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47 Abstract 

48 A key aspect in defining cell state is the complex choreography of DNA binding events in a 

49 given cell type, which in turn establishes a cell-specific gene-expression program. In the past 

50 two decades since the sequencing of the human genome there has been a deluge of genome-

51 wide experiments which have measured gene-expression and DNA binding events across 

52 numerous cell-types and tissues. Here we re-analyze ENCODE data in a highly reproducible 

53 manner by utilizing standardized analysis pipelines, containerization, and literate programming 

54 with Rmarkdown. Our approach validated many findings from previous independent studies, 

55 underscoring the importance of ENCODE’s goals in providing these reproducible data 

56 resources. This approach also revealed several new findings: (i) 1,362 promoters, termed 

57 ‘reservoirs,’ have up to 111 different DNA binding-proteins localized on one promoter yet do not 

58 have any expression of steady-state RNA (ii) The human specific SVA repeat element may 

59 have been co-opted for enhancer regulation. Collectively, this study performed by the students 

60 of a CU Boulder computational biology class (BCHM 5631 – Spring 2020) demonstrates the 

61 value of reproducible findings and how resources like ENCODE that prioritize data standards 

62 can foster new findings with existing data in a didactic environment. 

63

64

65 Introduction 

66 In the postgenomic era[1,2] there have been efforts to adapt classical biochemical protocols 

67 studying a few DNA regions to genome-wide events. One of the first of these genome-wide 

68 assays was Chromatin Immunoprecipitation (ChIP) followed by hybridization of co-precipitate 

69 DNA fragments to microarrays (or ChIP-CHIP) representing many thousands of DNA locations 
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70 (e.g. promoters). This application was first demonstrated in yeast and quickly adapted to many 

71 species[3–7]. With the advent of massively parallel sequencing technologies, bound DNA from 

72 the biochemical ChIP could be sequenced (ChIP-seq) to unbiasedly detect binding events 

73 (reviewed[8,9]). This rapid change in platforms for ChIP analyses resulted in many data sets 

74 that differed greatly in their results (ChIP-ChIP versus ChIP-seq)[10,11]. Only three years after 

75 sequencing of the human genome it became clear that uniform experimental and data 

76 standards were essential to limit a deluge of irreproducible results. 

77

78 To this end, the field turned to the publicly available ENCODE consortium as the largest and 

79 most standardized repository of ChIP-seq data sets[12–15]. The goal was to develop 

80 standardized experimental and computational pipelines. Over the past 17 years since its 

81 inception, many thousands of ChIP-seq experiments have been performed. Often these large 

82 consortium studies analyze these data sets across cell types and tissues[13,13,16–19]. In 

83 contrast, fewer studies have investigated dozens of DNA binding proteins (DBPs) in one cell 

84 type. 

85

86 Observing how hundreds of DBPs are bound relative to each other in the same cellular context 

87 provides a unique perspective. This allows a promoter-centric approach across hundreds of 

88 possible DNA binding events. Thus, we can address the underlying properties of combinatorial 

89 binding at promoters and, in turn, how this relates to promoter activity. Moreover, this approach 

90 allows us to systematically investigate numerous DBPs for possible enrichment in noncoding 

91 regions such as repetitive element class and families. Overall, this strategy is limited in cellular 

92 diversity, but rich in relative information of binding events at a given promoter.

93

94 By investigating these properties for 195 DBPs in K562 cells, we were able to reproduce known 

95 findings from independent data sets. For example, the number of binding events at a promoter 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.21.213603doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213603
http://creativecommons.org/licenses/by/4.0/


4

96 correlates with RNA expression output (both nascent and mature transcripts)[17,18]. We also 

97 made several new observations. Specifically, we identify 1,362 promoters that do not produce a 

98 mature transcript despite having up to 111 DBP binding events. We termed these promoters 

99 “reservoirs” because these promoters serve as ‘reservoirs’ for DBPs. Importantly, reservoirs are 

100 distinct from super-enhancers and highly overrepresented by long noncoding RNA (lncRNA) 

101 promoters. We also observed that the human specific SVA repeat is one of the few repeat 

102 families that had specific DBP enrichment, with a total of three DBPs specific to SVA repeats. 

103 Looking further we found that SVA repeats reside adjacent to or within enhancers and are often 

104 transcribed; suggesting they may have been co-opted in late primates as enhancer elements.

105

106 Overall, we demonstrate the utility of implementing data-science and reproducibility standards to 

107 gain new insights combinations of genome-wide DNA binding events. We further note that the 

108 design of this study was intended for didactic purposes and carried out by students in a 

109 classroom setting. 

110

111 Results

112 We first set out to survey the encode portal for the largest number of ChIP-seq experiments that 

113 satisfied the following criterion: (i) target was considered a DNA binding protein (DBP), the 

114 experiment used validated antibodies, sequencing was performed with 100bp paired end reads 

115 and were in the same cell setting. We found the maximum number of samples that meet these 

116 requirements were performed in K562 cells. Specifically, there are 1,076 FASTQ files comprised 

117 of 195 DBPs meeting these criteria in K562. Rather than analyzing the peaks already called by 

118 ENCODE for these experiments we chose to re-analyze the raw data using a community-

119 curated pipeline developed by “nf-core”[20].  This approach meets the highest data 
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120 reproducibility standards by using a container for all software and producing extensive 

121 documentation at every stage of analysis within the nf-core/chipseq (v1.1.0) pipeline (Fig 1A). 

122

123

124 Fig 1. Framework of ChIP-seq analyses and peak calling across replicates. (A) Schematic 

125 of data quality requirements (2 or more replicates, 100bp reads, validated antibody) resulting in 

126 1,076 FASTQ files representing 195 unique DNA binding proteins. FASTQs were processed 

127 using the nf-core/chipseq pipeline (QC and peak calling). All FASTQ files passed nf-core quality 

128 control metrics. (B) Browser view of raw data, individual replicate peak calls and our consensus 

129 peaks. All scales are from 0 to 1 representing minimum and maximum reads in that window 

130 using UCSC auto-scale. Peaks from individual replicates are in gray and consensus peaks 

131 called are represented by black boxes. 

