this, we reduce the dimensionality 193 

of the data via summarising them into a set of lower-dimensional summary statistics 194 

� and ��, which are selected to capture the relevant information in � and ��, 195 

respectively (Joyce & Marjoram, 2008; Peter, Huerta-Sanchez, & Nielsen, 2012). 196 

 197 

An appropriate model for generating simulated genetic data is provided by 198 

coalescent theory (Kingman, 1982; Wakeley, 2001), parametrised by population 199 

demographic parameters � � ��� , �� , ��, where �� refers to the vector of effective 200 
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population sizes, �� to the vector of effective migration rates, and � to the mutation 201 

rate. We stress that population sizes and migration rates may vary through time. To 202 

minimise the distance � from ��, model space in addition to parameter space should 203 

be explored. 204 

 205 

2.2  Implementation 206 

The analytical framework described above is practically implemented as 207 

follows (Figure 1). Coalescent simulations are generated by a coalescent simulator, 208 

e.g. msms (Ewing & Hermisson, 2010), under a user-defined demographic model. 209 

Definition and choice of the demographic model should i) be informed by 210 

knowledge of the study system, ii) be motivated by the model’s capacity to provide a 211 

useful approximation of a biological process of interest, and iii) be sufficiently simple 212 

to remain computationally tractable. Additionally, given that we condition the 213 

inference of selection on demographic parameters, the model should be formulated 214 

according to whether deviation in �� or �� is desired for the inference of selection. 215 

Importantly, the model should be validated by demonstrating that the observed data 216 

can be accurately and sufficiently captured (Figure S7). 217 

 218 

The processing, format and final output of observed genetic data will often 219 

differ from that of raw coalescent simulations, given that observed genetic data may 220 

be subject to various pre-sequencing (e.g. pooling), sequencing (e.g. sequencing 221 
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errors, stochastic sampling of reads) and post-sequencing (e.g. filters) events that 222 

perturb and reformat the data from the original source. We thus implemented two 223 

complimentary programs that interface with coalescent simulators to replicate 224 

observed sequencing pipelines and generate simulated sequencing data: LSD-High 225 

can accommodate and simulate both individual and pooled data and assumes mid to 226 

high coverage (>10x) data, while LSD-Low accepts individual data and can 227 

additionally accommodate low coverage (>2x) data by utilising genotype likelihoods 228 

via msToGLF and ANGSD (Korneliussen, Albrechtsen, & Nielsen, 2014). A suite of 229 

summary statistics is then calculated for the simulated and observed data via the 230 

same programs. Summary statistics currently implemented include the number of 231 

segregating sites (S), private S, nucleotide diversity (π), Watterson’s estimator (θW), 232 

Tajima’s D (θD), relative divergence (FST), absolute divergence (DXY), and site 233 

frequencies, though in principle any summary statistic can be included, contingent 234 

on the data and appropriate additions to the programs’ scripts. To account for 235 

potential correlation between summary statistics and to retain only their informative 236 

components, we apply a Partial Least Squares transformation (Wegmann, 237 

Leuenberger, & Excoffier, 2009).  238 

 239 

The estimation of demographic parameters is performed using ABCtoolbox 240 

(Wegmann, Leuenberger, Neuenschwander, & Excoffier, 2010), via the ABC-GLM 241 

algorithm using the subset of n simulations closest to the observed summary 242 
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statistics, separately for the putative neutral regions and for a sliding window across 243 

the genome. Here, windows may be interpreted as loci, and for modelling simplicity 244 

we assume that recombination is free between loci and fixed within. To acquire a set 245 

of putative neutral regions, we assume that sites belonging to a particular structural 246 

or functional class are selectively neutral (Williamson et al., 2005). We may for 247 

instance rely on genomic regions outside all structural annotations unlinked to all 248 

structural genomic elements (i.e. with a conservative flanking distance, informed by 249 

the linkage disequilibrium decay distance). Alternatively, a more naïve 250 

approximation may rely on the whole genome to provide genome-wide expectations, 251 

which may in some cases, but not always (Begun et al., 2007; Fay, Wyckoff, & Wu, 252 

2002; H. Li & Stephan, 2006), reflect the neutral case. In order to remain 253 

computationally tractable, departure from neutrality is evaluated only for that subset 254 

of demographic parameters informative of selection, while assuming the others to be 255 

shared among neutral and selected loci. 256 

 257 

2.3  Simulations 258 

Demography To test the performance of the LSD implementation, we 259 

simulated pseudo-observed genomes using the program msms under different 260 

demographic and selection parameter values (regimes), focusing on isolation-with-261 

migration (IM) models relevant for the characterisation of local adaptation. We 262 
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simulated three models representing different levels of complexity in terms of 263 

population structure and evolutionary history (Figure 2): i) A simple 2-deme IM 264 

model (model ��), with effective population sizes �� � �� � 10,000 and symmetric 265 

migration rates ��� � ��� � �. ii) A 6-deme IM model comprising 2 contrasting 266 

environments of 3 demes each (model ��), structured as 'islands' with effective 267 

population size �� � 1,000 connected via migration ��� � 100 to meta-population 268 

