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Abstract 23 

Microelectrode arrays (MEAs) are valuable tools for electrophysiological analysis at a cellular population 24 

level, providing assessment of neural network health and development. Analysis can be complex, 25 

however, requiring intensive processing of large high-dimensional data sets consisting of many activity 26 

parameters. As a result, valuable information is lost, as studies subjectively report relatively few metrics 27 

in the interest of simplicity and clarity. 28 

From a screening perspective, many groups report simple overall activity; we are more interested in 29 

culture health and changes in network connectivity that may not be evident from basic activity 30 

parameters. For example, general changes in overall firing rate – the most commonly reported parameter 31 

– provide no information on network development or burst character, which could change independently. 32 

Our goal was to develop a fast objective process to capture most, if not all, the valuable information 33 

gained when using MEAs in neural development and toxicity studies. 34 

We implemented principal component analysis (PCA) to reduce the high dimensionality of MEA data. 35 

Upon analysis, we found that the first principal component was strongly correlated to time, representing 36 

neural culture development; therefore, factor loadings were used to create a single index score – named 37 

neural activity score (NAS) – reflective of neural maturation. To validate this score, we applied it to 38 

studies analyzing various treatments. In all cases, NAS accurately recapitulated expected results, 39 

suggesting this method is viable. This approach may be improved with larger training data sets and can be 40 

shared with other researchers using MEAs to analyze complicated treatment effects and multicellular 41 

interactions. 42 

 43 

 44 

 45 
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Author Summary 46 

Analyzing neural activity has important applications such as basic neuroscience research, understanding 47 

neurological diseases, drug development, and toxicity screening. Technology for recording neural activity 48 

continues to develop, producing large data sets that provide complex information about neuronal function. 49 

One specific technology, microelectrode arrays (MEAs), has recently given researchers the ability to 50 

record developing neural networks with potential to provide valuable insight into developmental 51 

processes and pathological conditions. However, the complex data generated by these systems can be 52 

challenging to analyze objectively and quantitatively, hindering the potential of MEAs, especially for 53 

high-throughput approaches, such as drug development and toxicity screening, which require quick, 54 

simple, and accurate quantification. Therefore, we have developed an index for simple quantification and 55 

evaluation of neural network maturation and the effects of perturbation. We present validation of our 56 

approach using several treatments and culture conditions, as well as a meta-analysis of toxicological 57 

screening data to compare our approach to current methods. In addition to providing a simple 58 

quantification method for neural network activity in various conditions, our method provides potential for 59 

improved results interpretation in toxicity screening and drug development. 60 

  61 
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Introduction 62 

Micro- (or multi-)electrode arrays (MEAs) are valuable tools for network-level electrophysiological 63 

analysis of neuronal populations [1–4]. While sacrificing single cell resolution compared to traditional 64 

patch clamp electrophysiology, MEAs allow for recordings of entire neural networks both in vitro and in 65 

vivo and can be used to study dynamic network properties and development, either spontaneously or in 66 

response to stimulation or treatment. During recording, action potentials, or spikes, are detected via 67 

recording the corresponding voltage changes in the extracellular environment. Analysis of spike patterns 68 

provides network characteristics such as firing rate and network synchrony (see S1 Table) for list of all 69 

measured parameters), which are useful when determining neuronal network function and/or response to 70 

perturbation (i.e. stimulation or pharmacological treatment) [5,6]. 71 

Given these advantages, along with the advent of multi-well MEA plates that allow for higher-throughput 72 

screening and more complex experimental design, MEAs have seen widespread adoption from 73 

characterizing neural maturation to toxicity screening and drug development. Interestingly, despite the 74 

adoption of MEAs for these screening approaches, analysis has typically been limited to mean firing rate 75 

and other metrics of overall activity [7,8]. This limited analysis severely underutilizes MEA capabilities 76 

and may result in “false-negative” screening results, as only conditions or compounds that increase or 77 

decrease overall neural activity will be registered as hits with no regard to other aspects of neural network 78 

functionality or ontogeny. Current MEA analysis methods require the use of raster plots to visualize 79 

network development or individual parameter analysis, which are qualitative and difficult to interpret, 80 

respectively. While a general pattern of network development from sporadic spikes to sporadic bursts to 81 

coordinated synchronous network bursts has been well-described in previous studies [2,3,9,10], there is 82 

currently a lack of sufficient methods to quantify this observed ontogeny. 83 

Here, we developed a method implementing dimensionality reduction techniques, specifically principal 84 

component analysis (PCA), to create a singular index score – named neural activity score (NAS) – 85 
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reflective of neural network ontogeny. NAS serves as an easily interpretable measurement to evaluate 86 

spontaneous network development in simple and complex cultures (i.e. neuron-glia co-cultures) or effects 87 

of various treatments (i.e. soluble factors or stimulation). We present validation of this method in several 88 

experiments, including a culture media comparison, various conditioned media treatments, and a 89 

microglia-neuron co-culture system, demonstrating the ability to measure both positive and negative 90 

effects on neural network activity and further interrogate toxicological screening, evaluating sensitivity on 91 

potential toxic compounds. 92 

 93 

Results 94 

Neural network ontogeny revealed by microelectrode array 95 

Mouse embryonic stem cells were cultured and differentiated, resulting in cultures containing a mixture 96 

of motor neurons, excitatory and inhibitory neurons, and glial cells [11]. These neural cultures were 97 

allowed to mature on 48-well MEA plates over a 19-day period, typical for neuron maturation and 98 

network formation for these cells [12]. Activity was detected at approximately 5 days post-seeding (days 99 

in vitro; DIV) and increased gradually until reaching a plateau over the last several days of recording (16-100 