132

133

134 The nf-core pipeline consists of documented analyses and quality control metrics that results in 

135 significant windows or peaks of DNA binding events for each replicate[20]. After the 

136 standardized pipeline gave us peak calls, we used this data to support our analysis and 

137 exploration of the data. Our approach was to use R and Rmarkdown to document the analyses. 

138 Compiling the 11 Rmarkdown files provided in the GitHub repository 

139 (https://github.com/boulderrinnlab/CLASS_2020) will reproduce all the results and figures of this 

140 study.

141

142 After calling significant peaks (MACS broad peak) for each replicate ChIP experiment for each 

143 of the 195 DBPs, we wanted to develop consensus peaks across replicates. Briefly, we filtered 

144 to peaks on canonical chromosomes and required that peaks overlap by at least 1nt in all 

145 replicates for a given DBP. Peaks that overlap in all replicates are then merged by the union of 
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146 peak widths (Fig 1B-C). We observed five DBPs that did not have any peaks overlapping across 

147 replicates perhaps suggesting that these are promiscuous antibodies, or these proteins have 

148 heterogeneous binding across K562 cell populations (MCM2, MCM5, MCM7, NR3C1, TRIM25). 

149

150 We next plotted the distribution of the number of consensus peaks for each DBP and found that 

151 many DBPs had very few peaks. In order to capture the majority of DBPs and still provide a 

152 reasonable number of peaks for analyses (e.g., permutation analyses), we chose a cutoff of 250 

153 peaks (15% percentile, Supplemental Fig 1A). This results in 161 proteins to carry forward in the 

154 analysis and in losing the following proteins: ARNT BCLAF1 COPS2 CSDE1 DNMT1 eGFP-

155 ETS2 FOXA1 KAT8 KDM4B MCM2 MCM5 MCM7 NCOA1 NCOA2 NCOA4 NR0B1 NR3C1 

156 NUFIP1 PYGO2 THRA TRIM25 TRIP13 XRCC3 YBX1 YBX3 ZBTB8A ZC3H8 ZNF318 

157 ZNF830.

158

159 Promoter centric binding properties of 161 DNA Binding 

160 Proteins

161 We next plotted the relationship between the number of consensus peaks observed for each 

162 DBP and how many promoters overlapped (36,814 lncRNA and mRNA promoters). We observe 

163 a linear relationship (slope = 0.31 for mRNA and lncRNA promoters) between the number of 

164 peaks and or size of peaks and the number of overlaps with promoter regions (Fig 2A).  

165 Somewhat surprising was this trend was even more pronounced when comparing overlaps 

166 within gene-bodies rather than promoter regions (Fig 2B). This suggests we could have an 

167 observation bias at promoters where promoter binding simply increases with the number of 

168 peaks observed for a given DBP and not due to preferential binding at promoters. 

169
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170

171 Fig 2. Promoter binding properties of 161 DBPs. (A) Schematic of promoter overlap strategy. 

172 Number of overlapping promoters (y-axis) per number of peaks for each DBP (x-axis). (B) Same 

173 as in (A) but for overlapping gene bodies instead of promoters. (C) Binary clustering of 161 

174 DBPs based on promoter binding profiles (consensus peaks). Zoom out of specific regions. 

175

176

177 To detect preferential binding at promoters, we took a permutation-based approach for each 

178 DBP’s peak-profile across the genome.  Briefly, we took the consensus peaks for each DBP and 

179 randomly placed them across the genome, while controlling for (i) number of peaks, (ii) width of 

180 peaks and (iii) number of peaks on each chromosome. We then performed a Fisher exact test of 

181 the observed binding at promoters versus expected binding in the empirically derived null 

182 distributions. We observed that nearly all DBPs exhibit significant overlap with promoters versus 

183 the rest of the genome, despite being involved in many different DNA regulatory processes 

184 (Supplemental Fig 1B). 

185

186 To more closely examine the results of our consensus peak strategy we performed manual 

187 inspection of samples with two or more replicates (Fig 1B-C). We find that our peaks are 

188 consistent with what would be expected of highly reproducible binding events. We see that most 

189 Pol2 and ATF3 peaks show good agreement between replicates. Interestingly in this example 

190 ATF3 is not localized to the promoter but in an upstream region that could be a newfound 

191 enhancer or upstream regulatory element. Overall, these analyses are consistent with our 

192 consensus overlap strategy representing expected and newfound features in peak size profiles. 

193
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194 Global analysis of similarities in binding profiles

195 To determine if there were underlying similarities and differences of 161 DBPs that passed our 

196 conservative filtering, we first performed hierarchical clustering (Fig 2C) on binary vectors 

197 representing binding events on 36,814 lncRNA and mRNA promoters defined in GENCODE 32 

198 where 1 = bound, 0 = not bound for each promoter and DBP. As a quality control check, we 

199 looked for clustering of known factors. The binary vector profiles validated that POLR2A, 

200 POLR2B, and SUPT5H form a distinct cluster. Known family members, such as ATF3 and ATF2 

201 co-cluster together as well, along with the eGFP-ATF3 control. This indicates that these DBPs 

202 had similar binding profiles with or without the eGFP tag. However, 11 cases of eGFP-tagged 

203 samples clustered together, despite having widely different functions. This may suggest that in 

204 some rare cases the tag can alter the binding profiles in a manner that is more consistent with 

205 the tag than DBP function.

206

207 As an unbiased approach to find underlying properties in DBP binding profiles, we also 

208 performed UMAP[21] dimensionality reduction for the global binding profile of each DBP (Fig 

209 3A).  Briefly, UMAP uses algebraic topology to reduce the data dimensionality. We further 

210 clustered this reduced representation using density-based clustering (HDBscan[22]). We 

211 observed a total of seven clusters. Similar to binary clustering, we identify a clear cluster of 

212 POLR2A, POLR2B, and SUPT5H and other basal transcriptional associated factors (TAF) as 

213 would be expected. This is another example of high reproducibility as POL2 has three different 

214 antibodies with 2 replicates each that are all highly concordant with thousands of peaks each.

