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Abstract

The brain performs probabilistic inference to interpret the external world, but
the underlying neuronal mechanisms remain not well understood. The stimulus
structure of natural scenes exists in a high-dimensional feature space, and how the
brain represents and infers the joint posterior distribution in this rich, combinatorial
space is a challenging problem. There is added difficulty when considering the
neuronal mechanics of this representation, since many of these features are com-
puted in parallel by distributed neural circuits. Here, we present a novel solution
to this problem. We study continuous attractor neural networks (CANNs), each
representing and inferring a stimulus attribute, where attractor coupling supports
sampling-based inference on the multivariate posterior of the high-dimensional
stimulus features. Using perturbative analysis, we show that the dynamics of
coupled CANNs realizes Langevin sampling on the stimulus feature manifold
embedded in neural population responses. In our framework, feedforward inputs
convey the likelihood, reciprocal connections encode the stimulus correlational
priors, and the internal Poisson variability of the neurons generate the correct
random walks for sampling. Our model achieves high-dimensional joint probability
representation and Bayesian inference in a distributed manner, where each attractor
network infers the marginal posterior of the corresponding stimulus feature. The
stimulus feature can be read out simply with a linear decoder based only on local
activities of each network. Simulation experiments confirm our theoretical analysis.
The study provides insight into the fundamental neural mechanisms for realizing
efficient high-dimensional probabilistic inference.

1 Introduction

The theory that the brain performs probabilistic inference to interpret the external world [1–3] has
been supported by extensive human behavioral [4–6] and animal neurophysiological studies [7, 8].
Yet, exactly how neural circuits in the brain realize Bayesian inference remains poorly understood.
To address this question, we need to answer how probabilistic information is represented in neural
responses and what inference algorithms are adopted by neural circuits. An added difficulty is that
signals in the world are high-dimensional. The brain often extracts and represents multiple stimulus
variables in a parallel, distributed, and hierarchical fashion using separate neural circuits. Examples
include: integrating multisensory cues [8], resolving the consistency of local percepts (e.g. nose and
eyes) and global percepts (e.g. face) in a hierarchy [1, 9], and grouping orientation edge neurons into
contour [10, 11]. The brain needs to represent and infer the joint posterior distribution of all these
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variables in different locations, different levels, or even different sensory systems. This fundamental
challenge must be addressed in the context of other properties and constraints of Bayesian inference
in the brain.

The neural mechanics of inference has been an active research area, with a number of existing
computational models. A popular proposal is that of probabilistic population coding (PPC), whereby
a deterministic network integrates feedforward Poissonian inputs to parametrically infer and represent
the posterior of a stimulus feature [12]. This model was later extended to process high-dimensional
stimulus features by coupling networks together, where the coupling encodes the correlation prior
between stimulus features [13]. Such a model scales linearly, rather than combinatorially, with the
number of stimulus features. This allows each feature’s marginal distribution to be computed and
readout from each network. Despite its conceptual appeal, the interaction in such a coupled PPC
network is highly nonlinear, requiring a complex circuit with multiplicative and divisive operations.
An alternative paradigm to represent the joint posterior of multiple variables is using non-parametric
sampling (e.g., [14–20]), which can be mediated by linear stochastic dynamics (e.g., [16]). However,
these studies typically consider sampling the posterior of neuronal responses, without specifying
how stimulus features embedded in neuronal responses are sampled (e.g., [14–16]), or they con-
sidered sampling stimulus features but did not specify a concrete neural circuit model to enact the
sampling [18, 21]. Moreover, when sampling occurs in the very high-dimensional neural response
space, involving neurons in different hypercolumns, visual areas, and even different sensory systems,
the sampling timescale becomes a serious obstacle [16, 22], which must be overcome to produce
perception in a biologically realistic time frames.