19 DIV). Qualitatively, raster plots generated at various time points throughout the recording period 101 

demonstrate an expected pattern of network development: sparse and sporadic spikes appearing first, 102 

followed by sporadic bursts, followed eventually by synchronous network bursts (Fig 1A-F). While this 103 

emergent development is evident from the raster plots, it is difficult to quantify. Quantification of several 104 

spike, burst, and network/synchrony metrics reveals general increases over time in these categories (Fig 105 

1G-N), but current MEA analysis methods do not allow for simple quantification of network ontogeny 106 

incorporating these and other activity metrics. 107 

Principal component analysis of MEA parameters reveals temporal correlation, allowing 108 

for neural activity score derivation 109 
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Given the complexity and multivariate nature of the data, PCA was performed to reduce dimensionality 110 

and allow for easier visualization. After standard score normalization, all of the aforementioned 111 

parameters at all time points were included as data points for PCA. Examining the two-dimensional 112 

projection of the first two principal components revealed a distinct pattern in the data (Fig 2A). Adding a 113 

dimension of time (via colormap), this pattern was revealed to be a temporal separation of the data points, 114 

especially along the first principal component. Statistically, linear regression analysis supported this 115 

temporal component, as principal component 1 (PC1) is strongly correlated to time (Fig 2B; R2=0.5441, 116 

p<0.0001), indicating recapitulation of network ontogeny and maturation. After confirmation of this 117 

relationship, factor loading values for PC1 were examined to determine which factors (MEA parameters) 118 

contributed most strongly to this component. While substantial contributions were observed for many 119 

parameters, the strongest metrics were burst percentage, network burst percentage, number of spikes per 120 

burst, number of bursting electrodes, number of spikes per network burst, and synchrony index (Table 1). 121 

Notably, mean firing rate, the most common parameter analyzed in MEA studies, was the 11th-strongest 122 

contributor. Finally, these factor loading values were used to develop an individual index score – NAS 123 

(Equation 1; see Methods). As NAS represents all aspects of neural network activity, it allows for 124 

assessment of neuronal network ontogeny and evaluation of the effects of various perturbations, such as 125 

stimulation, pharmacological treatment, or alternative culture conditions, which can typically be difficult 126 

to analyze if various parameters do not exhibit unidirectional changes. Additionally, NAS reduces the 127 

high variation often observed in individual MEA parameters, as evidenced by lower coefficient of 128 

variation for 24/25 (96%) measured parameters (S1 Fig). 129 

 130 

 131 
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Table 1. Factor loading values for principal components 1-5 for all MEA parameters analyzed. 132 

Parameter PC1 PC2 PC3 PC4 PC5 

Burst Percentage - Avg 0.938953 -0.21655 -0.09068 0.095365 -0.03905 

Network Burst Percentage 0.930335 -0.16411 -0.03479 -0.00912 0.030603 

Number of Spikes per Burst - Avg 0.927633 -0.07813 0.131878 0.180872 -0.20604 

Number of Bursting Electrodes 0.924737 0.11382 -0.13932 -0.05683 -0.03851 

Number of Spikes per Network Burst per Channel - Avg 0.916818 -0.09696 0.059892 -0.0695 -0.30286 

Synchrony Index 0.91299 -0.25337 -0.09404 0.126219 -0.03106 

Number of Spikes per Network Burst - Avg 0.90668 -0.14074 0.063698 -0.03136 -0.3157 

ISI Coefficient of Variation - Avg 0.875459 -0.13787 -0.14411 0.203831 -0.09526 

Area Under Normalized Cross-Correlation 0.866748 -0.32439 -0.0838 0.14749 -0.01187 

Number of Elecs Participating in Burst - Avg 0.866593 0.127533 -0.16016 -0.10207 -0.04436 

Mean Firing Rate (Hz) 0.787233 -0.09261 0.483835 -0.01736 0.111684 

Network IBI Coefficient of Variation 0.739427 0.22799 -0.36458 -0.23674 0.12618 

Burst Duration - Avg (s) 0.730618 0.521412 0.032794 0.197191 -0.12086 

Normalized Duration IQR - Avg 0.707402 0.327012 -0.30471 0.026697 0.337296 

IBI Coefficient of Variation - Avg 0.64845 0.459111 -0.30775 0.114136 0.20907 

Network Normalized Duration IQR 0.613893 0.064961 -0.38534 -0.17934 0.144007 
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Parameters sorted by descending PC1 loading value. 133 