215

216

217 Fig 3. Binding properties of DBPs and expression output of promoters. (A) UMAP 

218 dimensionality reduction to identify DBPs with similar promoter binding profiles. (B) Four 
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219 discrete clusters of binding patterns around promoter TSSs with 3Kb up- and downstream. Line 

220 is the average profile of all peaks in each cluster. (C) The number of peaks per DBP versus 

221 number of mRNA or lncRNA promoter overlaps. X-axis is the number of DBPs overlapping 

222 either lncRNA (red) or mRNA (black) promoters. (D) Chi-sqared test for enrichment of DBPs 

223 between lncRNAs and mRNAs. The x-axis is the log2(observed over expected) and y-axis is the 

224 P-value.

225

226

227 Next we compared specific features of the DBP with their position in the reduced space by 

228 mapping metadata (e.g., type of DNA binding domain) onto the UMAP points (Fig 2A, 

229 Supplemental Fig 2A-D). We found no clear association with (i) type of DNA binding domain, or 

230 (ii) annotation as a transcription factor, (iii) RNA-seq expression of bound genes, or other 

231 properties. Collectively, these results recapitulate known biological functions of DBPs while 

232 including potential new factors across these different promoter regulatory functions.

233

234 Promoter binding specificity of 161 DNA binding proteins

235 We next wanted to assess the underlying promoter features associated with each DBP.  

236 Specifically, we wanted to determine where each DBP is bound relative to the TSS of 36,814 

237 lncRNA and mRNA promoters. To this end, we generated ‘binding profile plots’ by calculating 

238 the read counts across all promoters centered at the TSS with 3kb flanking up- and down-

239 stream (Fig 3B, Supplemental Fig 2E-F). We next clustered the 161 DBPs based on their 

240 promoter profile plot. We split the dendrogram into clusters by ‘cut-height’ (h = 65). We 

241 observed 4 distinct clusters with at least two DBPs. The first distinction is that about half exhibit 

242 a narrow peak profile (71) and half with a broader peak profile (74). In both cases these profiles 
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243 peak near the TSS. Interestingly, 6 genes (eGFP-PTRF, ZBTB33, SMARCA5, HDGF, eGFP-

244 ZNF512, eGFP-ZNF740) have the inverse pattern: depletion of binding at the TSS with strong 

245 enrichment at flanking regions (Supplemental Fig 2E-F). 

246

247 Previous studies have identified several differences in binding features at coding (mRNA) 

248 compared to noncoding (lncRNA) promoters. Here we wanted to independently test this across 

249 161 DBPs to determine if there was an enrichment or depletion at mRNA versus lncRNA 

250 promoters. We counted the number of lncRNA and mRNA promoter overlaps separately and 

251 observed the same linear trend of more peaks resulting in more binding events for both 

252 lncRNAs and mRNAs. However, the slope for mRNA is 0.19 (R = 0.75, P < 1e-10) and lncRNA 

253 is 0.088 (R = .87, P < 1e-10) suggesting a two-fold reduction on an average lncRNA promoter 

254 (Fig 3C). 

255

256 We then performed permutation analysis (above) separately for lncRNAs and mRNAs to 

257 determine if the observed overlap is greater than expected by chance (Supplemental Fig 3C). 

258 Similar to our previous observation, nearly all DBPs were significantly (Fisher-exact P < 0.05) 

259 enriched at both lncRNA and mRNA promoters yet with a smaller magnitude of enrichment of 

260 binding events on lncRNA promoters (similarly to previously reported[17]).  We observed two 

261 DBPs that were significantly depleted: BRCA1 on mRNA promoters, and ZNF507 on both 

262 lncRNA and mRNA promoters. Four DBPs showed neither enrichment or depletion at lncRNA or 

263 mRNA promoters. In total 155 of the 161 tested DBPs were enriched at lncRNA and mRNA 

264 promoters more than expected by chance (Supplemental Fig 2G).

265

266 Our previous permutation test above demonstrated that most DBPs bind both lncRNA and 

267 mRNA promoters more than expected by chance. But this approach does not account for DBPs 

268 that may prefer lncRNA or mRNA promoters. Thus, we hypothesized that some DBPs may have 
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269 a bias in binding for mRNA relative to lncRNA promoters and vice-versa. To test this, we 

270 performed a Chi-squared test to compare the number of binding events for each DBP at lncRNA 

271 versus mRNA promoters. Interestingly, although most DBPs are enriched on mRNA promoters, 

272 there were a few with a relative bias toward lncRNA promoters (P < 0.05): BRCA1, eGFP-

273 ZNF507, EWSR1, eGFP-TSC22D4 (Fig 3D). Interestingly, BRCA1 prefers to bind outside of 

274 promoters, yet if it does bind a promoter BRCA1 prefers lncRNA over mRNA promoters.

275

276 Repeat family and class binding preferences for 161 DNA 

277 binding proteins

278 In order to determine if DBPs are enriched or depleted in TE classes and families we performed 

279 a permutation enrichment analysis. As above, we randomly shuffled peaks around the genome 

280 and calculated the number of overlaps with repeat family and classes from RepeatMasker 

281 Open-3.0 occurring by chance (Fig 4A). 

282

283

284 Fig 4. Many DBPs are enriched or depleted on repeat families and classes. (A) Heat map 

285 of Z-scores of observed overlaps of each DBP versus the overlap distribution of 1,000 random 

286 permutations of each DBPs profile genome wide. Red indicates depletion and blue enrichment 

287 (negative versus positive Z-scores respectively). The observed and permuted Z-scores are for 

288 overlaps with repeat classes. (B) The same permutation analysis as in (A), but for observed 

289 versus permuted overlaps with repeat families. Red indicates depletion and blue enrichment.