In this study, we propose a novel model to represent and infer the posterior of high-dimensional
stimulus features. Our model combines the strengths of PPC and sampling-based codes in a unified
framework. It decomposes the high dimensional parameter space into distinct variables, represented
individually by distinct continuous attractor neural networks (CANNs). In our model feedforward
inputs convey the likelihood via PPC, excitatory reciprocal connections between the attractors encode
the stimulus correlational priors, and the internal Poisson variability of the neurons generate the
correct variability for sampling on the stimulus feature space. We analytically show that the dynamics
of coupled CANNs in fact realizes Langevin sampling on the stimulus feature manifold embedded in
neural population responses. The model achieves sampling-based Bayesian inference in a distributed
attractor network, each of which infers the marginal posterior of the corresponding stimulus feature,
and its local activities allow readout of the stimulus feature using a linear decoder. Simulation results
confirmed our theoretical analysis of the model.

2 The generative model and sampling-based inference

2.1 The probabilistic generative model

We consider a linear Gaussian generative model (Fig. 1A), in which the observed stimulus features
x = {xm}Mm=1 ∈ RM are independently generated by the external latent features s = {sm}Mm=1 ∈
RM . These features can be any stimulus features that are extracted by the cortex, such as line
orientation, moving direction etc. The likelihood function p(x|s) and the prior p(s) of the generative
model are

p(x|s) = N (x|s,Λ−1), p(s) ∝ N (s|0,L−1), (1)

where N (·) denotes a Gaussian distribution. Λ is the precision matrix (the inverse of the covariance
matrix) of the likelihood function, which is assumed to be diagonal, i.e., Λ = diag(Λ1,Λ2, · · · ,ΛM ).
This implies that each observed feature xm is independently generated by sm, giving p(x|s) =∏M
m=1 p(xm|sm) =

∏M
m=1N (xm|sm,Λ−1m ).

The precision matrix L of the prior p(s) is a generalized Laplacian matrix, with Lmm = −
∑
n Lmn

and Lmn = Lnm ≤ 0 (m 6= n). For example, in the case of two-dimensional features (M = 2), the
prior p(s) = p(s1, s2) is written as,

p(s1, s2) =

√
L12√

2πws
exp

[
−L12

2
s>
(

1 −1
−1 1

)
s

]
=

√
L12√

2πws
exp

[
−L12

2
(s1 − s2)2

]
,

where ws is the width of stimulus feature space, e.g., ws = 2π if s is direction of stimulus motion.
Priors with a Laplacian precision matrix have been implicitly considered in the modelling studies for
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Figure 1: A probabilistic generative model and its inference by Langevin sampling. (A) A linear
Gaussian generative model, where s and x are the latent and observed stimulus features, respectively.
Λ and L are precision matrices of the likelihood function and the prior, respectively. (B) Langevin
sampling for approximating the posterior of two-dimensional features. Solid ellipses: the posterior.
Colors of the trajectory indicate the time elapsed. Marginal plot: marginal posterior (empirical: solid
line; theory: shaded line). (C) The equilibrium variance of samples vs. the sampling time constant τL
(empirical: circle; theory: solid line). (D) The temporal correlation of sampling over time.

multisensory cue integration [23–25], and it quantifies the co-occurrence of stimulus features, e.g.,
L12 characterizes the correlation between s1 and s2. Notably, according to Eq. 1, the marginal prior
of each stimulus feature is uniform, i.e., p(sm) = 1/ws, a property coming from that the determinant
of the Laplacian matrix is zero, i.e., |L| = 0.

According to Bayes’ theorem, the posterior distribution of the latent variables s given the observed
features x are calculated by inverting the generative model (Eq. 1),

p(s|x) ∝ p(x|s)p(s) = N (s|µs,Ω
−1), (2)

which is a multivariate Gaussian distribution, with the precision matrix Ω and mean µs given by,

Ω = Λ + L, µs = Ω−1Λx. (3)