‘continents’ of size �� � �� � 100,000. These continents exchange migrants at 269 

symmetric rates ��� � ��� � �.  iii) A 2-deme divergence with bottleneck and 270 

exponential growth model (model ��). Under this model, two demes split from an 271 

ancestral population of size �	 � 10,000 at �
 � 200,000 generations ago. Following 272 

divergence, deme 2 stays constant at �� � 10,000, while deme 1 undergoes a sudden 273 

bottleneck, immediately followed by exponential growth with rate � = 2 until 274 

�� � 160,000 generations ago, at which �� � 10,000 is reached and thereafter 275 

remains constant. Demes 1 and 2 are initially separated with no gene flow between 276 

demes (isolation period), after which secondary contact is established at �� � 20,000 277 

generations ago with symmetric migration rates ��� � ��� � �. In all models, we 278 

used neutral migration rates � � 0.5, 5 and 50 migrants per generation and inferred 279 

selection as deviations from these rates. We use model ��  to represent a simplified, 280 

generalised model of local adaptation, model �� to represent a more complex case of 281 

local adaptation comprising multiple, structured populations and model �� to 282 

reflect a scenario typical of glacial-induced secondary contact population dynamics. 283 
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 284 

Selection Each simulated pseudo-genome comprised !� � 1,000 neutral loci 285 

and ! � 50 selected loci of 5kb length, for a total (pseudo-genome) size of 5.25Mb. 286 

We assumed a diploid system and all loci to be biallelic with ancestral allele a and 287 

derived allele A. In order to generate a certain fraction of segregating sites per locus 288 

(~2%), the mutation � varied from 2.5 x 10-3 (model ��) to 2.5 x 10-4 (model ��) and 289 

5 x 10-5 (model ��) per locus per generation. 290 

 291 

To simulate genetic trade-offs, selection was simulated on alternate alleles in 292 

the contrasting environments. Specifically, we assumed the beneficial alleles to be 293 

dominant such that the relative fitness was 1 " #�, 1, 1 and 1, 1, 1 " #� for the three 294 

genotypes AA, Aa and aa in the demes or meta-populations occupying the two 295 

environments, respectively. For the selection coefficients #� and #�, we used all 296 

combinations of coefficient values 0, 0.001, 0.01 and 0.1 and thus included cases of 297 

conditional neutrality (CN) in which either #� $ 0, #� � 0 or #� � 0, #� $ 0 as well as 298 

cases of antagonistic pleiotropy (AP) with #� $ 0, #� $ 0 with both symmetric (#� �299 

#�) and asymmetric (#� % #�) regimes. CN regimes are by definition always 300 

asymmetric and AP regimes are defined such that both alleles confer higher fitness in 301 

their respective local environments but reduced fitness in the other, both with respect 302 

to the alternate allele and to the fitness conferred in their home environments. We 303 
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further varied the time of the onset of selection from �� � 400, 4,000, 40,000 and 304 

400,000 generations ago. 305 

 306 

For all models, we considered selection on standing variation with the initial 307 

frequency of the derived allele at '� � '� � 0.1 in all demes. For model �� , we 308 

additionally investigated the case of de-novo mutations with initial frequencies 309 

'� � 1/2�� and '� � 0. These two cases represent the often-considered starting points 310 

for local adaptation (Peter et al., 2012). Dependent on the selection regime and due to 311 

the stochasticity of drift, the derived allele A may sometimes be lost and hence be 312 

absent in the simulation of selected loci (especially in the de-novo case). Because such 313 

a scenario contains no signal for detection of selection, we excluded such simulations 314 

(via the -SFC parameter in msms).  315 

 316 

Assessing accuracy We inferred selection by contrasting the locus-specific 317 

migration rates )�� and )�� against their neutral estimates )*�� and )*�� (Figure 3). 318 

We evaluated the performance of our LSD implementation at identifying selected 319 

loci under these simulations by plotting the true positive rate (TPR) against the false 320 

positive rate (FPR) under the choice of HDPI thresholds from 0 to 1, and reporting 321 

the area under the curve (AUC) of the resultant receiver operating characteristic 322 

(ROC) curve. To evaluate the accuracy of the inferred symmetry of the joint posterior 323 

