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Abstract 

Light sheet fluorescent microscopy allows imaging of zebrafish vascular development 

in great detail. However, interpretation of data often relies on visual assessment and 

approaches to validate image analysis steps are broadly lacking. Here, we compare 

different enhancement and segmentation approaches to extract the zebrafish cerebral 

vasculature, provide comprehensive validation, study segmentation robustness, 

examine sensitivity, apply the validated method to quantify embryonic cerebrovascular 

volume, and examine applicability to different transgenic reporter lines.  The best 

performing segmentation method was used to train different deep learning networks 

for segmentation. We found that U-Net based architectures outperform SegNet. While 

there was a slight overestimation of vascular volume using the U-Net methodologies, 

variances were low, suggesting that sensitivity to biological changes would still be 

obtained. 

 

Keywords: light sheet, deep learning, segmentation, vasculature, zebrafish; 

 

Highlights 

 General filtering is less applicable than Sato enhancement to enhance 

zebrafish cerebral vessels. 
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 Biological data sets help to overcome the lack of segmentation gold-standards 

and phantom models.  

 Sato enhancement followed by Otsu thresholding is highly accurate, robust, 

and sensitive. 

 Direct generalization of the segmentation approach to transgenics, other than 

the one optimized for, should be treated with caution. 

 Deep learning based segmentation is applicable to the zebrafish cerebral 

vasculature, with U-Net based architectures outperforming SegNet 

architectures. 

 

Graphical Abstract 

 

 

1. Introduction 

1.1. Zebrafish in Cardiovascular Research 

Vascular diseases are the leading cause of death worldwide (Feigin Valery L. et al., 

2017; Lackland and Weber, 2015), with diseases of the central nervous system 

associated with neurodegeneration, arteriovenous malformations, aneurysms and 

stroke. 

Zebrafish are used to study vascular development and disease due to characteristics 

including high genomic similarity to human, fecundity, rapid ex utero development, and 

larval transparency (Bakkers, 2011; Chico et al., 2008; Gut et al., 2017). The 
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availability of fluorescent transgenic reporter lines allows visualization of sub-cellular 

structures of interest with high specificity. For example, endothelial cells which line the 

vascular lumen can be visualized non-invasively and in vivo, replacing laborious 

microangiography (Lawson and Weinstein, 2002).  

With the emergence of sophisticated microscopy techniques, such as light sheet 

fluorescence microscopy (LSFM), it is possible to acquire vascular information in 

greater anatomical detail and over prolonged periods of time (hours to days) (Huisken 

et al., 2004).  

Together, transgenic lines and LSFM allow data acquisition that is rich in anatomical 

depth, spatiotemporal resolution, and detail, meaning that the limitation of 

experimental throughput and assessment has now become data handling and 

analysis, rather than data acquisition. 

 

1.2. Challenges in quantifying the zebrafish cranial vasculature 

While some aspects of the zebrafish vascular architecture are visually apparent 

without quantification (such as increasing network complexity during development), 

others may be too subtle for human perception (such as diameter changes). 

Computational quantification of the vascular architecture in 3D is not just more 

comprehensive (e.g. providing measurements of vessel diameter, length, branching, 

etc.), but also reproducible (e.g. overcoming subjective bias or inter-observer 

variability) than human assessment. However, while quantification of vascular 

geometry is an active research field in the medical domain, it has received less 

attention in pre-clinical models such as zebrafish.  

The main reasons for the lack of a robust segmentation and quantification approach 

for the zebrafish cerebral vasculature are: (i) The majority of zebrafish vascular 

research has focused on vascular development in the trunk, as trunk vessel formation 

shows a highly stereotypic growth pattern that is well characterised. (ii) The zebrafish 

cerebral vasculature is increasingly studied, but is topologically more complex than 

the trunk vasculature, presenting significant challenges to overcome. (iii) As 

endothelial cells are visualized in transgenic lines, lumenized vessels display a cross-

sectional double-peak intensity distribution, while small / unlumenized vessels have a 

single-peak distribution, requiring image analysis approaches that detect and 

discriminate between these cases. (iv) LSFM is a relatively new technique with 

commercial microscopes only being available in recent years. (v) Zebrafish are still 
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emerging as a model and have not received the same level of attention as other 

models, such as rodent. (vi) Data acquisition with light sheet fluorescence microscopy 

produces large datasets, requiring more computational resources for storage and 

processing.  