2.2 Langevin sampling for approximate inference

Numerous psychophysical studies suggest that the brain infers the external world via Bayesian
inference (e.g., [2, 3, 26]), but it remains unresolved how the inference is implemented by cortical
circuits in the brain. Here, we propose that the brain employs a sampling strategy to approximate the
inference of stimulus features, and later we demonstrate that this is feasible in a biologically plausible
neural circuit. The sampling strategy we consider is Langevin sampling, which is a Markov chain
Monte Carlo (MCMC) algorithm widely used to numerically approximate the posterior [16, 27, 28].
The dynamics of Langevin sampling performs stochastic gradient ascent on the manifold of the
log-posterior of stimulus features, which is written as,

dst
dt

= (2τL)−1
d ln p(s|x)

ds
+
√
τ−1L ξt = −(2τL)−1 [(L + Λ)st −Λx] +

√
τ−1L ξt, (4)

where τL is the time constant of sampling. ξt are multivariate independent Gaussian-white noises,
satisfying 〈ξtξ>t′ 〉 = Iδ(t − t′), with I the identity matrix and δ(t − t′) the Dirac delta function,
and they induce fluctuations of st necessary for sampling. It can be checked that the equilibrium
distribution of st has the same form as the posterior (Eqs. 2-3), since its equilibrium mean and
covariance satisfy (see details in Supplementary Information (SI.) Sec. 2),

s̄ ≡ 〈st〉 = µs, Σs ≡
〈
(st − s̄)(st − s̄)>

〉
= Ω−1, (5)

where 〈·〉 denotes averaging over trials. Thus, in the dynamics of Langevin sampling, the instant
value of st can be regarded as a sample from the posterior specified by Eqs. (2-3). Fig. 1B shows
an example trajectory of Langevin sampling of two-dimensional stimulus features st over time,
demonstrating that the sampled s indeed satisfies the posterior as expected. The sampling time
constant τL doesn’t affect the equilibrium covariance (Eq. 5), but only affects the temporal correlation
of sampling (i.e., the normalized cross-correlation of samples at time t1 and t2, which is given by
ρs(t1, t2) = e−|t1−t2|/2τL), and these two theoretical predictions are also confirmed by simulations
(Fig. 1C-D).
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3 Distributed sampling-based inference in coupled attractor networks

3.1 Coupled continuous attractor neural networks

We explore how a canonical neural circuit model implements Langevin sampling to approximate
the posterior of high-dimensional stimulus features. The model we consider is composed of M
reciprocally connected continuous attractor neural networks (CANNs), and they interact with each
other to achieve inference in a distributed manner, such that each network m infers the marginal
posterior of one stimulus feature p(sm|x). For simplicity, we consider that each network m has the
same number of N neurons with preferred stimulus values {θj}Nj=1, with θj being the preference
of the j-th neuron. We take {θj}Nj=1 to uniformly cover the feature space of sm, where θ ∈ (−π, π]
satisfying the periodic boundary condition.

CANNs are a canonical neural circuit model widely used to elucidate the network mechanism
underlying many brain functions (see e.g., [29–31]). In the continuum limit (θj → θ), the dynamics
of coupled CANNs is written as,

τ
∂umt(θ)

∂t
=−umt(θ) + ρ

∑
n Wr

mn(θ)∗rnt(θ) + ρWf
m(θ)∗Ifm(θ) +

√
τFumt(θ) ξmt(θ), (6)

where umt(θ) and rmt(θ) represent, respectively, the synaptic inputs and firing rates of neurons at
time t in network m whose preferred value of stimulus feature sm is θ. τ is the time constant, and
ρ = N/ws is the neuronal density covering the stimulus feature space. F is the Fano factor of the
internal Poisson-like variability. Wr

mm denotes the recurrent connection kernel between neurons
in the same network, Wr

mn for m 6= n is the reciprocal connection kernel between neurons from
network n to network m, and Wf

m is the feedforward connection kernel. These kernels have the form
of Gaussian function and are written as,

Wr
mn(θ) = wr

mng(θ), Wf
m(θ) = wfg(θ), g(θ) = (

√
2πa)−1 exp

(
−θ2/2a2

)
. (7)

The symbol ∗ denotes the convolution, i.e., W(θ) ∗ r(θ) =
∫

W(θ − θ′)r(θ′)dθ′, which implies the
translation-invariant property of the connection pattern between neurons over the feature space, a key
characteristic of CANNs. For simplicity, we assume the feedforward connection weight wf is the
same in different networks.