(of reciprocal migration rates), we compared this to the true underlying selection 324 
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coefficients, under the expectation that deviations from symmetry in the joint 325 

posterior should reflect asymmetry in selection regimes. Specifically, we determined 326 

for each locus � the posterior mass 327 

+� � , - .)��

)��

/ )*��

)*��

0 ��1�, 

where the indicator function -�2	 limits the integral to cases in which the deviation of 328 

one of the migration rates has reduced more than the reciprocal migration rate 329 

compared to a proportional deviation of both migration rates from their neutral 330 

estimates )*�� and )*��. From this, we calculate the asymmetry as 331 

3 � log +
1  +, 

where + � �

��

∑+� across loci simulated under selection.  332 

 333 

2.4  Case study 334 

To evaluate the performance of LSD on real data, we applied it to the detection of 335 

loci underlying floral guides in two parapatric subspecies of Antirrhinum majus. 336 

A.majus is an herbaceous, perennial, flowering plant native to the western 337 

Mediterranean. Owing to its diploid inheritance, relatively short generation time, 338 

ability for both self- and cross-pollination and rich and varied flower morphology, 339 

A.majus has lent itself as a model organism for over a century, with several key floral 340 

genes being first identified within this genus (Schwarz-Sommer, Davies, & Hudson, 341 

2003; Schwinn et al., 2006). Two subspecies, A.m.striatum and A.m.pseudomajus, differ 342 
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in the flower colouration that signposts the pollinator entry point, and form a natural 343 

hybrid zone in the Pyrenees that constitutes a benchmark example of divergent 344 

selection driven by assortative mating (Whibley et al., 2006). Several genetic loci have 345 

been shown to control the differences in these floral patterns (Bradley et al., 2017; 346 

Schwinn et al., 2006), and recently, Tavares et al. (2018) produced evidence of 347 

genomic signatures of selection at the ROS and EL loci, of which the former has been 348 

further functionally validated. Here, we apply LSD to sequencing data from this 349 

study to isolate the ROS and EL loci and to characterise their underlying selection 350 

signal. 351 

 352 

We modelled this study system via a simple representation (model ��) of one 353 

population on either side of the hybrid zone (YP1 (A.m.striatum) vs MP2 354 

(A.m.pseudomajus); populations 2.5km apart) and via a more inclusive island-355 

continent model (model ��) comprising three (distant) populations each per 356 

subspecies (CAM, ML, YP1 (A.m.striatum) vs MP2, CHI, CIN (A.m.pseudomajus); 357 

Figure S5), allowing all NE and mE parameters to be free. Given that these populations 358 

were previously sequenced using pool-seq (Tavares et al., 2018), we simulated 359 

pooling of individuals in-silico by pooling twice the amount of msms coalescent 360 

(haploid) samples as (diploid) individuals in the pooled populations via LSD-High. 361 

Samples were drawn from a parametric (negative binomial) distribution fitted to the 362 

empirical coverage distribution using the ‘fitdistrplus’ package (Delignette-Muller & 363 
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Dutang, 2015) and LSD-High. We focused our analysis on chromosome 6 on which 364 

the ROS and EL loci lie. To acquire empirical estimates of neutral demographic 365 

parameters, we excluded all genomic regions present in the structural annotation 366 

plus 10kb flanking regions to generate a subset of putatively neutral regions on that 367 

chromosome. The inference of selection was then performed in sliding windows of 368 

size 10kb with a 1kb step-size. The mutation rate for the simulations (1.7*10-8 per site 369 

per generation) and the filtering of the empirical and simulated data followed those 370 

reported in the original study, though we mapped on a more recent and complete 371 

version of the A.majus reference (version 3.0; M. Li et al., 2019). 372 

 373 

3  RESULTS 374 

3.1  Two-deme IM case (model ��) 375 

Power to identify selected loci Our LSD implementation demonstrated a high 376 

diagnostic ability to discriminate between neutral and selected loci (AUC >> 0.9) 377 

across a large range of migration-selection regimes (Figure 4). Notably, our results 378 

point towards an optimal, intermediate rate of migration (M=5) at which selection is 379 

best detectable with high AUC values across a large set of selection coefficients. As 380 

migration rates increase (M=50), migration from the foreign deme where selection 381 

acts on the alternate allele increasingly inhibits the build-up of beneficial 382 

polymorphisms in the local deme, in which case the power to detect selected loci 383 
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becomes limited to scenarios under longer regimes of strong selection. At lower 384 

migration rates (M=0.5), long regimes of selection permit the detection of loci under 385 

the lowest selection coefficients, but power decreases for younger times compared to 386 

scenarios simulated under intermediate migration rates. This owes to LSD relying on 387 

the reduction of effective migration relative to neutral or genome-wide expectations, 388 

which in this case is already at a low level. 389 

 390 

The power to detect selection increased with increasing selection coefficients 391 

in the case of AP if selection coefficients were similar (#� 8 #�, cells along diagonal of 392 