Additionally, due to the lack of gold-standards or phantoms for image processing and 

analysis, developed analysis approaches are rarely examined in-depth and it is 

unclear how accurate or sensitive the suggested methods are. 

 

1.3. Previous work aiming to quantify the zebrafish cerebral vasculature 

Quantification of left hind-brain vessels was previously performed by Tam et al. (2012), 

while Chen et al. (2012) presented quantification of the mid-brain vasculature. Both 

methods used confocal microscopy and focused only on a sub-region of the cerebral 

vasculature rather than the whole cerebral vasculature.   

In the study of Tam et al. (2012), measurement of vascular density and diameter were 

performed after deconvolution using Imaris. Chen et al. (2012) quantified vessel 

length, branching hierarchy (Strahler, 1952), existence of loops, and vascular pruning 

events using the commercial software Neurolucida. However, neither approach 

provided sufficient methodological detail to facilitate replication and perform an in-

depth assessment of their performance. 

Recently, a segmentation approach using machine learning was suggested for the 

whole zebrafish embryonic vasculature in LSFM data (Daetwyler et al., 2019). The 

method was trained on data from double-transgenic zebrafish providing endothelial as 

well as luminal signal. As additional luminal signal is required to extract vascular 

information, data-load is doubled compared to a single transgenic and only visual 

assessment of segmentation outcomes was performed, with no further validation. 

Previously, Kugler et al. presented methods to enhance the cerebral vasculature in 

LSFM data using general filtering (GF; Median Filter and Rolling ball) (Kugler et al., 

2018) and enhancement utilizing the Hessian matrix with the assumption of local 

vessel tubularity, based on the filter proposed by Sato et al. (Kugler et al., 2019; Sato 

et al., 1997). This was further complemented by investigation of different segmentation 

approaches, which were readily implemented in the Fiji image analysis framework 

(Schindelin et al., 2012), but no validation of the suggested approach was performed. 

For zebrafish cerebral vascular quantification, no ground truth exists as there has been 

no previous attempt to assess segmentation quality. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213843doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213843
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

We here aim to overcome the lack of knowledge about segmentation quality by 

performing detailed validation of our segmentation methodology using simulated data, 

manual measurements, and various in vivo biological datasets that challenge 

segmentation performance in different ways. Thus, address the lack of a gold-standard 

experimentally and analytically. 

 

1.4. Contributions of this work 

Our study makes the following specific contributions (Fig. 1):  

We analyse the impact of different modelled tubes, with simulated parameters chosen 

to be realistic for the zebrafish vasculature, on segmentation outcomes following Sato 

enhancement (SE) applied at different scales (Sato et al., 1997). 

Given that there is no gold-standard for zebrafish vascular segmentation, we present 

several methodological approaches to allow for the assessment of segmentation 

robustness, sensitivity, and accuracy. We addressed this by establishing datasets that 

challenge the segmentation performance to understand whether successful 

segmentation would be achieved and thus true biological vascular volumes could be 

extracted. These examined datasets were composed as follows:  

i. To assess segmentation accuracy, detailed assessment of vessel diameters 

obtained from manual measurements are compared to those obtained after 

enhancement and segmentation. 

ii. To assess noise sensitivity, we examine a dataset with a controlled decrease of 

image quality, as quantified by contrast-to-noise ratio (CNR), via data 

augmentation and reduction of laser power during repeated image acquisition.  

iii. To assess segmentation sensitivity to true biological changes, i.e. blood loss 

resulting in vascular volume decrease, segmentation is performed on data 

acquired prior to and after exsanguination. 

iv. Following segmentation validation we present the application of our suggested 

enhancement and segmentation approach to quantify the cerebral vascular volume 

from 3-to-5 days post fertilization (dpf).  