The relationship between the synaptic input and firing rate of neurons is modelled as divisive
normalization [32, 33], which is given by

rmt(θ) =
[umt(θ)]

2
+

1 + kρ
∫

[umt(θ′)]2+dθ
′ . (8)

Here k determines the global inhibition strength and [·]+ is negative rectification. Divisive normaliza-
tion is a canonical operation widely observed in the cortex and could be implemented via parvalbumin
(PV) inhibitory neurons [34].

Feedforward input encoding the stimulus likelihood

In our model each network m receives one feedforward input Ifm, which conveys information about
the latent stimulus feature sm (Fig. 2A). Given the stimulus feature sm, Ifm is modeled as independent
Poisson spikes with Gaussian tuning (mean firing rate) (Fig. 2C). Mathematically, the probability of
observing a particular value of Ifm given sm is,

Ifm|sm ∼
∏N
j=1 Poisson[λm,j(sm)], λm,j(sm) = Ifm exp[−(θj − sm)2/2a2], (9)

where λm,j(sm) is the mean firing rate of the input component Ifm,j received by j-th neuron in
network m, with Ifm and a characterizing the peak input rate and tuning width, respectively. The
above feedforward input has been widely used in previous neural coding studies, and satisfies the
linear probabilistic population code proposed in [12]. Based on the Gaussian tuning and Poisson
variability (Eq. 9), the likelihood of sm given an observed Ifm is also a Gaussian distribution (Fig. 2E),
i.e., p(Ifm|sm) = p(xm|sm) = N (xm|sm,Λ−1m ), whose mean and precision are linear over Ifm and
are calculated to be

xm =
∑

j Ifm,jθj∑
j Ifm,j

, Λm = a−2
∑
j Ifm,j . (10)

Comparing to Eq. 1, we see that the feedforward input Ifm conveys the likelihood of the latent stimulus
feature sm parametrically.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.20.212126doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.212126
http://creativecommons.org/licenses/by-nc-nd/4.0/


-180 180
Neuron index µ 

0
0

25

50

N
e

u
ro

n
a

l 

re
s
p

o
n

s
e

 r
  (
H

z
) hs

t
iA B

C

D

E

µ

Exc. synapse Inh. synapse

I
f

rWr

Wf

Wf

Posterior p(sjx)

population

vector

Stimulus s

L
ik

e
lih

o
o

d
 p

(I
f js

)

-45 450

x
 
= n-1§

j 
I
j
µ
j 

¤
 
=

 
a-2n

r

r

s
Stimulus 

feature

Feedfwd. 

input x  (observed feature)

F
e

e
d

fw
d

 i
n

p
u

t 
I

f

0

2

4

6

n
r
 (spk. count)

p(Ifjs)
 
/

 
N(xjs;

 
¤{1)

10
-5

0

5

S
ti
m

. 
s
a

m
p

le
 s

t

Time t (/¿)
50

F G

H

P
re

c
is

io
n

 o
f 
d

is
tr

i.

o
f 
s
a

m
p

le
s
 §

{
1

Sampling trajectory in 

stimulus manifold

0

35

70

-180

180

N
e

u
ro

n
 i
n

d
e

x
 µ

 

0

(Hz)

Posterior

p(sjx)

Neural pop. response r(µ;
 
t)

Population vector

Network structure

Population

Feedfwd. conns.

vector

s

-180 180
Neuron index µ 

0

10

f

hs
t
i

0

0.5

1

C
ro

s
s
 c

o
rr

. 
½
s

0 5
Time ¢t (/¿)

Sim
Theory

I
f
 
(input intensity)