sub-panels in Figure 4). In such cases, stronger selection coefficients on alternate 393 

alleles increasingly polarise and ultimately maintain larger allele frequency 394 

differences between the two environments. In tandem, the power to detect selection 395 

also generally increased with the time since the onset of selection ��. However, in 396 

most cases of CN or when #� 9 #� or #� : #�, one of the two alleles may proceed to 397 

fixation, in which case the power to detect selection decays or is lost (e.g. cells along 398 

bottom row and left-most column of sub-panels in Figure 4). This is particularly 399 

evident when the onset of selection is more distant in the past and implies that cases 400 

of CN may be harder to detect than AP as their signatures of selection are often more 401 

transient and decay more rapidly. 402 

 403 
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To evaluate the false discovery rate (FDR) of LSD at different migration rates, 404 

we also conducted simulations in the absence of selection. For intermediate 405 

migration rates (M=5), LSD performed better than FDR expectations (Figure S2B); at 406 

a defined threshold of 0.95, LSD resulted in a false positive rate of 2%. For the low 407 

and high migration rates (M=0.5, 50) however, LSD performed worse than FDR 408 

expectations, producing false positive rates higher than expected with false positive 409 

rates of 44% and 8% respectively at a threshold of 0.95 (Figures S2A and S2C). This 410 

optimal, intermediate rate of migration for minimising FDR is consistent with the 411 

optimal migration rate for detecting selection. 412 

 413 

Power to characterise (a)symmetry A benefit of LSD over classic outlier 414 

approaches is that it can provide insight into trade-offs underlying selection, by 415 

identifying cases in which selection acts at equal strength in the two demes or 416 

metapopulations (symmetric AP), or whether selection coefficients differ 417 

considerably (CN or asymmetric AP). As shown in Figure 5, the inferred 418 

(a)symmetry generally reflected the true (a)symmetry of the underlying selection 419 

coefficients well, particularly for regimes with high power to correctly identify 420 

selected loci (AUC > 0.95). In lower powered regimes, we observe a few cases where 421 

the inferred asymmetry does not reflect the underlying asymmetry of the selection 422 

coefficients accurately (e.g. blue cells along diagonals in sub-panels at ��  = 4,000; 423 

Figures 5 and S3). We treat these exceptional cases further in the discussion. 424 
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 425 

Standing variation vs de-novo A lower initial frequency of the derived allele 426 

may be expected to affect LSD’s power to identify selected loci and its power to 427 

capture the underlying (a)symmetry of selection coefficients. However, we find that 428 

results for simulations building on selection from the de-novo and standing variation 429 

cases showed generally very similar patterns (Figures 4, 5 and S3). One notable 430 

exception however was the inaccurate inference of (a)symmetry in a few regimes 431 

with high power (AUC > 0.95) in the de-novo case (e.g. blue cells along diagonals in 432 

sub-panels at �� � 4,000 in Figure S3B). This we attribute to the lower initial 433 

frequency of the derived allele A and consequently longer time needed to reach drift-434 

migration-selection equilibrium for the de-novo cases. This is explored further in the 435 

discussion. 436 

 437 

3.2  More complex cases (models �� and ��) 438 

A key feature of LSD is its potential for explicit accommodation of complex 439 

demographies, which when not properly accounted for can lead to an inflation in 440 

false positives (De Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014; Foll & 441 

Gaggiotti, 2008; Lotterhos & Whitlock, 2014). Despite the added complexity of 442 

models ;� and ;�, results were generally very similar to that of model ;�, with 443 

high power to identify selected loci (AUC >> 0.9) across a large range of migration-444 

selection regimes, an optimal migration rate at an intermediate value (M=5), a similar 445 
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dependence of power to detect selection on #� , #� and ��, and inferences of 446 

(a)symmetry that reflected well the underlying (a)symmetry of selection coefficients 447 

(Figures 6 and S4). A notable difference compared to model ;� was the longer 448 

amount of time needed to generate a high power to detect selection across a range of 449 

migration values in models ;� (Figures 6A) and especially ;� (Figure S4A), which 450 

we attribute to the lower mutation rates used in these models compared to ;�. 451 

 452 

3.3  Case study results 453 

We identified a region of reduced effective migration between 52.9-53.2MB on 454 

chromosome 6 (Figure 7), consistent with the location of the ROS and EL loci 455 

(Tavares et al., 2018). Under model ;�, this region is characterised by a set of 456 

smaller, multiple peaks (posterior probability of being divergent from neutral 457 

expectations > 99.9%) reflecting signatures identified by previous authors, with the 458 

left-most peaks (shaded in red) corresponding to ROS1 and ROS2 and the right peaks 459 