 134 

Area Under Cross-Correlation 0.606648 -0.40216 0.517657 0.237669 -0.14355 

Burst Frequency - Avg (Hz) 0.592944 -0.04631 0.437397 0.034638 0.423479 

Network Burst Frequency (Hz) 0.506543 -0.0198 0.364146 -0.01999 0.590348 

Network Burst Duration - Avg (sec) 0.490791 0.412156 0.078862 -0.54881 -0.07344 

Width at Half Height of Cross-Correlation 0.233083 0.626106 0.385101 -0.42764 -0.13819 

Width at Half Height of Normalized Cross-Correlation 0.175127 0.727927 0.205821 -0.28793 -0.18294 

Mean ISI within Burst – Avg 0.029257 0.891807 0.112554 0.360375 0.016162 

Median ISI within Burst - Avg -0.05205 0.881542 0.1378 0.359244 0.017994 

Inter-Burst Interval - Avg (s) -0.27591 0.571143 -0.11858 0.370944 -0.15048 
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Enhancement of neural network ontogeny is easily quantified via NAS 135 

Regression analysis served as initial support that NAS accurately measures neural network ontogeny, but 136 

we also sought to experimentally validate NAS in several conditions to further confirm this recapitulation. 137 

For initial validation, several experiments were performed to analyze enhanced neural network ontogeny 138 

and activity in response to different conditions known to enhance neural activity – namely, optimized 139 

culture media [13] and muscle-conditioned media treatment [14]. To examine the effects of optimized 140 

culture media, mixed neural cultures (HBG3-derived) were grown on MEAs in two different media 141 

conditions: DMEM/F12 & Neurobasal-based medium (DMNB) or BrainPhysTM-based medium (BP). 142 

While DMNB has traditionally been widely used to culture HBG3-derived and other neural cell lines, BP 143 

was developed for electrophysiological applications due to a more physiologically relevant formulation, 144 

resulting in increased electrophysiological function of various cell lines [13]. However, BP has not been 145 

evaluated on HBG3-derived neural cultures. In both DMNB and BP groups, the neurons began showing 146 

activity at approximately day 5, increasing over 3 weeks, as expected; however, the cells cultured in BP 147 

exhibited enhanced activity and network development, as indicated by the significantly higher NAS (Fig 148 

3A; p<0.0001, two-way repeated measures ANOVA). 149 

To examine the effects of conditioned media on network ontogeny, mixed neural cells were treated with 150 

muscle cell (C2C12)-conditioned media (CM), which has previously been shown to significantly 151 

accelerate network activity and development [14]. Likewise, NAS analysis showed similar results and 152 

provided simple quantification (Fig 3B; p<0.0001, two-way repeated measures ANOVA) of this 153 

accelerated network development. 154 

Disruption of neural network ontogeny is easily quantified via NAS 155 

In addition to measuring neural network activity enhancement, we also sought to validate NAS on more 156 

complex culture conditions and for quantifying disruption of network activity. Microglia, the resident 157 

immune cells of the central nervous system (CNS), are being increasingly implicated in 158 
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neurodegenerative diseases and have been shown to be neurotoxic in many conditions [15–18]; therefore, 159 

we decided to explore co-culturing microglia with mixed neural cultures on MEAs. After allowing 160 

neurons to become active over 10 days, BV2 cells, an immortalized mouse microglia cell line, were added 161 

to the cultures at 8 different cell densities. We observed rapid disruption in network function in a clear 162 

cell density-dependent manner, with higher numbers of microglia relative to the neuronal population 163 

resulting in accelerated network disruption, as indicated by a decrease in NAS (Fig 4A; p<0.0001, two-164 

way repeated measures ANOVA, Tukey’s post-hoc test). 165 

To examine whether this disruption is contact-dependent or the result of secreted factors, neural cultures 166 

were treated with BV2-conditioned media at 10 days (similarly to the co-culture experiment described 167 

above). Similar to the co-culture condition, BV2-conditioned media treatment also disrupted network 168 

function (Fig 4B), suggesting a role for microglia-secreted factors in neural network disruption. To 169 

examine whether this effect was exacerbated by microglial activation, BV2 cells were stimulated with 170 

two concentrations of the pro-inflammatory endotoxin lipopolysaccharide (LPS; 10 ng/mL and 100 171 

ng/mL) for 24 hours prior to conditioned media collection. LPS-stimulated BV2-conditioned media 172 

disrupted network function in a concentration-dependent manner, with unstimulated BV2-conditioned 173 

media causing significant disruption (p<0.0193, two-way mixed model, Tukey’s post-hoc test), followed 174 

by 10 ng/mL LPS stimulation (p=0.0003) and 100 ng/mL LPS stimulation (p<0.0001), providing further 175 

support for NAS as a viable method to quantify complex treatment effects and evaluate disruption of 176 

electrophysiological function. 177 

NAS summarizes neural activity for neurotoxicology screening 178 

Advances in MEA technology [8,19] have led to adoption of MEAs for neurotoxicological screening [20] 179 