v. To study applicability to other transgenic lines, vascular segmentation is performed 

in the double-transgenic lines Tg(fli1a:eGFP)y1, Tg(kdrl:HRAS-mCherry)s916 (Chi et 

al., 2008; Lawson and Weinstein, 2002), Tg(fli1a:CAAX-eGFP), Tg(kdrl:HRAS-

mCherry)s916 (Gebala et al., 2016), as well as Tg(fli1a:LifeAct-mClover)sh467, 

Tg(kdrl:HRAS-mCherry)s916 (Savage et al., 2019). Tg(kdrl:HRAS-mCherry)s916 has 
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a high CNR (Kugler et al., 2019) and a vascular specific expression pattern than 

the other examined transgenics, which are also commonly used in zebrafish 

cardiovascular research labs worldwide. Lastly, we use our validated segmentation 

approach based on SE to generate data used to train the original U-Net 

(Ronneberger et al., 2015), SegNet (Badrinarayanan et al., 2017), and three 

modified versions of the original U-Net architecture (dU-Net) and analyse their 

performance.  

 

Figure 1. Workflow of data analysis presented in this paper. 

 

2. Material and Methods 

2.1. Zebrafish Husbandry 
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Experiments were performed according to the rules and guidelines of institutional and 

UK Home Office regulations under the Home Office Project Licence 70/8588 held by 

TC. Maintenance of adult zebrafish Tg(kdrl:HRAS-mCherry)s916 (Chi et al., 2008) and 

Tg(fli1a:eGFP)y1 (Lawson and Weinstein, 2002) was performed as described in 

standard husbandry protocols (Westerfield, 1993). Embryos, obtained from controlled 

mating, were kept in E3 medium buffer with methylene blue and staged as previously 

described Kimmel et al. (Kimmel et al., 1995). 

 

2.1. Image Acquisition Settings and Properties 

Anaesthetized embryos were embedded in 2% LMP-agarose with 0.01% Tricaine in 

E3 (MS-222, Sigma). Data acquisition of the cerebral vasculature was performed using 

a Zeiss Z.1 light sheet microscope, Plan-Apochromat 20x/1.0 Corr nd=1.38 objective, 

dual-side illumination with online fusion, activated Pivot Scan, image acquisition 

chamber incubation at 28°C, with a scientific complementary metal-oxide 

semiconductor (sCMOS) detection unit. The properties of acquired data were as 

follows: 16bit image depth, 1920 x 1920 x 400-600 voxel (x,y,z;  approximate voxel 

size of 0.33 x 0.33 x 0.5 µm, respectively). Multicolour images in double-transgenic 

embryos were acquired in sequential mode.  

 

2.2. Datasets.  

2.2.1. Modelled Tubes  

Modelled straight tubes (hollow, filled and Gaussian blurred) were simulated with a 

uniform signal intensity of 255 against zero background intensity using Fiji (Schindelin 

et al., 2012). Total image size was 268 x 268 x 250 voxels with voxel size 0.2 x 0.2 x 

0.33 µm. Tubes were produced to resemble the following biological settings: (i) hollow 

tubes – 20 µm outer diameter (1.13 µm wall thickness) and 8.3 µm outer diameter (0.8 

µm wall thickness); resembling lumenized vessels; (ii) filled tubes - resembling 

unlumenized vessels (with the same outer diameter as above); (iii) Gaussian blurred 

tubes were created by taking the simulated datasets in (i) and (ii) and applying a 

Gaussian filter with a sigma of 5 voxels to resemble a more realistic intensity 

distribution of fluorescence; (iv) increasing Gaussian white noise with standard 

deviation 25, 50 or 100 (zero background intensity), resembling background noise was 

added to the simulated datasets produced in (i), (ii) and (iii). The modelled tubes were 

used to establish the Sato filter response for different types of tubes when the filter is 
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applied with varying scale parameters. We were particularly interested in establishing 

how the filter responds to a double-peak distribution from a hollow tube, as typically 

found in lumenized vessels. 

 

2.2.2. Transgenic Zebrafish  

Data to test vascular enhancement approaches were acquired at 4 days post 

fertilization (dpf). Data analysed for assessment of segmentation robustness included 

the following:  

(i) Dataset with controlled decrease of vascular contrast-to-noise ratio (CNR) by 

decrease of laser power during repeated acquisition (Kugler et al., 2018) (laser power 

(LP) 1.2%, 0.8% and 0.4%; exposure 30ms for all; 4dpf; n=10 embryos from 2 

experimental repeats). Augmented data were produced from LP 1.2% by addition of 

Gaussian noise with mean of zero and standard deviation of 50 using Fiji (Schindelin 

et al., 2012). 