(shaded in green) to EL (Figure 7B). The joint posterior probability distributions 460 

reveal symmetric selection acting on both regions, implying that selection acts with 461 

similar strength in the two populations. Under Model ;�, we find fewer outliers in 462 

the ROS-EL region than in model ;�, with the left-most peak in this region 463 

corresponding to ROS2 and the right peaks consistent with EL. ROS1 appears to be 464 

less of an outlier than in model ;� (posterior probability of being divergent ~99.8%). 465 
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In contrast to model ;�, the ROS2 and EL peaks in model ;� are characterised by 466 

asymmetry, specifically with stronger selection acting in the populations of 467 

A.m.pseudomajus than in the populations of A.m.striatum. 468 

 469 

4  DISCUSSION 470 

The trajectory of selected loci depends on demographic and selection 471 

parameters that define the system, namely the effective population sizes, effective 472 

migration rates and selection coefficients, as well as the intrinsic properties of 473 

mutation and recombination. Despite well-developed theory which relates the effect 474 

of population parameters on the trajectory of selected alleles, few methods or 475 

empirical studies have combined estimates of differential selection with explicit 476 

quantification of migration rates and effective population sizes to examine the 477 

conditions under which local adaptation can arise. In this study, we condition the 478 

identification of candidate loci on divergent population parameters using explicit 479 

demographic models, and demonstrate that under certain demographic-selection 480 

regimes, we can both detect and elucidate the processes underlying signatures of 481 

selection. While LSD is flexible regarding the choice of demographic models 482 

employed, we focus here specifically on those processes that are expected to lead to 483 

selection against gene flow, namely local adaptation and extrinsic reproductive 484 

barriers, that can be inferred via their expectation to reduce effective migration rates. 485 

 486 
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4.1 Identifying selection  487 

In our simulations, we demonstrate that LSD has high diagnostic power (AUC 488 

>> 0.9) to identify selected loci across a large range of demographic-selection regimes. 489 

This power relies upon two fundamental aspects that contribute to generating 490 

observable patterns. First, selection must effectively be realised, i.e. result in a 491 

frequency shift of the beneficial allele. This requires that the strength of selection and 492 

initial frequency of the beneficial allele be sufficient to both counter the 493 

homogenising effect of migration (Felsenstein, 1976; Haldane, 1930; Lenormand, 494 

2002; M. Slatkin, 1973; Yeaman, 2015) and the eroding effect of drift (Wright, 1931). 495 

Secondly, the genomic data must contain signatures of selection that can be detected. 496 

In the case of LSD, this requires that the signatures of selection are discernible from 497 

the underlying noise (drift and migration) that characterises the system, as well as 498 

requires sufficient time for said signatures to be reflected in the employed statistics 499 

and hence in the inferred parameters NE or mE. A lack of power in LSD must be 500 

interpreted considering these two conceptually different perspectives. Notably, the 501 

lack of discrimination power for high migration rates and low selection coefficients 502 

can be attributed to selection failing to realise as a consequence of local, beneficial 503 

alleles being swamped by immigrant, maladaptive alleles. In contrast, the lack of 504 

signal under low migration rates constitutes a methodological limitation of our 505 

implemented model, as it becomes increasingly difficult to detect reductions in 506 

effective migration when neutral or genome-wide migration rates are already at a 507 
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low level; even when selection is effectively being realised in the demes. This is 508 

analogous in effect to the loss of power to detect selection in highly differentiated 509 

populations in FST outlier tests (Hoban et al., 2016). Under the same principle, we 510 

argue that the converse expectation can be assumed to hold for loci underlying 511 

adaptive introgression or balancing selection. That is, we expect power to detect such 512 

loci to be low when populations are minimally differentiated, as the detection of 513 

candidate loci in these cases is informed by increased effective migration.  514 

 515 

The power of LSD to correctly identify selected loci generally increased with 516 

stronger selection coefficients and longer time since the onset of selection, though 517 

with exceptions related to differential selection on alternate alleles in multiple 518 

populations. Specifically, when selection is of similar or equal strength in both demes 519 

or meta-populations, we observed a strong correlation between the power to detect 520 

selection and the true underlying selection coefficients. This follows theory which 521 

states that the reduction in effective migration is proportional to the strength of 522 

selection (Petry, 1983). However, we defer from translating these changes to explicit 523 

selection coefficients because in addition to the strength of selection, changes in 524 

effective migration are also a function of the recombination rate between linked and 525 

selected loci (Cutter & Payseur, 2013; Lotterhos, 2019; Petry, 1983). On the other 526 

hand, if selection is highly divergent in strength (si >> sj) between the demes or meta-527 

populations or when the onset of selection is sufficiently distant in the past, one of 528 
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the two selected alleles may have fixed in the system. In such a case, the signal to 529 

detect selection rapidly decays (Huber, DeGiorgio, Hellmann, & Nielsen, 2016; 530 