Given the potential of NAS to consolidate many functional MEA parameters, we sought to determine its 180 

applicability to neurotoxicity screening. 181 
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For this analysis, NAS values were calculated from MEA toxicity screening of 52 compounds from the 182 

NTP or ToxCast libraries [21,22] (Fig 5A-C). In previous studies [21,22], the authors performed a 183 

network formation assay (NFA) using primary cortical neurons, measuring 17 parameters of activity in 184 

response to compound treatment over 12 days on MEAs to determine compound effects on network 185 

formation. Additionally, viability testing was performed to measure cytotoxicity. For each of these assays, 186 

EC50 values were determined for each compound. Here, we used NAS values to calculate and compare 187 

EC50 values to individual MEA parameter EC50 values and cytotoxicity EC50 values (Fig 5D-F, S2 Table). 188 

Of the 52 compounds we analyzed, 33 were found to have measurable effects in the network formation 189 

assay (defined as a decrease in activity by 3X median absolute deviation from control) for at least one 190 

activity parameter (though the specific parameter(s) differed among compounds), and 26 compounds 191 

were found to have measurable cytotoxicity in the viability assay [21] (Fig 5G). Similarly, using NAS 192 

EC50 values, we found 26/52 compounds (50%) affected neural activity (Fig 5G). For these compounds, 193 

we compared the EC50 calculated from NAS to determine sensitivity compared to the average individual 194 

MEA parameter EC50 values and cytotoxicity EC50 values. We found NAS to be more sensitive (lower 195 

EC50) than the average of all parameters for 16/26 compounds (61.5%) and more sensitive than the 196 

average cytotoxicity EC50 for 18/26 compounds (69.2%) (Fig 5G, S2 Table). 197 

 198 

Discussion 199 

Advances in MEA technology, including multi-well MEA plates, incubated recording setups, and 200 

constantly improving software, allow for higher throughput than previously possible [18,19], though 201 

analysis has traditionally been limited to simple parameters, primarily mean firing rate. Only recently 202 

have researchers begun incorporating advanced metrics of network activity in these screening approaches 203 

[20–22]. These advanced metrics have provided researchers with tools to record from entire neuronal 204 

populations and analyze complex neuronal network dynamics. Multi-well MEAs enable high-throughput 205 
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neuronal recordings, facilitating their adoption for drug/toxicity screening applications and evaluation of 206 

complex culture conditions. However, the information that can be gleaned from MEAs has been 207 

hampered by limited analytical methods and tools, as well as high variation. Here, we present a novel 208 

method to overcome these limitations – development of an index, neural activity score, that incorporates 209 

and consolidates traditional MEA measurements into a single quantitative value that can be used to 210 

objectively evaluate neuronal network development and function across various culture conditions, 211 

treatments, and neural cell sources. This is valuable not only for basic neuroscience research on neuronal 212 

networks, but also translational research and preclinical studies.  213 

The results presented here demonstrate the value of NAS to assess potential developmental neurotoxicity 214 

(DNT) hazards, a field with a widely recognized need for more sensitive, less variable, and higher 215 

throughput functional assays [21–24]. The mixed neural cultures used for NAS derivation and the primary 216 

cultures analyzed in the network formation assay are both maturing networks, derived from embryonic 217 

stem cells or isolated from neonatal rodents, respectively. As a result, NAS is well-suited for analysis of 218 

maturing neural networks, as is necessary in DNT studies, covering a range from non-active to full 219 

maturity, with synchronized network bursting. The application to developing networks from multiple cell 220 

sources suggest NAS has substantial value for improving the use of MEAs for toxicity screening and drug 221 

development.  222 

As the concern over drug development costs continues to rise, scientists are noticing several recurring 223 

problems, including the reproducibility crisis and inadequacies of current screening assays, in vivo 224 

models, and other preclinical studies [25–27]. For neural assays, specifically, assays have traditionally 225 

used simple endpoints such as viability and morphological analysis (i.e. neurite outgrowth) for screening, 226 

primarily due to scalability [28]. However, electrophysiological endpoints are often more sensitive and 227 

allow for assessment of electrophysiological toxicity, which involves separate – and highly time-sensitive 228 

– mechanisms [8,29,30]. By improving result interpretation, NAS will facilitate incorporation of 229 

functional measures into screening programs focused on cytotoxicity and morphology. 230 
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Index scoring has been used extensively in clinical settings and in vivo; for example, neurological deficits 231 

in amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are assessed using the Revised ALS 232 

Functional Rating Scale (ALSFRS-R) [31] and United Parkinson’s Disease Rating Scale (UPDRS) [32], 233 

respectively. Stroke severity is frequently measured using various scales (i.e. modified Rankin scale 234 

(mRS) [33,34] and NIH stroke scale (NIHSS)) [35], and these have been shown to correlate strongly with 235 

patient outcomes and be useful for therapeutic evaluation [34]. The simplified analytical pipeline 236 

provided by these indices is vital to detecting effects (or lack thereof) in clinical and preclinical studies. 237 