(ii) Data acquisition before and after exsanguination by mechanical opening of the 

heart cavity with forceps in Tg(kdrl:HRAS-mCherry)s916 (4dpf; n=16 embryos from 2 

experimental repeats). 

(iii) Double-transgenics: Tg(fli1a:eGFP)y1, Tg(kdrl:HRAS-mCherry)s916 (n=21 embryos 

from 2 experimental repeats), Tg(fli1a:CAAX-eGFP), Tg(kdrl:HRAS-mCherry)s916 

(n=17 embryos from 2 experimental repeats), as well as Tg(fli1a:LifeAct-mClover)sh467, 

Tg(kdrl:HRAS-mCherry)s916 (n=23 embryos from 3 experimental repeats). 

(iv) Data to quantify vascular volume during early development were acquired in 

Tg(kdrl:HRAS-mCherry)s916 (3dpf n=12, 4dpf n=13, 5dpf n=15; all data from 2 

experimental repeats).  

(v) In order to train the deep learning networks, a Tg(kdrl:HRAS-mCherry)s916 training 

dataset was acquired at 4dpf n=9 and a separate evaluation dataset was acquired to 

evaluate the performance of the network using the same age and transgenic line with 

n=10. 

 

2.3. Image Analysis 

2.3.1. Basic Analysis 

All image analysis, pre-processing and segmentation were performed using the open-

source software Fiji (Schindelin et al., 2012). Contrast-to-noise ratio (CNR) was 

quantified and motion correction performed as described in (Kugler et al., 2019). Full-
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Width-Half-Maximum (FWHM; Eq. 1) was calculated from extracted cross-sectional 

line region of interest (ROI) intensity profiles, f(x), using Matlab. 

𝑓(𝑥1) = 𝑓(𝑥2) =
1

2
𝑓(𝑚𝑎𝑥)    (1) 

𝐹𝑊𝐻𝑀 = |𝑥1 − 𝑥2| 

 

2.3.2. Image Enhancement 

The following vascular enhancement methods were studied:  

(i) General filtering (GF): 2D median filter with a radius of 6 voxels (13-by-13 

neighbourhood) (Lim, 1990) and rolling ball algorithm of size 200 (Sternberg, 1983), 

as presented in (Kugler et al., 2019).  

(ii) Sato Enhancement (SE): Enhancement based on the line enhancement filter 

proposed by Sato et al. (Sato et al., 1997) with the assumption of local vessel 

tubularity, as implemented into the Fiji Tubeness Plugin by Mark Longair, Stephan 

Preibisch and Johannes Schindelin (Schindelin et al., 2012), was applied as described 

in (Kugler et al., 2019).  

 

2.3.3. Segmentation and Total Vascular Volume Measurement 

Segmentation of enhanced images was performed using global Otsu thresholding 

(Otsu, 1979) to distinguish vascular from non-vascular information. Following 

segmentation, the total dorsal cerebral vascular volume was quantified in a cerebral 

ROI defined as described in (Kugler et al., 2018). 

 

2.3.4. Deep Learning Architectures 

We chose two popular deep learning network architectures, namely the original U-Net 

(Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 2017), and also 

modified the original U-Net architecture to suit our segmentation problem (called dU-

Net). This was achieved by making the original U-Net architecture deeper by adding 

more convolutional layers, employing batch normalization, and applying dropout 

procedures to avoid overfitting (Fig. 2).  

The U-Net architecture was developed specifically for segmenting biomedical images, 

whereas the SegNet architecture was developed for generic image segmentation. 

Both networks have shown promising results in many applications of semantic 

segmentation. However, employing the network architecture directly is often 
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insufficient to produce good segmentation results. Therefore, we modified the original 

U-Net architecture to suit our segmentation problem.  

 

Figure 2. Machine learning workflow and network. 