290

291
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292 We observe that some classes, such as Simple Repeats and tRNAs, were enriched for most 

293 DBPs, while others, such as the LINEs and Satellites, were depleted for most DBPs (Fig 4A). 

294 The LINE class was depleted of all DBPs with the exception of five DBPs with zinc finger-like 

295 motifs (ZNF507, ZNF316, ZNF184, ZNF24 and ZNF512). Additionally, the LTR class was 

296 depleted for most DBPs, but enriched for a subset of 23 DBPs (Fig 4B).

297  

298 Overall, we found that most small TE families were not significantly enriched or depleted for 

299 specific DBPs. However, a subset of 23 DBPs were enriched in the ERV1 family, but depleted in 

300 the L1 family. These 23 DBPs are the same that were enriched in the LTR class. This is 

301 consistent with ERV1 family TEs being a part of the LTR class. Similarly, the MIR family shows 

302 a similar enrichment pattern to the tRNA family (Fig 4B). Thus, using this approach we can 

303 provide a map of which DBPs are specifically bound to which repeat family.

304

305 We did observe a subset of 6 DBPs (NUFIP1, ZC3H8, PHF21A, ARHGAP35, NCOA4, PYGO2) 

306 enriched in snRNAs, but no other TE family. Each of these DBPs, except NCOA4, contains a 

307 zinc-finger-like DNA binding domain, and a few (NUFIP1 and ZC3H8) are known to be a part of 

308 the snRNA biogenesis pathway, perhaps suggesting some form of feedback. The L1 family is 

309 depleted for almost every DBP, but is highly enriched for ZNF507, an interaction which has 

310 been previously described in an undergraduate thesis and confirmed genome-wide here 

311 (https://web.wpi.edu/Pubs/E-project/Available/E-project-042618-111020/unrestricted/MQP.pdf).

312
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313 The human specific SVA repeat family has enhancer like 

314 features

315 Although most families are not enriched for specific DBPs, the human specific SVA repeat 

316 family is specifically enriched for three DBPs: ZBTB33, CBFA2T2, and CBFA2T3. Interestingly, 

317 all three of these DBPs are known transcriptional repressors. The SVA family is the youngest 

318 family of TEs, is enriched in gene-rich areas of the genome[23–25], and can cause human 

319 disease[24]. Based on these interesting features we further explored the binding of these factors 

320 on the SVA repeat. 

321

322 We first retrieved histone modification ChIP data for K562 cells from ENCODE and visualized 

323 the coverage centered on the 5,882 SVA repeats with 5kb up- and down-stream. We find that 

324 Lysine 4 mono-methylation (K4me1) is the only histone modification enriched on SVA elements 

325 – all others were depleted (Supplemental Fig 3A). Moreover, the enrichment of K4me1 is on the 

326 5’ end of the SVA element suggesting it could be an insulator for enhancers or part of the 

327 enhancer element. This pattern is so sharp we were concerned about mapability to the SVA 

328 element – despite observing the 5’ enrichment of K4me1. We reasoned that ZBTB33, CBFA2T2 

329 and CBFA3T3 should be enriched across the SVA element. We performed the same analysis 

330 above for the these 3 DBPs and find there is strong mapping to these SVA regions, which 

331 suggests a low potential for the histone mark depletion to be an artifact of low mappability 

332 (Supplemental Fig 3B). We next looked at the expression level of SVA elements relative to other 

333 repeat family members. Interestingly, we observed that SVA elements have more transcription 

334 (Supplemental Fig 3C) than LTR family members that are known to function as promoters[26]. 

335 Together, these results demonstrate that the SVA region has enriched and fully mappable 

336 coverage of K4me1, ZBTB33, CBFA2T2, CBFA3T3 and are expressed. 
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337

338 Of the 5,882 SVA elements genome-wide, 255 SVAs were found to contain consensus peaks 

339 for all three enriched DBPs: ZBTB33, CBFA2T2, CBFA3T3. We took the same approach above 

340 for this subset of bound SVA elements. We see even stronger enrichment of K4me1 (Fig 5A) 

341 and also coverage by ZBTB33, CBFA2T2 and CBFA3T3 (Fig 5B). Interestingly, the shape and 

342 position of ZBTB33 is distinctly different than that of CBFA2T2/3T3 (Fig 5B). It suggests that 

343 ZBT33 binds on the 5’ region near K4me1 and CBFA2T2/3T3 have overlapping positions on the 

344 3’ end of SVA elements. Closer examination of nascent, steady state RNA-sequencing (see 

345 below) and K4me1 ChIP shows a very interesting pattern of the SVA elements being 

346 transcribed and or producing bi-directional RNAs in K4me1 enriched (Fig 5C-D). This is very 

347 similar to what has been seen for enhancer regions genome wide[27,28]. Thus, the SVA 

348 transposon may have evolved (neutrally or positively) to ‘co-opt’ binding of DBPs adjacent or 

349 within enhancer regions. 

350

351

352 Fig 5. Human SVA repeats are enriched for DBPs and enhancer properties. (A) Heatmap of 

353 histone modification reads centered on SVA and 5Kb up- and down-stream for the 255 SVA 

354 elements containing ZBTB33 and CBFA2T2/3T3 peaks. Here red indicates enrichment, while 

355 blue indicates depletion. Above is the average profile line of enrichment within and outside SVA 

356 elements. (B) Same as (A) but coverage of ZBTB33 and CBFA2T2/3T3. The K4me1 plot is 

357 same as in (A) for direct comparison. (C) Browser examples in the same format as Fig 1.

358

359
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360 Promoter binding of 161 DNA binding proteins versus 

361 promoter expression output

362 Here we set out to investigate how binding events at individual promoters relate to the 

363 concomitant expression of the gene-product at that promoter. To this end, we analyzed 

364 ENCODE K562 total RNA sequencing data from two replicates. We calculated the average read 

365 coverage across replicates and quantified by transcripts per million reads (TPM); while 

366 considering the variance between replicates in further analyses. We first asked if the number of 

367 binding events at a promoter correlated with expression. We observed a positive correlation (R 

368 = 0.6, P < 2.2e-16) between the number of DBPs bound at a promoter and expression output of 

369 the promoter (Supplemental Fig 4A).