Due to this, a need has been recognized to develop multivariate approaches and index scores for in vitro 238 

approaches, as well [36,37]. Similar analysis pipelines provided by index scores could be especially 239 

valuable for screening assays, allowing for improved hit detection when screening potential 240 

neurotoxicants or therapeutics. Several composite scores have been developed to condense information 241 

from multiple toxicity assays for specific compound classes (e.g. endocrine disruptors, halogenated 242 

aliphatics), previously [38,39]. Here, we developed NAS using a similar approach to condense the high-243 

dimensional data from MEA recordings into a single measurement with reduced variation that can be 244 

used to easily and consistently evaluate compound effects on neural activity, as opposed to analyzing 245 

many different parameters individually. This reduced variation and improved interpretation could help 246 

identify and/or narrow down compounds to examine and develop further, saving time and money wasted 247 

on poor candidate compounds. Likewise, improved in vitro studies could help reduce the necessity of in 248 

vivo studies, which are expensive, time-consuming, and have ethical and practical concerns due to a 249 

myriad of potential endpoint measurements and species differences that can contribute to high variability 250 

and difficulty determining true treatment effects [40].  251 

The validation studies presented here indicate that the NAS formula provides an easily interpretable 252 

measure of neural network health/functionality and overall effects of perturbation. By compiling all MEA 253 

metrics as opposed to individual metrics (i.e. mean firing rate), NAS represents all aspects of neural 254 

network function, which can provide more consistent analysis and results interpretation/reporting. 255 
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Additionally, NAS has the potential to provide increased sensitivity over a collection of individual 256 

parameters, as NAS was more sensitive than the individual parameter average for 61.5% of compounds. 257 

This result was interesting, demonstrating the utility of implementing relative parameter weights. Since 258 

NAS was derived from how all parameters contribute to development/maturation, this result indicates that 259 

this approach may describe treatment effects in a more holistic manner than analysis of individual 260 

parameters alone, which only describe certain aspects of activity. However, when specific parameters are 261 

of interest, we suggest incorporating NAS as an additional metric for screening, not as a complete 262 

replacement, as a summary statistic for electrophysiological function and neural network maturation. 263 

Additionally, larger training data sets and/or other optimization may allow for improved sensitivity in the 264 

future. 265 

Two of the three compounds for which NAS was found to be most sensitive, MPP+ and picoxystrobin, 266 

share similar toxic mechanisms, both inhibiting mitochondrial electron transport chain complexes [41,42]. 267 

While further research would be needed to determine if this is more than a coincidence, it does suggest 268 

mitochondrial function as a sensitive predictor of neurodegeneration. This finding supports a wealth of 269 

evidence linking mitochondrial dysfunction to neurodegenerative diseases, in some cases prior to 270 

symptom onset and diagnosis [43–45]. Using NAS to analyze and compare various compound classes in 271 

more detail may allow for deeper insight into toxicity mechanisms for different compound classes or 272 

varying therapeutic potential in drug discovery studies. 273 

Lastly, challenges in analyzing complex and large data sets have been widely acknowledged across 274 

multiple assays and techniques, including high-throughput screening, image analysis, and flow cytometry 275 

[46–50]. These challenges include high variability, difficulty interpreting results across multiple metrics, 276 

and reproducibility – problems that are only exacerbated when examining complex/emergent phenomena 277 

that may be difficult to quantify otherwise, such as neuronal network function. While we developed and 278 

validated NAS using MEA data, many of the solutions posed for the aforementioned techniques also 279 
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utilized PCA and other dimensionality reduction methods, suggesting a similar index scoring approach 280 

may be useful for these, and other, applications to gain a deeper understanding of important results.  281 

 282 

Methods 283 

Cell culture 284 

Mouse HBG3 embryonic stem cell-derived mixed neuronal and glial cells (ArunA Bio, Athens, GA) were 285 

cultured according to previously published protocols [11]. Briefly, cells were thawed and seeded on 286 

polyethyleneimine (Sigma Aldrich, St. Louis, MO) and laminin (Sigma)-coated MEA plates (Axion 287 

Biosystems, Atlanta, GA) in 6 µL droplets centered over the electrode grids at 40-80,000 cells/well. Cells 288 

were maintained with media changes every 3-4 days with full neural culture media consisting of 289 

BrainPhys™ Basal Media (STEMCELL Technologies, Vancouver, BC, Canada) or Advanced 290 

DMEM/F12 (ThermoFisher, Waltham, MA) and AB2 Basal Neural Media (ArunA Bio) (1:1) 291 

supplemented with 10% (v/v) KnockOut Serum Replacement (ThermoFisher), 2 mM L-glutamine 292 

(ThermoFisher), 1% penicillin/streptomycin (ThermoFisher), 0.1 mM β-mercaptoethanol (Sigma), 10 293 

ng/mL glial-derived neurotrophic factor (GDNF) (Peprotech Inc., Rocky Hill, NJ), and 10 ng/mL ciliary 294 

neurotrophic factor (CNTF) (Peprotech). 295 

BV2 microglia cells (gift from Dr. Jae-Kyung Lee, University of Georgia, Athens, GA) were cultured 296 

according to previously published protocols [51]. Briefly, cells were thawed and seeded on tissue culture-297 

treated plates at approximately 5-10,000 cells/cm2 and passaged at 60-80% confluency. Cells were 298 

maintained with media changes every other day with neural medium consisting of DMEM/F12 299 