 

The original U-net contains four levels of 3x3 convolutional layers in both encoder and 

decoder parts with up to 1024 feature channels used. Our first modification (dU-Net1), 

contains seven levels of 3x3 convolutional layers with a maximum of 512 feature 

channels used. We further modified the network by adding more convolutional layers, 

hence making it deeper, with nine levels of 3x3 convolutional layers with up to 1024 

feature channels used (dU-Net2). Finally, the dU-Net3 has five levels of 3x3 

convolutional layers with up to 512 feature channels. Note that the 3x3 convolutional 

operation with Rectified Linear Unit (ReLu) activation function is used in the original 

U-Net, whereas, in our modified versions we employ the Exponential Linear Unit (ELU) 
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function instead. The ReLu activation function will output the summed weighted input 

directly if it is positive, otherwise, it will output zero. On the other hand, the ELU 

activation function uses a parameterized exponential function to transition from the 

positive to small negative values which are closer to zero. Mean activations that are 

closer to zero enable faster learning as they bring the gradient closer to the natural 

gradient (Clevert et al., 2016). In our previous work, we found that the ELU activation 

function provides better overall segmentation results compared to the ReLU (Rampun 

et al., 2020). Furthermore, a batch normalization function is added after each level 

convolutional operation in the dU-Net and as the number of feature channels increase, 

we employ the dropout function to avoid overfitting. Table 1 summarizes the network 

architecture details. The dU-Net architectures were motivated by the following:  

 Data sparsity. Only about 15% of pixels belong to the zebrafish cerebral 

vasculature (foreground), with 1-5% foreground pixels in bottom and top slices. 

Therefore, a balanced loss function is essential to handle the class imbalance 

problem (e.g. the imbalance in the number of pixels between foreground and 

background). Moreover, deeper network architectures can capture diverse 

coarse and finer features, allowing the extraction of more discriminant features 

which may not be available in a shallow network (e.g. the original U-Net). 

 Background fluorescence. Non-specific signal (e.g. background and sample 

auto-fluorescence) in our data can be very noisy and appear similar to the 

cerebral vasculature. This can easily deteriorate the final segmentation results.  
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Table 1. Network Architecture Summary. Comparison between the original SegNet, 

U-Net and its modifications employed in this study. 

 U-Net SegNet dU-Net1 dU-Net2 dU-net3 

Depth (level) 4 5 7 9 5 

Activation 

function 

ReLu ReLu ELU ELU ELU 

Kernel size 3x3 3x3 3x3 3x3 3x3 

Batch 

Normalization 

None Yes Yes Yes Yes 

Maximum 

number of 

feature 

channels 

1024 512 512 1024 512 

Dropout None None 0.4 0.6 0.3 

Loss function Pixel-wise 

Softmax 

with cross 

entropy 

Binary 

cross 

entropy 

Binary cross 

entropy+ 

Dice 

coefficient 

Binary cross 

entropy+ 

Dice 

coefficient 

Binary cross 

entropy+ 

Dice 

coefficient 

 

2.3.5. Deep Learning Training, Validation, and Testing 

All images were automatically down-sampled to 256x256 to decrease the memory and 

time required for training. The following data augmentations were applied: (i) random 

rotation range of up to 180, (ii) zooming in and out with a range of 0:1 to 2:0, and (iii) 

horizontal and vertical flips. 

To assess the performance, the networks were trained on a dataset of Tg(kdrl:HRAS-

mCherry)s916 and applied to another (4dpf n=10). 

Using the training dataset, we trained our network with the Root Mean Square 

Propagation (RMSprop) (Hinton et al.) implementation in Keras with a Tensorflow 

back-end. The initial learning rate (lr) and gradient moving average decay factor were 

0.0003 and 0.8, respectively. To maximize the network speed and to have a better 

estimation of the gradient of the full dataset (hence faster convergence), we favoured 

a maximum batch size (bs = 32).  
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The number of iterations used per epoch (E) was based on the number of samples 

divided by batch size. We monitored the Dice and Jaccard coefficients, set E = 1000 

and applied the `EarlyStopping' mechanism on the validation set to automatically stop 

training when the loss function value did not change after 50 epochs. To minimise 

covariance shifts, for each convolutional block we applied the batch normalisation 

procedure, which further increased the learning process. The loss function was 

computed as a combination of binary cross-entropy (our study can be seen as a binary 

classification: vascular versus non-vascular pixels) and Dice Coefficient, which is 

described as: 

𝐿(𝐼,𝑀) = −
1

𝑁
∑(

1

2
. 𝐼𝑛. 𝑙𝑜𝑔𝑀𝑛 +

2. 𝐼𝑛. 𝑀𝑛

𝐼𝑛 +𝑀𝑛
)

𝑁

𝑛=1

 

where 𝐼𝑛 and 𝑀𝑛are the 2D training images and their corresponding 2D ground truth 

binary image, respectively. 