370

371 We next wanted to determine if this trend is similar for mRNA and lncRNA promoters 

372 separately. Indeed, we see that both lncRNA and mRNA promoters have a positive correlation 

373 to binding events and expression output (Fig 6A). We observed that lncRNAs have lower 

374 expression in general than mRNA as previously determined[29–32]. Yet despite these 

375 expression differences, both exhibit a positive relationship between number of binding events 

376 and promoter activity. This is consistent with observations in a previous study using a different 

377 yet overlapping subset of 73 DBP ChIP datasets[32]. 

378

379

380 Fig 6. Reservoir promoters are comprised of ghosts and zombies. (A) Number of DBPs 

381 bound to a promoter (x-axis) versus log10(TPM) of transcription as measured by total RNA-seq. 

382 (B) Box plot comparing mRNA (black) and lncRNA (red) expression as a function of off, low, 

383 medium, and high expressed transcripts. Y-axis is the number of DBPs and X-axis each 
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384 category. (C) Y-axis is the mean expression level in windows of 5 genes excluding the center 

385 gene, with a step (slide) of 1 gene. X-axis is by category of windows containing a reservoir, non-

386 reservoir or super-enhancer. Y-axis is mean expression in each 5 gene window. (D) Density plot 

387 of number of DBPs bound at a promoter at expressed (grey) versus non-expressed promoters 

388 (red), separated by lncRNA and mRNA promoter types. (E) Nascent TPM expression (y-axis) 

389 compared to number of DBPs bound at a promoter. (F) Density plots of DBPs ghost reservoirs 

390 (those without nascent expression, PRO-seq TPM < 0.001) vs those with detectable nascent 

391 expression (zombie reservoirs).

392

393

394 Although we saw a linear trend with binding events and expression output above, we wanted to 

395 refine this analysis to a binned approach. Specifically, we binned lncRNA and mRNA promoters 

396 by expression output of: Off: < 0.001 TPM, Low: (0.001,0.137] TPM, Medium: (0.137,3] TPM, 

397 and High: >3 TPM. Interestingly, at ‘low’ and ‘off’ expressed promoters there is no difference in 

398 binding event distributions between lncRNA and mRNA promoters (Fig 6B). Thus, they both 

399 have similar numbers of binding events -- and can have dozens of DBPs bound -- despite 

400 having little to no expression output. In contrast, mRNA promoters show significant increases in 

401 binding events, compared to lncRNA promoters, at medium and high expressed promoters. 

402 Thus, in the middle to high ranges of expression is where we begin to see the differences 

403 between mRNA and lncRNA promoters. Collectively, these results identify over a thousand 

404 promoters that resemble the DBP content of highly-expressed promoters yet do not have any 

405 detectable expression by RNA-seq.

406
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407 Promoters with numerous binding events but lack gene-

408 expression output

409 Based on the observation of over a thousand promoters that have numerous DBPs bound, but 

410 do not produce a transcript identified by RNA-seq, we wanted to further characterize the global 

411 properties of this subset of promoters. First, we made density plots of the number of binding 

412 events at promoters. We observed a bimodal distribution of binding events where the cutoff 

413 between the distributions is around seven binding events at a promoter (54% percentile). Based 

414 on these two distinct distributions, we focus our analysis on those promoters with more than 

415 seven binding events (Supplemental 4B) and further required that the RNA-seq output was less 

416 than 0.001 TPM. This resulted in 1,362 promoters which had a relatively high number of binding 

417 events but lack of RNA-seq output from these promoters. Interestingly, 981 of the 1,362 are 

418 comprised of lncRNA promoters (Supplemental Fig 4C). This is a significant over-representation 

419 of lncRNAs in these high-binding non-expressed promoters over what would be expected by 

420 chance (hypergeometric p-value = 1.1 x 10-88). 

421

422 There are two trivial explanations that could explain these high binding low expression 

423 promoters: (i) these are simply super enhancer[33–35] annotations (as they share similar 

424 properties of many binding events) and or (ii) the promoter is regulating a neighboring gene.

425

426 Our first concern is that super-enhancers (SE) share the similar property of many binding 

427 events, we wanted to determine how many of these regions were super enhancers. For super-

428 enhancer annotations we used the SE-DB[36] that is comprised of 331,601 super-enhancers 

429 from 542 tissues and cells, including K562. We first retrieved the SE annotations in K562 with 

430 the hg19 reference genome alignments. We then lifted over these annotations from hg19 (732 
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431 annotated SEs) to hg38. We found 714 annotations have one match to the genome and took a 

432 conservative approach of not including the 18 SEs with multi-mapping in the genome (often too 

433 many chromosomes). Of these 714 regions, 35 overlapped with the 1,363 reservoirs (P = .991 

434 Hypergeometric). Thus, reservoirs are distinct from SE annotations and are enriched with 

435 repressor complexes unlike SEs.

436

437 Another concern is that these promoters we identified could regulate a neighboring gene; this 

438 would be most obvious for bidirectional promoters. Thus, we first defined a set of promoter 

439 types: (i) bidirectional, if another promoter on opposite strand overlaps within 1,000 bp upstream 

440 of the TSS on the opposite strand (147 / 11%); (ii) multiple nearby promoters, if there is more 

441 than one promoter on either strand within 1,000 bp (91 / 7%); (iii) nearby on same strand if there 

442 is another promoter upstream within 1,000bp (113 / 8%); (iv) none (1,011 / 74%), if there are no 

443 promoters within 1,000 bp (Supplemental Fig 4D). Collectively, very few reservoirs had shared 

444 promoters of any type i-iii (26%), thus this cannot likely account for the lack of transcription at 

445 the observed or neighboring promoter (since there are so few). Nonetheless we calculated the 

446 TPM of promoter(s) neighboring reservoirs.  We observed that 68% of these shared promoters 

447 did have a neighboring gene expressed (subcategories in Supplemental Fig 4E) for a total 240 

448 (15%) of reservoirs that could affect neighboring gene expression. Thus, neighboring promoters 

449 of any orientation cannot account for the general lack of expression observed at reservoirs (Chi-

450 squared p-value 2e-22). 