(ThermoFisher) supplemented with 5% fetal bovine serum (FBS) (GE Healthcare, Chicago, IL), 2 mM L-300 

glutamine (ThermoFisher), and 1% penicillin/streptomycin (ThermoFisher). For lipopolysaccharide 301 

(LPS) treatment, cells were treated with 10 ng/mL or 100 ng/mL LPS in neural medium for 24 hours 302 

before conditioned media was collected and centrifuged to remove any cells or cellular debris. 303 
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MEA preparation, recording, and data processing 304 

48-well MEA plates (Axion Biosystems) were prepared according to manufacturer’s protocol. Briefly, 305 

plates were coated with 0.1% polyethyleneimine (PEI) (Sigma) for 1 hour at 37°C, rinsed with sterile 306 

water, and allowed to air dry in a biosafety cabinet overnight. The following day, plates were coated with 307 

20 µg/mL laminin (Sigma) for 2 hours at 37°C prior to cell seeding. Mouse neural cultures (see above) 308 

were seeded and allowed to adhere for 1 hour, then maintained in full neural culture media (see above) 309 

supplemented with GDNF (Peprotech) and CNTF (Peprotech) (10 ng/mL each) with media changes every 310 

3-4 days throughout the 3-week recording period. 311 

Neuronal activity was recorded using the Maestro system (Axion Biosystems) and AxIS software v2.1-312 

2.5 (Axion Biosystems) with the following settings: band-pass filter (Butterworth, 300-5000Hz), spike 313 

detector (adaptive threshold crossing, 8xSD of RMS noise), burst detector (100ms maximum inter-spike 314 

interval, 5 spikes minimum, 10 spikes minimum for network bursts, 10ms mean firing rate detection 315 

window). Recordings were performed daily for 2 minutes at 37°C after allowing plates to acclimate to the 316 

Maestro system. 317 

Raw data files were processed offline using the Statistics Compiler function in AxIS. Statistics Compiler 318 

output files were processed in Microsoft Excel (Microsoft Corporation, Redmond, WA) and with custom 319 

Python scripts to organize and extract individual parameter data for each well of each MEA plate and for 320 

data normalization. 321 

Neural activity score calculation 322 

After initial data processing, normalization (to z-score values), and outlier removal (-3 > z > 3), JMP 14 323 

(SAS Institute, Cary, NC) was used to conduct principal component analysis. All parameters (S1 Table) 324 

were used for all wells (replicates) at 5-19 days in vitro (DIV). The first two principal components were 325 

used to visually analyze the temporal separation of the data (Fig 2A), then the first principal component 326 

was used for linear regression analysis to determine the extent of correlation to time. Finally, the factor 327 
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loadings for the first principal component were calculated to show the extent of contribution for each 328 

individual MEA activity parameter (Table 1). 329 

Factor loadings for principal component 1 were then implemented as coefficients in a formula 330 

incorporating, and ultimately consolidating, all of the measured individual MEA parameters into an 331 

individual index score – NAS – defined as the sum of each measured parameter value multiplied by its 332 

factor loading value for each well (replicate) at each time point (Equation 1). 333 

𝑁𝑒𝑢𝑟𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 (𝑁𝐴𝑆) = ∑ 𝛽𝑖𝑥𝑖
𝑛
𝑖=1     ( 1 ) 334 

Equation 1 – where βi are the factor loading values and xi are the z-normalized measured values for each 335 

parameter 336 

Analysis of DNT hazard screening data 337 

Raw MEA data (*.raw files generated via the Maestro system and AxIS software (Axion Biosystems), see 338 

above) from previous studies [21,22] was processed through the same analysis pipeline described above. 339 

Additional processing for neurotoxicity data was based on methods described by Shafer et al. [21], 340 

including area under curve (AUC) calculation, Hill function fitting, and EC50 extrapolation. Specifically, 341 

AUC values for each compound and concentration were calculated in Python 3 using the trapezoidal rule 342 

(numpy.trapz() function) to integrate normalized NAS values over time (see Data Availability below for 343 

more information about custom Python codes). Concentration-response curves (NAS AUC vs. 344 

concentration) were generated via nonlinear least squares regression ([Inhibitor] vs. normalized response 345 

model) in GraphPad Prism 8.2.0 (GraphPad Software Inc., San Diego, CA) for each compound with Hill 346 

slope = -1.0, and EC50 values were extrapolated from the resulting curves. 347 

EC50 values corresponding to cytotoxicity (Table S2) that were used for sensitivity analysis were reported 348 

from previous studies [21,22]. EC50 values for NAS and average MEA parameter were calculated as 349 

described above.  350 
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Statistical analysis 351 