Przeworski, 2002). Finally, we observed little power to detect very recent selection, 531 

intrinsically related to our choice of summary statistics (Hohenlohe, Phillips, & 532 

Cresko, 2010). While a signal of selection necessarily requires time to build up, we 533 

note that extending LSD to include additional statistics sensitive to linkage 534 

disequilibrium such as extended haplotype homozygosity (EEH) (Szpiech & 535 

Hernandez, 2014) or single density score (SDS) (Field et al., 2016) may increase the 536 

power to detect more recent selection.  537 

 538 

From our simulations, we find that the effect of the tested selection regimes on 539 

the power to detect selection is similar between the de-novo and standing genetic 540 

variation cases (model ;�; Figures 4 and S3A). This result relies on the fact that we 541 

only kept simulations of selected loci (comprising the pseudo-genomes) in which 542 

derived allele A was not lost. This particularly affected the de-novo case, where most 543 

simulations of selected loci were observed to result in the loss of allele A. This 544 

implies firstly, that in most observed cases, signals of selection are most likely to 545 

arise from standing variation (Jones et al., 2012; Lai et al., 2019; Reid et al., 2016), and 546 

secondly, that to distinguish selection arising de-novo to that from standing variation, 547 

additional information such as allele age, mutation rate or supplementary 548 

phylogenetic information is likely required (Peter et al., 2012). 549 
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 550 

4.2 Revealing trade-offs underlying selection   551 

A major benefit of genome scans performed under a demographic framework 552 

is the capacity to infer the directionality of selection. In our simulations, we observe 553 

that the (a)symmetry in the reduction of reciprocal migration rates between demes or 554 

meta-populations as inferred by LSD reflects the (a)symmetry of underlying selection 555 

coefficients accurately for older onsets of selection (��  $ 4,000, red cells inhabiting 556 

left-upper triangle, blue in right-lower triangle; Figures 5, 6B, S3B, S4B), but less so 557 

for more recent onsets of selection (��  < 4,000; Figures 5, 6B, S3B, S4B). This is 558 

because prior to reaching drift-migration-selection equilibrium, estimated 559 

asymmetries in effective migration rates are also affected by asymmetry in allele 560 

frequencies (Figure 8). This is highlighted when contrasting the standing variation 561 

and de-novo simulation results for model ;�, where incorrectly inferred 562 

(a)symmetries are more evident in the de-novo case due to the lower initial frequency 563 

of the derived allele (��  < 4,000; Figures 5 and S3B). A direct link between the 564 

(a)symmetry in inferred migration rates and selection coefficients is only established 565 

through time as the beneficial allele increases in frequency towards an equilibrium. 566 

From this, we deduce that if a strong asymmetry between effective migration rates is 567 

inferred, the system may still be in the process of evolving towards an equilibrium 568 

state, which may include cases in which one allele will ultimately be lost. If 569 

symmetry between effective migration rates is inferred on the other hand, the system 570 
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is likely near-equilibrium and we can expect both alleles to be maintained in the 571 

system. We note that in practice, however, the interpretation of the results is 572 

straightforward. This is because the inference of directionality is only relevant if the 573 

targets of selection can be detected accurately (e.g. in regimes with AUC > 0.9). For 574 

these cases, we generally find the inferred (a)symmetries in migration rates to reflect 575 

the true (a)symmetry in selection coefficients (Figure 5, 6B, S3B, S4B) accurately, 576 

mostly because the power to detect selection is generally low if selection started 577 

acting only very recently.  578 

 579 

The ability of LSD to infer the directionality of selection directly from genomic 580 

data can greatly facilitate investigations of genetic trade-offs underlying adaptation, 581 

which are seldom performed due to the considerable effort required to set up field 582 

trials of recombinant lines. As shown above, the inference of symmetry in LSD-583 

identified candidates accurately reflects cases of AP with equal strength of selection 584 

on alternate alleles in the contrasting environments.  The inference of asymmetry on 585 

the other hand can either indicate AP with stronger selection in one environment 586 

than the other, or CN. From our simulations, we find that scenarios reflecting AP are 587 

generally more readily detected than those reflecting CN. Given that selection acts 588 

only upon one of the two alleles in the latter case, fixation becomes likely and the 589 

ability to detect selection is transient. This implies that there may be an observation 590 

bias between AP and CN; such that the inference of CN may be comparatively 591 
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under-represented. This bias appears to contrast with that reported in ecological 592 

literature, where instances of AP are more rarely detected compared to CN due to 593 

the additional power required to detect variance in fitness concurrently in two 594 

environments (Anderson et al., 2013). LSD may further complement field trials as 595 

such experiments typically test genetic trade-offs under contemporary selective 596 