451

452 Although bidirectional expression cannot explain why these promoters seem inert, we wanted to 

453 look more globally at the transcription environment of these promoter regions and their 5 

454 neighboring genes. Specifically, we used a “sliding-window” approach to calculate the median 

455 TPM expression value for windows of 5 genes. Each window is centered on one gene and the 

456 mean of the neighboring four genes is calculated excluding the center gene. We first plotted the 
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457 distribution of windows where the center gene is a reservoir compared to those with non-

458 reservoir center genes. We also removed the 35 reservoirs that were annotated as super-

459 enhancers. We observed that the Wilcoxon test statistic (Fig 6C) between means was 

460 significant (P < 9e-06), however the means were very similar (mean = 7.2 for reservoir, mean = 

461 8.4 for non-reservoir). To be sure this is not an artifact of our permutation analysis we performed 

462 the same analysis for windows of genes centered on super-enhancers versus non super-

463 enhancers. Indeed, we see that super-enhancers reside in regions of significantly higher 

464 transcriptional activity (p < 2.5e-12) with a large fold change (4.5x) in mean expression (mean 

465 super-enhancer = 37 TPM, mean = non super-enhancer 8.4 TPM) (Fig 6C).  

466

467 Collectively, these results identify a subset of promoters that appear to be a ‘holding place’ for 

468 DNA binding events. Thus, we will refer to these promoters as ‘reservoirs’ since they: (i) are 

469 distinct from super-enhancer annotations; (ii) are located in more transcriptionally silenced 

470 neighborhoods; (iii) share the property of many DNA binding properties as those promoters that 

471 are highly expressed and (iv) have no expression output as measured by RNA sequencing. 

472

473 DNA binding properties of reservoir promoters
474 To understand if reservoir promoters are enriched for certain DBPs, we compared the density of 

475 DNA binding events at lncRNA and mRNA reservoir and non-reservoir promoters which had 

476 greater than seven binding events. We observed a shift toward fewer binding events for both 

477 lncRNA and mRNA reservoirs (Fig 6D). However, it’s notable that there are still reservoirs along 

478 the whole range of DBP binding. Although reservoirs have fewer binding events in general, we 

479 wanted to determine if there was enrichment of certain DBPs on reservoirs. Using a Chi-

480 squared test to compare the number of bound promoters for reservoirs versus non-reservoirs 

481 we observed that 31 DBPs were depleted on reservoirs and only one gene enriched (P < 0.001 
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482 and > 2-fold depletion/enrichment, Supplemental Fig 4F). This is in contrast to the lncRNA and 

483 mRNA comparisons above where we saw global depletion of all DBPs on lncRNA promoters. 

484 Thus far, reservoirs are deviant from all trends observed for the other ~33,000 promoters tested 

485 above.

486

487 We wanted to further globally characterize reservoir promoters using UMAP dimensionality 

488 reduction as in Fig 2A. Unlike with all promoters we only observe two distinct clusters across 

489 reservoirs (Supplemental Fig 4G). However, gene-ontology analysis revealed that both clusters 

490 are strongly enriched for similar processes such as regulation of transcription (P < 1e-20). 

491 Perhaps as expected, Pol2 and associated transcriptional machinery are some of the most 

492 significantly depleted from reservoirs; consistent with their lack of expression. Despite a global 

493 depletion of Pol II at reservoirs, we were surprised that over a quarter of reservoirs (417) had 

494 Pol II binding events, suggestive of ‘paused’ transcription. While only one DBP (eGFP-

495 TSC22D4) reached the fold-change threshold, two more were found to be significant (P < 

496 0.001) with small enrichments. All three are associated with repressive activity. TSC22D4 and 

497 CBFA2T2 are both known repressors while EHMT2 facilitates transcription repression through 

498 methylation of H3K9. Collectively, these findings show that reservoir promoters are distinct from 

499 super enhancers, bound by many DBPs and yet are not transcribed.

500

501

502 Nascent Expression and chromatin properties of reservoir 

503 promoter

504 Since reservoirs don’t have mature transcriptional products despite many promoter binding 

505 events, we next examined if reservoirs have “nascent” transcription detected via PRO-seq 
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506 (reviewed34). These approaches are so precise they can identify specific DBP binding sites 

507 through PRO-seq nascent RNA read out [37,38].  Thus, we hypothesized that reservoir 

508 promoters would exhibit nascent transcription owing to so many DNA binding events. This could 

509 also be similar to more well established “paused” promoters as reviewed[39]. 

510

511 To determine the nascent transcription properties of reservoirs, we obtained two replicate pro-

512 seq data sets that measure the amount of nascent transcription at a promoter.  We used 

513 “Rsubread”[40] to calculate TPM values of nascent transcription across the same 6 Kb promoter 

514 window defined for DBP binding. We first plotted the relationship of nascent sequence at 

515 reservoirs versus non-reservoirs (Supplemental Fig 5A). Although statistically different (P < 3e-

516 9) the distributions are fairly similar for reservoirs (mean = 0.41) and non-reservoirs (mean = 

517 0.51) with a fold change of only 1.25. Thus, consistent with lack of RNA-seq expression, 

518 reservoirs also have slightly lower nascent expression than non-reservoirs (Supplemental Fig 

519 5A). Next, we compared the relationship between the number of DBPs bound and nascent 

520 expression levels (Fig 6C). Similar to what was observed for RNA sequencing and previous 

521 studies(17,32) (Fig 3C), nascent transcription also has a significant (R = .3, P < 2e-16) positive 

522 correlation with the number of DBPs bound at that promoter (Fig 6C). 

523

524 Interestingly, we observed a subset of reservoirs that have many DNA binding events but do not 

525 have nascent transcriptional activity. Specifically, we found 355 (25%) promoters with more than 

526 7 and as many as 60 binding events that have neither nascent nor mature expression (PRO-seq 

527 TPM < 0.001, Fig 6F).  We refer to these reservoirs without nascent or mature transcription as 

528 ‘ghosts’, as there is no presence of transcriptional activity. We also found 964 promoters with 

529 more than seven binding events that had no mature expression but did have nascent 

530 expression. These are referred to as ‘zombies,’ as there is some presence of activity. 