Statistical analysis was performed in GraphPad Prism 8.2.0 (GraphPad Software Inc). Two-way repeated 352 

measures analysis of variance (ANOVA) was used to assess differences between treatment groups over 353 

time for validation studies unless otherwise noted, and post-hoc tests are stated for individual 354 

experiments. 355 

Data availability 356 

Custom Python codes and MEA data (.csv files from AxIS Statistics Compiler, compiled into .xlsx file, 357 

and analyzed data at several steps) are provided at the following repository: 358 

https://doi.org/10.5281/zenodo.3939310  359 
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Figures 510 

Fig 1. Neural network ontogeny revealed by microelectrode array. (A-F) Representative raster plots 511 

of one well over time, demonstrating qualitative network development. Each plot is 5 seconds for 512 

sufficient spike and burst resolution, and horizontal rows correspond to one channel/electrode, each. Note 513 

the changes over time: few spikes on few channels (DIV 8) to more spikes on more channels (DIV 10) to 514 

sporadic bursts (DIV 13, 16) to rhythmic network bursts (DIV 19) to stronger, rhythmic network bursts 515 

(DIV 28). (G-N) Line graphs of 8 example individual MEA parameters covering major categories 516 

(activity, bursting, network bursting, synchrony). 517 

Fig 2. Principal component analysis of MEA parameters reveals temporal correlation. (A) The first 518 

two principal components (accounting for 66.9% of total variation), colored by time (yellow > green > 519 

blue > purple), showing a distinct pattern of separation/progression. (B) Principal component 1 (PC1) is 520 

positively correlated with time. Linear regression analysis confirms this strong correlation (R2 = 0.5541, F 521 

= 1487, p<0.0001). 522 

Fig 3. Enhancement of neural network ontogeny is easily quantified using neural activity score. (A) 523 

BrainPhysTM-based culture media results in clear enhancement of neural activity compared to traditional 524 

DMEM/Neurobasal-based media, and this enhancement is quantifiable via NAS (p<0.0001, two-way 525 

repeated measures ANOVA, n=24/group). (B) Muscle-conditioned media treatment results in similar 526 

enhancement of neural activity (p<0.0001, two-way repeated measures ANOVA, n=12/group). 527 

Fig 4. Disruption of neural network ontogeny is easily quantified using neural activity score. (A) 528 

Co-culturing mixed neural cultures and microglia (BV2 cells) results in a microglia concentration-529 

dependent disruption of neural activity (p<0.0001, two-way repeated measures ANOVA, Tukey’s post-530 

hoc test, n=6/group). (B) Similarly, BV2-conditioned media treatment resulted in a similar decrease 531 

(p<0.0193, two-way mixed ANOVA, Tukey’s post-hoc test). Additionally, 24-hour LPS treatment of 532 

BV2s prior to conditioned media collection exacerbated this disruption in a concentration-dependent 533 
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manner (10 ng/mL, p=0.0003; 100 ng/mL, p<0.0001) (n=14/group except media control group, for which 534 

n=12). Grey dashed lines indicate time of BV2 or CM addition. Reported statistics are Tukey’s post-hoc 535 

comparisons 24 hours post-addition. Connecting letters on graphs indicate comparisons for other time 536 

points. 537 

Fig 5. Neural activity score summarizes neural activity for neurotoxicology screening. (A-C) 538 

Examples of NAS calculation for all concentrations of three compounds of varying toxicity from EPA 539 

compound libraries analyzed. (D-F) Concentration-response curves showing how EC50 was determined 540 

for the same three compounds. Grey dotted line indicates 50% of control NAS AUC, used as a threshold 541 

for EC50 extrapolation (indicated via red dashed line). Note the lack of extrapolation for aspirin since 542 

sufficient effect was not detected. (G) Summary of NAS EC50 values from Frank et al. 2017 [22] and 543 

Shafer et al. 2019 [21]. (Left) Total compounds with detected effects (EC50 within tested range). (Inset) 544 

Sensitivity comparisons for NAS vs. average individual MEA parameter and cytotoxicity assays for all 545 

compounds with detected effects. Higher sensitivity is defined as lower EC50 value. 546 
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Figure 1. Neural network ontogeny revealed by microelectrode array.  548 
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Figure 2. Principal component analysis of MEA parameters reveals temporal correlation. 550 
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Figure 3. Enhancement of neural network ontogeny is easily quantified using neural activity score.  552 
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Figure 4. Disruption of neural network ontogeny is easily quantified using neural activity score.  554 

 555 
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Figure 5. Neural activity score summarizes neural activity for neurotoxicology screening. 557 
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Supporting information 559 

S1 Fig. Coefficient of variation values for all individual parameters and neural activity score. 560 

Values were calculated from network ontogeny data (Fig 1).561 

 562 
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S1 Table. List of all MEA parameters analyzed. 564 

Parameter name 

Mean firing rate (Hz) 

Inter-spike interval (ISI) coefficient of variation – Avg 

Number of bursting electrodes 

Burst duration – Avg (s) 

Number of spikes per burst 

Mean ISI within burst – Avg 

Median ISI within burst – Avg 

Inter-burst (IBI) interval – Avg 

Burst frequency (Hz) 