environments, which may not reflect past conditions driving the observed adaptive 597 

responses, but whose signature may still be inferred from genomic data. Using LSD 598 

to formulate expectations about fitness effects and to inform the choice of 599 

environmental conditions under which to validate identified candidate genes can 600 

thus greatly aid such experiments.  601 

 602 

4.3 Real-world application 603 

We demonstrate a real-world application of LSD by successfully isolating and 604 

characterising the selection signal of loci underlying an extrinsic reproductive barrier 605 

in A.majus. Our results from contrasting a single population (model ��) and three 606 

populations (model ��) per subspecies both identified the ROS and EL loci which 607 

were previously reported to underlie differences in floral patterns between these 608 

subspecies (Tavares et al., 2018). Interestingly however, our results show a different 609 

signal of (a)symmetry between the tested models �� and ��, with the peaks 610 

corresponding to the ROS and EL loci characterised by symmetry under model ��, 611 

in contrast to a pattern of asymmetry under model ��, specifically with stronger 612 
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selection inferred to act in the populations of A.m.pseudomajus than in the 613 

populations of A.m.striatum. We stress that the interpretation of LSD genome scans is 614 

conditional on the model and populations used, such that in our example model �� 615 

uncovers population-pair specific differences at the contact zone (YP1 vs MP2) while 616 

model �� reveals common (global) differences between the two subspecies. We do 617 

not necessarily expect these two signals to be identical, and indeed, Tavares et al. 618 

(2018) also found differences between distant and close A.m.striatum-A.m.pseudomajus 619 

population pairs in terms of observed θW and FST summary statistics. Given that there 620 

is no evident difference in environment or pollinators on opposite sides of the hybrid 621 

zone, reproductive barriers in this system have often been proposed to be maintained 622 

through assortative mating mediated by pollinator preference for the dominant 623 

(most common) flower phenotype in a given area and the subspecies’ distinct flower 624 

colouration. However, whether selection on alternate alleles follows the same 625 

positive frequency-dependence across the broader scale including more distant 626 

populations is currently unknown. The difference in signal between local pairs at the 627 

contact zone (��) and the global set (��) may be generated by different frequency-628 

dependent selection curves for the alternate alleles and potentially loss of AP away 629 

from the contact zone (Figure S6). 630 

 631 

5  CONCLUSION 632 
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When selection occurs in the presence of gene flow, selected sites are 633 

predicted to exhibit gene genealogies with demographic parameters divergent from 634 

those of neutral non-linked sites, leading to heterogeneity in demography across the 635 

genome. In this study, we condition the identification of candidate loci on divergent 636 

population parameters using explicit demographic models, and demonstrate that 637 

under certain conditions of migration, selection strength and onset time, we can both 638 

detect and elucidate the underlying processes driving signatures of selection. 639 

Incorporating and utilising the inference of demographic parameters in the 640 

identification of candidate loci address some key issues and assumptions that prevail 641 

in the discrimination of selected variants, namely 1) the explicit consideration of 642 

demography, 2) heterogeneity in drift and gene flow across the genome, 3) 643 

information synthesis of multiple, complementary summary statistics, and 4) 644 

transparency towards underlying driving mechanisms.  645 

 646 

Our power analysis using simulations shows that LSD, and our 647 

implementation of it, represents a powerful method for detecting selection that is 648 

robust to different and complex demographies. Furthermore, given that certain 649 

demographic parameters e.g. migration are not inherently commutative, we show 650 

that the directionality or population-specificity in selection can be inferred. This can 651 

facilitate identifying in which environment selection acts and hence elucidate genetic 652 

trade-offs; bridging an analytical divide between experimental ecology and 653 
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population genomics. Importantly, the proposed approach as well as our 654 

implementation is not limited to the demographic models investigated here, nor the 655 

explicit choice of simulation programs or summary statistics used. This flexibility 656 

and customisability of LSD can facilitate e.g. more realistic accommodation of 657 

recombination (via different coalescent simulators), improved detection of more 658 

recent selection (via linkage-informative statistics), and inference of other modes of 659 

selection (e.g. balancing selection) and adaptive introgression by conditioning the 660 

detection of selection on e.g. increase (rather than reduction) of mE or changes in NE 661 

relative to neutral expectations.  662 
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FIGURES 924 

 925 

 926 

Figure 1. Identifying Loci under Selection via explicit Demographic models (LSD). 927 