For weight initialization, we followed the weight initialisation procedure implemented 

in the original paper (Ronneberger et al., 2015) using the Gaussian distribution with a 

standard deviation of √2/𝛾, where 𝛾 is the number of incoming nodes of one neuron. 

 

 

2.3.6. Statistics and Data Representation 

Gaussian distribution conformation was evaluated using the D’Agostino-Pearson 

omnibus test [21]. Statistical analysis was performed using One-way ANOVA or paired 

Students t-test in GraphPad Prism Version 7 (GraphPad Software, La Jolla California 

USA). Statistical significance was represented as: p<0.05 *, p<0.01 **, p<0.001 ***, 

p<0.0001 ****. Graphs show mean values ± standard deviation unless otherwise 

indicated. Image representation and visualization was done with Inkscape Version 

0.48 (https://www.inkscape.org). Bland-Altman measurement was used to assess 

segmentation methods: plotting the ratio (SE volume / DL volume) versus average of 

both volume measurements. Images were visualized as maximum intensity 

projections (MIPs) using false-colour representation and intensity inversion where 

appropriate.  
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3. Results and Discussion 

3.1. Vessel enhancement based on vascular tubularity and the impact of input 

shape 

To test vessel enhancement using a shape-based filter with the assumption of local 

vascular tubularity, the Sato enhancement (SE) filter (Sato et al., 1997) already 

implemented into Fiji was evaluated for its applicability to images of the zebrafish 

vasculature acquired with LSFM. Filters were applied at a scale size similar to the 

average vessel size of cerebral vessels under the assumption that this would return 

an optimum response (scale 10µm). 

Comparing three vessels in original in vivo data (Fig. 3A) before and after SE showed 

satisfactory vessel enhancement for all vessels examined (Fig. 3A’). We further 

examined whether similar results would be obtained with inverted intensity (dark 

vessels on bright background; Fig. 3B), as SE is theoretically unable to perform in this 

state. Indeed, SE was unable to enhance vessels in this dark-on-bright state (Fig. 

3B’). Overall, SE delivered meaningful results provided that data is presented as 

bright-on-dark. 

We further wanted to assess whether input shape would impact the filter output after 

SE and whether lumenized (hollow tubes / double-peak intensity) and unlumenized / 

unperfused (filled tubes / single intensity peak) vessels would need to be considered 

separately. This was of interest as SE was originally developed for magnetic 

resonance imaging (MRI) data which display a single-peak intensity distribution that 

can be approximated by a Gaussian distribution. 

Applying SE to the simulated hollow tubes converted these to filled tubes (double-to-

single peak conversion) when enhancement scale was approximately at the size of 

tubes (10µm; Fig. 3C). Enhancement of filled and filled Gaussian blurred tubes was 

similar (Fig. 3D,E). Addition of artificial Gaussian noise did not significantly alter 

enhancement (Fig. 3F). 

These data showed that SE was able to convert double-to-single peak intensity 

distributions if applied at the scale of tubes, suggesting that lumenized and 

unlumenized vessels would both be enhanced similarly. Importantly, blurred tubes and 

data with additional noise were also enhanced successfully, suggesting that SE should 

be applicable to typical zebrafish data acquired with LSFM. However, there was a 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213843doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213843
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

tendency for the simulated tube width to appear broader after enhancement, so any 

subsequent segmentation would need to be tuned to recover the correct vessel width. 

 

 

Figure 3. Vessel enhancement based on vascular tubularity and the impact of 

input shape. 

(A) Original data with bright vessels on dark background. (A’) Data processed with 

Sato enhancement showed successful enhancement. (B) Inverted data with dark 

vessels on bright background. (B’) SE was not able to perform after greyscale 

inversion. (C,C’) Applying SE to hollow tubes results in double-to-single peak 

conversion. (D,D’) Enhancement of filled tubes with SE results in successful 

enhancement. (E,E’) SE enhancement results for Gaussian blurred tubes were similar 

to unblurred tubes. (F,F’) Addition of artificial Gaussian noise at level 50 did not 

significantly alter SE enhancement results. 