Normalized burst duration IQR – Avg 

IBI coefficient of variation – Avg 

Burst percentage – Avg 

Network burst frequency (Hz) 

Network burst duration – Avg (s) 

Number of spikes per network burst – Avg 

Number of electrodes participating in burst – Avg 

Number of spikes per network burst per channel – Avg 

Network burst percentage 

Network IBI coefficient of variation 

Network normalized duration IQR 

Area under normalized cross-correlation 

Area under cross-correlation 

Width at half height of normalized cross-correlation 
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Width at half height of cross-correlation 

Synchrony index 

 565 
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S2 Table. EC50 values for all compounds analyzed in EPA network formation and toxicity assays. Values were calculated from neural 

activity score, minimum individual parameter, average of all parameters, and cytotoxicity. 

Compound CASRN 

EC50 (µM) 

Neural activity score Avg. individual MEA parameter Avg. cytotoxicity 

1-Methyl-4-phenylpyridinium iodide 36913-39-0 4.93 4.88 6.5483 

1-Ethyl-3-methylimidazolium 

diethylphosphate 

848641-69-0 

N/A N/A N/A 

3-Iodo-2-propynyl-N-butylcarbamate 55406-53-6 2.42 3.13 3.03535 

6 Propyl 2 thiouracil 51-52-5 N/A N/A N/A 

Abamectin 71751-41-2 0.16 0.37 3.9339 

Acenaphthene 83-32-9 N/A N/A N/A 

Aldrin 309-00-2 4.14 4.26 7.30305 

Aspirin 50-78-2 N/A N/A N/A 

Atrazine 1912-24-9 N/A N/A N/A 

Auramine O 2465-27-2 2.49 3.00 3.50965 

Benz(a)anthracene 56-55-3 N/A N/A N/A 

Berberine chloride 633-65-8 1.83 2.03 0.2499 

Bisphenol AF 1478-61-1 N/A N/A 16.46775 
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Bisphenol B 77-40-7 N/A N/A N/A 

Boric acid 10043-35-3 N/A N/A N/A 

Boscalid 188425-85-6 N/A N/A N/A 

Carbamic acid, butyl-, 3-iodo-2-propynyl ester 55406-53-6 1.42 1.43 1.22425 

Chlordane 57-74-9 5.86 5.63 5.7725 

Cloprop 101-10-0 N/A N/A N/A 

Clove leaf oil 8000-34-8 N/A N/A N/A 

D-Glucitol 50-70-4 N/A N/A N/A 

Diphenhydramine hydrochloride 147-24-0 18.12 11.56 N/A 

Disulfiram 97-77-8 0.85 0.64 0.0954 

Endosulfan 115-29-7 8.71 8.84 8.90985 

Endrin 72-20-8 N/A N/A N/A 

Erythromycin 114-07-8 N/A N/A N/A 

Estradiol 50-28-2 N/A N/A N/A 

Eugenol 97-53-0 N/A N/A N/A 

Fenamiphos 22224-92-6 N/A N/A N/A 

Fluoxastrobin 361377-29-9 0.69 0.89 1.1693 

Glycerol 56-81-5 N/A N/A N/A 
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Hexachlorophene 70-30-4 1.92 1.83 1.8547 

Kepone 143-50-0 5.91 5.39 8.1115 

L-Ascorbic acid 50-81-7 N/A N/A N/A 

Mancozeb 8018-01-7 N/A N/A N/A 

Manganese, tricarbonyl[(1,2,3,4,5-.eta.)-1-

methyl-2,4-cyclopentadien-1-yl] 

12108-13-3 

N/A N/A N/A 

Methoxychlor 72-43-5 7.45 8.51 8.26275 

MGK 264 113-48-4 N/A N/A N/A 

Mirex 2385-85-5 3.81 4.36 2.8233 

o,p'-DDT 789-02-6 4.14 4.09 5.10525 

Parathion 56-38-2 N/A N/A N/A 

Permethrin 52645-53-1 6.16 7.83 10.45295 

Picoxystrobin 117428-22-5 0.13 0.32 0.5449 

Piperonyl butoxide 51-03-6 N/A N/A 19.1251 

pp-DDD 72-54-8 4.83 4.60 6.0773 

pp-DDE 72-55-9 4.50 4.33 4.606 

pp-DDT 50-29-3 4.36 4.33 4.0716 

Reserpine 50-55-5 1.31 1.68 9.08055 
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Rotenone 83-79-4 0.41 0.64 0.03005 

Tamoxifen 10540-29-1 3.09 4.35 6.4836 

Tetracycline 60-54-8 N/A N/A N/A 

Triclosan 3380-34-5 9.08 9.91 9.21815 

N/A indicates EC50 not determined within range (0-20 µM). Individual parameter averages were only calculated if 13+ (>50%) parameters had 567 

determinable (0 < EC50 < 20) values. Bolded NAS values indicate compounds where NAS was more sensitive (lower EC50) than the avg. 568 

individual parameter value. 569 
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