LSD identifies loci under selection by first estimating demographic parameters and 928 

then quantifying the departure of these parameters from neutral expectations. Our 929 

specific implementation of LSD employs Approximate Bayesian Computation (ABC) 930 

for parameter estimation, and is performed in a genome scan approach. 931 

 932 

 933 

Figure 2. Models used in the simulations and case study. Model �� represents a 934 

simple 2-deme isolation-with-migration (IM) model with reciprocal migration. 935 

Model �� represents a 6-deme island-continent model where common differences 936 

between environments are modelled by connecting the sampled demes (i.e. islands) 937 

to respective meta-population continents via gene flow. Model �� represents a 2-938 

deme divergence with bottleneck and exponential growth model. Different deme 939 

colours reflect contrasting environments. In all models, selection is inferred from the 940 
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deviation from neutrality of the reciprocal migration rates between the two 941 

contrasting environments. 942 

 943 

 944 

 945 

 946 

Figure 3. Joint posterior distribution of the reciprocal migration parameters, m12 and 947 

m21. The neutral joint parameter estimate, as informed by the global posterior 948 

distribution of all neutral regions (Fig. S1), is indicated by the red dot in the top right 949 

corner. The red contours represent the joint posterior distribution of a genomic 950 

region (i.e. window), with the blue contours representing the 95% (light blue) and 951 

99% (dark blue) highest density region (HDR) credible intervals. Left – a window not 952 

significantly divergent from the neutral estimate; right – a window significantly 953 

divergent from the neutral estimate, with slightly higher relative reduction in m12 954 

than in m21. 955 

 956 

 957 
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 960 

Figure 4. Simulation results showing the effect of migration rate, time of onset of 961 

selection and deme-specific selection coefficients on LSD diagnostic performance 962 

(AUC), for the 2-deme IM model (model ;�; standing genetic variation case). Each 963 

cell represents a pseudo-genome simulated under a specific selection regime. The cell 964 

colours reflect the AUC calculated by the correct discrimination of 1000 neutral loci 965 

and 50 selected loci in the 1050 loci simulated pseudo-genomes. An AUC value of 0.5 966 

reflects random assignment while that of 1 reflects perfect classification (i.e. TPR=1, 967 

FPR=0). Grey cells indicate selection regimes where the derived allele is always lost. 968 
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 971 

Figure 5. Simulation results showing the effect of migration rate, time of onset of 972 

selection and deme-specific selection coefficients on LSD inferred (a)symmetry of 973 

selection, for the 2-deme IM model (model ;�; standing genetic variation case). 974 

Each cell represents a pseudo-genome simulated under a specific selection regime. 975 

The cell colours reflect the (a)symmetry values inferred by LSD, where a value of 0 976 

reflects perfect symmetry of the joint posterior while values divergent from this 977 

reflect asymmetry. Cells surrounded by thick lines indicate the values of 978 

(a)symmetry for regimes expected to generate meaningful signal (i.e. AUC>0.95). 979 

Grey cells indicate selection regimes where the derived allele is always lost. 980 
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 983 

Figure 6. Simulation results for a 2-deme divergence with bottleneck and exponential 984 

growth model (model ;�; standing genetic variation case) showing the effect of 985 

migration rate, time of onset of selection and deme-specific selection coefficients on 986 

A) LSD diagnostic performance (AUC) and B) LSD inferred (a)symmetry of selection. 987 

Divergence time of the two populations, TD, is 200,00 generations ago. Each coloured 988 

cell represents a pseudo-genome simulated under a specific selection regime. Grey 989 

cells indicate selection regimes where the derived allele is always lost. B) Cells 990 

surrounded by thick lines indicate the values of (a)symmetry for regimes expected to 991 

generate meaningful signal (i.e. AUC>0.95). 992 
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 995 

Figure 7. Manhattan plot for the LSD scan of the A.m.striatum-A.m.pseudomajus 996 

system. The posterior probability of observing the neutral estimate for 10kb windows 997 

(1kb step-size) is plotted for A) a 16Mb region of chromosome 6, under models ;� 998 

and ;�, and B) a 2Mb zoomed-in region of chromosome 6 focusing on the ROS-EL 999 

region, under the same two models. The horizontal dashed line indicates a 99.9% 1000 

posterior probability of deviating from neutral expectations. Colour for loci above 1001 

this threshold denotes the joint (m12-m21) posterior (a)symmetry, and reflects the 1002 

relative strengths of selection in the two divergent demes or subspecies. A large 1003 

divergent peak centered around the ROS-EL region (A) is composed of a set of 1004 

smaller peaks (B), consistent with the ROS (red) and EL (green) loci. 1005 
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 1008 

Figure 8. Conceptual illustration of allele frequency trajectories over time in a 2-deme 1009 

IM model (;�), for an example de-novo case and antagonistic pleiotropic selection 1010 

regime. The frequency of derived allele A is indicated in black and that of ancestral 1011 

allele a in grey. Red arrows represent migration. Prior to reaching drift-migration-1012 

selection equilibrium, estimated asymmetries in effective migration rates are also 1013 

affected by asymmetry in allele frequencies.  1014 
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