0

0.6

1.2

0 1 2

Sim

Theory

Figure 2: Langevin sampling of one dimensional stimulus feature in a CANN. (A) The information
flow of the generative model. (B) The structure of a CANN. (C) The feedforward input is modeled as
continuous approximation of Poisson spikes with Gaussian tuning over the stimulus feature. (D) The
time averaged neural population responses, with the shaded region denoting standard deviation. (E)
The likelihood is encoded by the feedforward input parametrically. (F) Neural population responses
of the CANN over time (top); stimulus feature values sampled by the network dynamics (bottom left),
whose distribution gives the posterior (bottom right; empirical: solid line, theory: shaded line). The
theoretical value of the posterior is obtained from the feedforward input If by using Eq. (10) (see
details in SI. Sec. 4.3). (G) Temporal correlation of sampling over time. (H) The precision (inverse of
variance) of samples in equilibrium with the input intensity. Parameters can be found in SI. Sec. 4.

Internal Poisson-like variability for reliable sampling

Implementing Langevin sampling in a network requires the network to generate additional internal
variability not inherited from the feedforward inputs, which produces random walk on the log-
posterior surface of the stimulus features (Eq. 4). Moreover, this internal variability should be
Gaussian distributed with a white spectrum, so that the variance of samples (Eq. 5) matches the
variance of the posterior (Ω−1 in Eq. 3).

Encoding the variance of the posterior is necessary for the brain to perceive the uncertainty of
inputs [12, 17, 35]. To achieve Langevin sampling in our model, we consider that each network
generates independent internal Poisson-like variability at the single neuron level (the last term in
Eq. 6, e.g., [36–38]), which makes neural responses um and rm exhibit the Poisson-like variability.
As will be shown later, this Poisson-like variability in neural activities contributes to the required
Gaussian-white variability in the stimulus features space (embedded in neural population responses),
ensuring the realization of Langevin sampling. The Poisson-like variability provides a reliable source
of variability to conduct sampling, as the Fano factor of neuronal responses only changes mildly
across stimulus conditions [7, 12, 39, 40]. In reality, this internal Poisson-like (spiking) variability
can naturally arise from the chaotic state of cortical circuit dynamics [40–44].

Network responses and decoding

Given the feedforward input If , our theoretical analyses and simulations reveal that in the equilibrium,
the mean neuronal responses of each network m have a Gaussian shape (Fig. 2D, i.e., [45, 46]),

〈um(θ)〉 = Um exp
[
−(θ − s̄rm)2/4a2

]
, 〈rm(θ)〉 = Rm exp

[
−(θ − s̄rm)2/2a2

]
. (11)

Here, Um and Rm denotes the peak values of synaptic inputs and firing rate respectively. s̄rm is the
position of the Gaussian center on the stimulus feature space (Fig. 2D), which is the mean of stimulus
feature samples in the network dynamics (see below). Because of the Gaussian tuning (Eq. 11)
and the Poisson-like variability, given an instantaneous neuronal response rmt(θ) in network m, an
instantaneous value of the stimulus feature can be efficiently read out using population vector [12, 47],
i.e.,

srmt =
∑
j rmt(θj)θj/

∑
j rmt(θj), (12)

which is regarded as a sample of stimulus sm (Eq. 14). Notably, the stimulus feature srmt is read out
based only on local neuronal responses in network m. Moreover, due to the divisive normalization
operation in the network dynamics (Eq. 8), the Gaussian profile of neural responses (Eq. 11) can be
well maintained even if the input disparity |xm − xn| is large (Eq. 9), which ensures that stimulus
features can always be efficiently read out by population vector.
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3.2 Langevin sampling of stimulus features in coupled networks

We now elucidate how coupled CANNs can realize Langevin sampling of the posterior of high-
dimensional stimulus features in a distributed manner. We apply perturbative analysis to derive
the dynamics of stimulus features embedded in neural population responses (see details in SI.
Sec. 3.2). For each network m, we consider that its instantaneous neural response is perturbed from
its equilibrium mean, i.e., umt(θ) = 〈um(θ)〉+ δumt(θ). The (unnormalized) eigenfunction of the
perturbation δumt(θ) corresponding to the change of stimulus feature sm is derived as,