531
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532 We next investigated if the chromatin environment discriminates between ghost and zombie 

533 promoters. We therefore retrieved ENCODE ChIP data from K562 for a euchromatic and 

534 heterochromatic histone modification; Histone 3 Lysine 27 acetylation (H3K27ac) versus 

535 Histone 3 Lysine 27 trimethylation (H3K27me3) respectively. To this end, we downloaded peak 

536 files called in two independent replicates for each histone modification from ENCODE analysis 

537 pipelines. To validate our re-analysis of these ChIP-seq experiments we first determined if 

538 K27ac correlates and K27me3 anticorrelates with global nascent transcription as would be 

539 expected. Indeed, we see that those promoters containing K27ac have increased nascent 

540 expression (P < 2e-16, fold change = 4) (Supplemental Fig 5B). Similarly, we checked the trend 

541 for K27me3 status (Supplemental Fig 5C). As expected, we see that promoters containing 

542 K27me3 have lower nascent expression (P< 2e-16, Fold change = 0.3, Supplemental 5C). 

543

544 Having validated that our analysis of PRO-seq faithfully represents known biological processes 

545 (e.g., K27ac enriched with higher expression) we wanted to zoom in only on reservoirs. We first 

546 compared K27ac status versus nascent transcription levels on reservoirs. As was seen with all 

547 promoters we see a significant difference in nascent expression between K27ac containing 

548 reservoirs and those without that mark (P < 0.0006, fold change = 1.65, Supplemental Fig 5D). 

549 Similarly, K27me3 status on reservoirs is negatively associated with nascent expression levels 

550 (P < 0.0002, fold change = 0.55, Supplemental Fig 5E). However, chromatin environment 

551 doesn’t fully explain the presence of zombie promoters, as there are promoters with and without 

552 nascent expression in each category of chromatin state.

553

554 To understand the difference between ghosts and zombies, we compared DBP binding events, 

555 the distribution of nascent transcription, and histone marks. We did not observe a significant 

556 difference in distribution of DBPs between ghosts and zombies (P = 0.064, fold change = 1.04, 

557 Fig 6F, Supplemental Fig 5F). Thus, unlike all other cases tested, the number of DNA binding 
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558 events cannot account for the difference in those that do and don’t have nascent expression. 

559 Collectively, these findings demonstrate that more than 60 DBPs bound to the same promoter 

560 do not exhibit nascent nor transcript production and are ‘ghosted by Pol II’. All properties 

561 identified above can be found in S2 Table. 

562

563 Discussion 

564 A fundamental question in biology is to understand when and where DBPs localize on a given 

565 promoter and in turn how these combinations affect expression output. Thanks to heroic efforts 

566 by ENCODE and other genome consortium efforts we now have standardized DNA binding 

567 profiles for hundreds of DBPs[12–15,31]. Moreover, these datasets go through several quality 

568 control measures before being released by ENCODE (see ENCODE portal). Thus, these 

569 important resources provide two opportunities: one for data-reproducibility standard 

570 advancements based on such well documented data; and a second to re-analyze these data-

571 sets to find novel insights into the genome-wide localization of DNA binding proteins. 

572

573 This study found a vast majority of ENCODE data to be highly reproducible -- both with known 

574 biology and in data quality. However, we do note that it may be recommended to be sure 

575 replicates have reproducible peak profiles as we observed a few ChIP-seq experiments that did 

576 not have any overlapping replicate peaks. This led us to identify 5 (2%) experiments that did not 

577 have any reproducible peaks. However, a majority of the experiments (98%) have peaks that 

578 overlap in all replicates as applied in this study. Moreover, taking into account the number of 

579 observations (promoters) it is needed to be sure there are sufficient replicable peaks called for 

580 each DBP. We found 30 more samples that had fewer than 250 peaks between replicates (14th 

581 quartile). Considering the number of observations (promoters) it is also important to be sure 
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582 there are sufficient peak numbers for permutation analysis and statistical comparisons. Finally, 

583 we noted that many of the proteins tagged with “eGFP” had similar binding profiles based on the 

584 tag and not DBP function (Fig 2C). We did not see differences in number or sizes of peaks 

585 compared to antibody-based ChIP. Yet it is surprising that 15 different DBPs all cluster together 

586 based on the “eGFP” tag despite diverse biological roles and all having similar consensus peak 

587 profiles. 

588

589 These large and standardized data-sets also provide a unique opportunity to search for novel 

590 insights into the relationship of DBPs and expression output. Thus, we can compare 161 DBPs 

591 from the perspective of a promoter to determine how many bind and how this influences 

592 promoter output. Consistent with two recent studies using orthogonal datasets and 

593 approaches[17,18] we found that the more DBPs at a given promoter the more it tends to be 

594 expressed. This was similar for lncRNA and mRNA promoters alike. This analysis similarly 

595 validated these studies finding that mRNA promoters are more enriched in general than 

596 lncRNAs for DBPs[17,18]. 

597

598 Surprisingly, we observed 1,362 promoters had numerous DBPs (more than seven and up to 

599 111 DBPs on one promoter) bound yet did not have expression output. In fact, these promoters 

600 had similar DBP events as the most highly expressed mRNA promoters.  We termed these 

601 regions reservoirs as they seem to be a holding spot for DBPs. Notably, reservoirs are highly 

602 over-represented for lncRNA promoters relative to mRNA promoters (p < 2 e-12). We also 

603 determined that reservoirs are not super-enhancers previously defined by having many DBP 

604 binding events. Unlike super-enhancers, reservoirs have many different DBPs bound rather 

605 than many binding events of cell-specific transcription-factors in a defined region[33–36,41]. 

606 Another difference from super-enhancers is the lack of Pol II, although we do find that a quarter 
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607 of reservoirs do have Pol II machinery bound. Perhaps suggesting that they are “paused 

608 promoters”[39,42] potentiated with up to 111 DBP binding events. 