φ(θ|srm) = a−1(θ − srm) exp
[
−(θ − srm)2/4a2

]
. (13)

Previous studies have shown this eigenfunction has the largest eigenvalue for the perturbation of
CANN state [45]. We project the dynamics of each network m onto the corresponding eigenfunction
(Eq. 13), where the projection is simply the inner product between the eigenfunction and the network
response, i.e., 〈φ,umt〉 =

∫
φ(θ)umt(θ)dθ. After projection, we obtain the dynamics on the

manifold of stimulus features embedded in neural responses (see details in SI 3.2),

dsrt
dt

= − ρ√
2

(τDU)−1
[
(Lr + wfDf)s

r
t − wfDfx

]
+ σs

√
(τDU)−1ξt, (14)

where srt denotes the instantaneous positions of neural activity bumps at time t, which is regarded
as a sample of stimulus features by the coupled networks (Eq. 12). x is the observed stimulus
feature (Eq. 1) conveyed by the feedforward inputs (Eq. 9, Fig. 2E). Lr is a generalized Laplacian
matrix with Lr

mn = −wr
mnRn, Lr

mm = −
∑
n 6=m Lr

mn, where Rn is the peak firing rate of network
n (Eq. 11). wf is a scalar variable denoting the feedforward connection strength (Eq. 7). DU =
diag(U1,U2, · · · ,UM ) and Df = diag(If1, I

f
2, · · · , IfM ) are diagonal matrices, denoting the peak

value of the mean synaptic input, and the mean feedforward input in each network respectively
(Eqs. 9 and 11). DU can be analytically solved in our model (Eqs. S13-S14). Notably, after
projection, the internal Poisson-like variability of neuronal activities (Eq. 6) becomes the Gaussian-
white variability of stimulus features (the last term in Eq. 14), as required by Langevin sampling. The
strength of Gaussian-white variability in the stimulus feature manifold is σ2

s = 8aF/(3
√

3π), which
is unchanged with respect to the feedforward input and network responses.

It is interesting to compare the dynamics on stimulus features (Eq. 14) with that of Langevin sampling
(Eq. 4): both equations contain a Laplacian matrix (L or Lr) representing the stimulus prior, a
diagonal matrix (Λ or Df ) representing the precision matrix of the likelihood, and Gaussian-white
noises for producing a random walk. Thus, the dynamics of coupled CANNs in effect realizes
Langvein sampling in the manifold of stimulus features. The equilibrium distribution of stimulus
features sr in Eq. (14) is a multivariate Gaussian, denoted as N (sr|s̄r,Σr

s), whose mean s̄r and
covariance of Σr

s satisfy two conditions (for details, see SI. Sec. 2),

(Lr + wfDf) s̄r = wfDfx, (15)

(Lr + wfDf)Σ
r
s + Σr

s(L
r + wfDf)

> =
√

2σ2
sρ
−1, (16)

where s̄r = 〈srt 〉, and Σr
s =

〈
(srt − s̄r)(srt − s̄r)>

〉
. By setting the equilibrium mean and covariance

of stimulus features sampled by the network to be equal to that of the posterior of latent stimulus
features, i.e., s̄r = µs and Σr

s = Ω−1 (see Eq. 3), we get the required network connections. It
can be checked that Lr + wfDf = σ2

s(
√

2ρ)−1Ω can make Σr
s = Ω−1 hold. Substituting this into

Eqs. (15-16), we get the network connections for realizing Langevin sampling of the posterior of
stimulus features, which are,

wr
mn =

awf

√
2πρ

Lmn
Rn

, wf =

√
π

a
σ2
s =

(
2√
3

)3

F. (17)

Interestingly, we see that the reciprocal connections wr
mn and wr

nm between networks n and m
encode the prior (the correlation) Lmn between stimulus features sm and sn (Eq. 1). Moreover,
although the prior precision matrix is symmetric, i.e., Lmn = Lnm, the couplings wr

mn and wr
nm

can be asymmetric, which is biologically more plausible. When Lmn = 0 for m 6= n, the prior p(s)
degenerates into uniform, and the reciprocal connections wr

mn = 0, for m 6= n. In such a case, each
network individually samples its marginal posterior which is proportional to the likelihood.

In summary, we have shown that the model of coupled CANNs with appropriate feedforward inputs
(conveying the likelihoods, Eq. 9), appropriate reciprocal connections (encoding the prior, Eq. 17),
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Figure 3: Distributed Langevin sampling in coupled CANNs. (A) The structure of two-coupled
CANNs. Each network receives a feedforward input conveying the likelihood of stimulus feature and
meanwhile is reciprocally connected to other networks. (B) The torus manifold of two-dimensional
stimulus features embedded in two coupled CANNs. (C) The model of two-coupled CANNs
implements Langevin sampling of the posterior of stimulus features, for each network inferring the
corresponding marginal posterior. Solid ellipses: the posterior by theory. Colors of the trajectory
indicate the time elapsed. Marginal plot: marginal posterior (empirical: solid line; theory: shaded
line). (D) The mean of samples in each network is consistent with the mean of the posterior. (E) The
coupling strengths encode the precision of the prior (for detailed calculations, see SI. Sec. 4.4). (F) A
large network contains up to ten coupled CANNs. (G-H) The comparisons of the mean of sampling
(G) and the prior precision stored in the network (H) with theoretical predictions. Each point is a
result obtained under a combination of different inputs, different connection weights, and different
realizations of the network numbers. Parameters can be found in SI. Sec. 4.

and appropriate internal variability (producing random walks, Eq. 14) can implement Langevin
sampling on the manifold of high-dimensional latent stimulus features. Further, this is done in a
distributed manner, in term of that each network infers the marginal posterior of one stimulus feature.
Finally, the sampled stimulus features can be read out easily by using a linear decoder (population
vector) and separately from local neural activities at each network (see Eq. 12).

4 Simulation experiments

We carry out simulations to validate the above theoretical analysis. We first consider a single
CANN (equivalent to an uncoupled CANN; Fig. 2A-B). In this case each network m independently
infers a posterior p(sm|xm) based on the likelihood p(xm|sm) and the uniform stimulus prior. We
present a constant feedforward input Ifm(θ) generated by Eq. 9 to the network, and then evaluate
the sampling performance of the network (more details can be found in SI. Sec. 4). Firstly, we
observe that due to the internal variability, the neural population responses fluctuate over time
(Fig. 2F), whose time-averaged profile has a Gaussian shape and individual neuronal responses
exhibit Poisson-like variability (Eq. 11, Fig. 2D). This guarantees that the instant sample of stimulus
feature srt can be efficiently read out from the instantaneous neuronal response rt using population
vector (Eq. 12). Secondly, we observe that the network performs Langevin sampling. As shown in
Fig. 2F (bottom), the stimulus feature srt sampled by the network shows random walk behavior over
time, a characteristic of Langevin sampling. Moreover, the temporal correlation of sampling agrees
with the theoretical prediction of Langevin sampling, i.e., ρs(∆t) = exp(−ρ∆t/

√
2τU) (Fig. 2G).

Thirdly, we observe that by setting the feedforward weight as in Eq. 17, the equilibrium distribution of
sampled stimulus feature (i.e., the distribution of sequential samples in equilibrium, Fig. 2F, bottom)
is consistent with the posterior (Fig. 2H). Thus, a single CANN with internal Poisson-like variability
can implement Langevin sampling on the stimulus feature manifold.