609

610 Further investigation into reservoirs revealed that almost half produced “nascent” transcription 

611 as measured by PRO-seq. This is consistent with the above hypothesis of paused promoters. 

612 What is more surprising is that half of the reservoirs also did not produce nascent transcripts 

613 within 6Kb of the TSS (ghosts). The distribution of number of DBPs was not different between 

614 poised and ghost promoters. Nor could we find enrichment of specific DBPs that separate these 

615 categories. Another possibility is that ghosts are positioned in a three-dimensional space with 

616 “DBP” hubs[43,44]. Finally, it could be that the large number of binding events at these 

617 promoters causes a ‘liquid phase state transition’ owing to so many proteins in a confined 

618 space. 

619

620 Our permutation-based approach to determine if a DBP prefers a genomic feature allowed us to 

621 extend beyond promoters into the noncoding genome. Specifically, we were interested in 

622 determining if certain DBPs were specific to repetitive elements, such as transposons, across 

623 the genome. Comparing random permutation versus observed overlaps revealed something 

624 somewhat surprising: that repeat classes and families such as ‘simple-repeats’ and tRNA 

625 repeats were strongly enriched for all DBPs tested. In contrast, Line and Satellite repeats were 

626 strongly depleted for all DBPs. Thus, some repeat sequences ‘repel’ DNA binding and some 

627 ‘recruit’ DBPs without discretion. 

628

629 In some cases, we did observe some interesting biases for DBPs and repeat elements. One 

630 example is the human specific repeat family ‘SVA’ as one of the newest evolving repeats in 

631 humans compared to primates. Specifically, three genes had a strong bias of binding SVA 

632 elements -- all three of which are known transcriptional repressors. Recently studies have 
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633 identified that primate specific transposons can be co-opted to generate promoters of newly 

634 evolving enhancers and even lncRNAs[26,45–47]. Thus, unlike many existing examples of co-

635 option in the case of SVA, it could have selective pressure for binding motifs of the observed 

636 repressors and hitherto to unknown repressor motifs – or hitherto unknown promoter regulatory 

637 elements.

638

639 Collectively, this exercise in data-science, reproducibility and scale in a singular cellular context 

640 has been informative to understand relativistic promoter binding events across 161 DBPs. This 

641 has led us to understand new features of the coordination of this binding with respect to 

642 promoter expression output. Perhaps most importantly, 15 graduate students learned data-

643 sciences and reproducibility measures that not only provide new insight into reservoir promoters 

644 but also a logical framework for future objective teaching exercises of genomic data-science.

645

646 All markdown files needed to reproduce the results and figures of this manuscript can be found 

647 here: https://github.com/boulderrinnlab/CLASS_2020.

648

649 Materials and Methods

650 Data, Code and Markdown

651 Accessions and sample information for the DBPs included in this study can be found in S1 

652 table. All data and analyses are publicly available on our GitHub: 

653 https://github.com/boulderrinnlab/CLASS_2020.

654 All analyses, code, and compiled markdown are available in S1 File. 

655
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782 S1 Fig. (A) Distribution of number of consensus peaks observed for each DBP with cutoff at 15th 
783 percentile shown as red line. (B) Permutation analysis of DBP significance of overlapping a 
784 promoter versus 1,000 random samplings of the same peak profiles for each DBP genome 
785 wide. Showing enrichment and depletion status for DBPs (Fisher Exact P < 0.01). 
786
787 S2 Fig. UMAP dimensionality reduction based on DBP binding profiles and overlaid with: (A) 
788 DNA binding domain annotations. (B) enrichment score on reservoir promoters (C) TF 
789 annotation status (D) Median RNA-seq expression level of bound promoters. (E) Examples 
790 promoter binding profile. Grey line indicates 95% confidence interval and black line is the mean 
791 value. (F) Heatmap of each promoter binding profile for individual DBPs centered at TSS. Red 
792 indicates degree of binding. Cluster of binding profiles for each DBP. The four clusters are 
793 separated by white space. (G) Enrichment for each DBP at lncRNA and mRNA promoters 
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794 versus 1,000 random samplings of the same profiles for each DBP across the genome. Blue 
795 indicates Z-score of observed versus permuted distribution. 
796
797 S3 Fig. Heatmaps as in Fig 5 for all SVA elements in the human genome. (A) Histone 
798 modifications (B) DBPs enriched at SVAs. (C) Expression of SVA elements relative to other LTR 
799 containing endogenous retroviruses (ERVs).
800
801 S4 Fig. (A) X-axis, number of DBPs bound per promoter for all promoters. Y-axis is the 
802 log10(TPM) expression of resulting transcript as measured by RNA-seq. (B) Cumulative 
803 distribution of binding events on promoters. Red line indicates approximately the 50th percentile 
804 of binding events occurring at 7 DBPs bound per promoter. (C) Stacked box plots of lncRNA 
805 (red) and mRNA (black) promoters in reservoirs versus non-reservoirs. (D) Stacked box plots of 
806 promoter types in reservoir (right) versus non reservoir (left) (E) Bar plot of the 25% of reservoir 
807 promoters that have other promoters nearby. True equals a neighboring gene promoter is 
808 expressed, False is not expressed. (F) X-axis is Chi-squared test value as 
809 log2(observed/expected), Y-axis is the log10 of Chi-squared P-value. (G) UMAP reduction using 
810 only DBP binding to only reservoir promoters.
811
812 S5 Fig. (A) Density plot of nascent expression at reservoirs versus non-reservoirs. (B) Box plot 
813 of nascent expression without (left) and with (right) H3K27ac modifications. (C) Same as (B) for 
814 K27me3. (D-E) Same as (B) for reservoir versus non-reservoir promoters. (F) Boxplot of DBP 
815 distribution at ghosts versus non-ghosts.
816
817 S1 Table. Sample information for DNA binding proteins in study.
818 S2 Table. Promoter-level summary of DBP properties examined. Each observation (row) is 
819 a promoter and each column a variable investigated in this study.
820 S1 File. All scripts used to analyze the data and produce figures.
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