Next, we demonstrate that coupled CANNs implement Langevin sampling of the posterior of high-
dimensional stimulus features. We first consider a model of two coupled networks (Fig. 3A), in which
the stimulus manifold is a torus, with each circle representing a stimulus feature (Fig. 3B). Similar to
the case of a single CANN, neuronal responses at each network exhibits Langevin sampling behaviors
due to the internal variability. The instant stimulus estimate srmt can be read out using population
vector based only on the local instantaneous neural activity rmt in network m (Eq. 12, Fig. 3A). This
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implies that a neural decoder only needs to access neural activity locally rather than over distributed
brain areas. We find that the network dynamics is performing Langevin sampling on the manifold of
torus (Fig. 3C), and that the equilibrium distribution of samples agrees with the theoretical prediction
(Fig. 3D, see details in SI. Sec. 4.3). In particular, the distribution of sampled feature values at
each individual network agrees with the marginal posterior of the corresponding stimulus feature,
demonstrating that our model is performing inference in a distributed manner. Furthermore, we
confirm that the reciprocal coupling between two networks encodes the prior of stimulus features
(i.e., the precision matrix, Fig. 3E, Eq. 17).

Our model is robust and scalable to arbitrary number of networks for processing arbitrary dimension
of stimulus features. To demonstrate this, we simulate a model containing up to ten coupled CANNs
(Fig. 3F), and verify that indeed each network is able to implement Langevin sampling of the marginal
posterior of the corresponding stimulus feature (Fig. 3G-H).

5 Conclusions and Discussions

In this study, we propose that coupled CANNs with appropriate structures are able to implement
distributed, sampling-based inference to approximate the multivariate posterior of high-dimensional
stimulus features. We elucidate that the dynamics of coupled CANNs in effect realizes Langevin
sampling in the manifold of stimulus features, where the feedforward inputs convey the likelihood, the
reciprocal connections encode the priors of stimulus association, and the internal Poisson variability
of the neurons produce random walks for sampling. Our model achieves sampling-based inference in
a distributed manner, in term of that each network infers the marginal posterior of the corresponding
stimulus feature. Furthermore, the sampled stimulus features can be read out easily using population
vector based only on local neural activities at each network.

Our model is different from others in the literature for implementing Bayesian inference. Compared
to PPC and its extended version to coupling networks [12, 13], our model is distinguished in that:
1) the inference and representation of the posterior in our model is sampling-based, rather than
parametrically represented; 2) our model is stochastic, which generates internal Poisson variability
(not as inherited from the noisy feedforward inputs as in PPC) to trigger random walks of sampling
stimulus features; 3) the marginalization via sampling in our model collectively emerges from the
stochastic dynamics of coupled networks, rather than through message-passing mediated by nonlinear
couplings between networks [13]. Compared to other sampling-based inference models (e.g., [14–
20]), our model considers that sampling occurs on the manifold of stimulus features embedded in
neuronal population responses, where stimulus features are the variables of interest. Furthermore,
we develop a concrete neural circuit model to implement this inference, and demonstrate that the
Poisson (spiking) variability of the neurons contributes to the Gaussian-white variability of stimulus
features necessary for Langevin sampling. A previous study also employed coupled CANNs to
realize distributed multisensory integration [46], but their way of realizing Bayesian inference is not
sampling-based, but rather being a statistical result by averaging over input trials. Overall, we have
proposed a novel model which integrates the strengths of PPC and sampling-based codes in a unified
framework to achieve high-dimensional Bayesian inference efficiently.

Nevertheless, there are some detailed issues needing to be addressed in the future. Langevin sampling
is known to be slow especially in a high-dimensional space [48]. In our model, sampling occurs on
the manifold of stimulus features, whose dimension (equalling to the number of coupled networks) is
already smaller by orders of magnitude compared to the dimension of neuronal responses (equalling to
the number of neurons), but still the sampling speed may be not quick enough in practice. Our analysis
shows that the temporal correlation of sampling in our model is ρs(∆t) = exp(−ρ∆t/

√
2τU)

(Fig. 2G), where the decaying time constant
√

2τU/ρ (whose inverse quantifying the sampling speed)
increases with the neural activity U (Eq. 11). To further speed up sampling, a potential strategy is
to include short-term synaptic plasticity [49], which increases the transition probability between
network states [50] and has the potential to generate effective anti-symmetric connections between
networks to speed up sampling as proposed in [16]. We will study this issue in future work.
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