 

3.2. Segmentation accuracy 

To evaluate segmentation accuracy, vessel diameters obtained after applying the 

proposed enhancement and segmentation methodologies were compared to those 

obtained by “gold standard” manual measurement.  This allows us to identify whether 

our segmentation approach will deliver true biological results across the expected 

range of vessel sizes, or if any systematic errors arise. Manual measurements of four 
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vessels spanning a range of diameters were obtained; central artery (CtA) with an 

average diameter of 8.154±1.27µm, middle mesencephalic central artery (MMCtA) 

with a diameter of 9.78±2.09µm, primordial midbrain channel (PMBC) with a diameter 

of 11.14±1.68µm, basilar artery (BA) with a diameter of 22.28±3.89 µm (n=12 3dpf 

embryos).  

As it is time consuming and prone to observer bias to perform manual vessel diameter 

measurement, we investigated whether full-width-half-maximum (FWHM) of the 

vessel cross-sectional intensity profile would provide a good estimate of vessel 

diameter. When comparing FWHM with the manual diameter measurements, no 

statistically significant differences were found (Fig. 4A; all vessels p>0.9999) and 

measurement errors were small (CtA 1.44µm, MMCtA 0.91µm, PMBC 1.35µm, BA 

3.83µm). Assessment of Pearson Correlation and Bland-Altman analyses showed no 

systematic error, suggesting that the observed differences were unbiased. However, 

three outliers were observed in the FWHM measurements where poor agreement with 

the manual measurements was observed (Fig. 4A; unfilled arrowhead). These were 

found to be caused by strong asymmetric cross-sectional double-peak intensity 

distributions (Fig. 4B). We anticipate that this could be overcome by averaging cross-

sectional intensity profiles from several different orientations to produce an average 

diameter for the vessel of interest. Thus, we suggest that the FWHM can be used to 

measure vascular diameter in zebrafish reporter lines with the caveat that outliers 

need to be considered. 

Therefore, we compared the manual and FWHM derived estimates of vascular 

diameter to those derived from GF and SE after thresholding. No significant 

differences were found between FWHM, GF, or SE based diameter measurements 

and their corresponding manual measurements in any of the four vessels.  However, 

GF delivered more variable results with a particular issue when enhancing the PMBC 

(Fig. 4C-F), while SE delivered more consistent results (Fig. 4G). These data, together 

with visual assessment (Fig. 4G-H; Videos 1 and 2), suggested that neither 

segmentation method introduced a significant artificial bias and that true biological 

diameters would be delivered.  
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Figure 4. Validation of segmentation accuracy.  

(A) Comparing manual measurements (grey dots) to automated FWHM (black dots) 

showed a good agreement. White arrowheads indicate outliers which were caused by 

skewed cross-sectional intensity distributions (B). Comparison of manual 

measurements to FWHM, after GF with thresholding and SE with thresholding in the 

CtA (C), MMCtA (D), PMBC (E), and BA (F; C-F Kruskal-Wallis test). (G) Average 

voxel error is independent of vessel diameter (averaged n=6 3dpf embryos). (H) Visual 

comparison of original data to images after SE and segmentation using 3D rendering.  

 

Video 1. Original image 3D rendered. Video shows original 3D rendered 3dpf 

Tg(kdrl:HRAS-mCherry)s916. 
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Video 2. Image 3D rendered after SE and segmentation. Video shows 3D rendered 

3dpf Tg(kdrl:HRAS-mCherry)s916 after SE and segmentation. 

 

3.3. Segmentation Robustness to Noise 

Segmentation robustness was assessed by processing of data with varying signal 

properties. To achieve this we examined two approaches, (a) acquisition of data with 

a controlled decrease of image quality (Fig. 5A-C) and (b) data augmentation by 

artificial noise addition (Fig. 5D-E) , both followed by segmentation after GF and SE.  

Quantification of the cerebral vascular volume as a segmentation out-read showed no 

significant difference after GF or SE over the range of tested image qualities (Fig. 5F; 

p 0.3248 and p 0.9981, respectively), suggesting that both segmentation approaches 

were robust over a broad range of CNR levels. However, despite there being no 

significant difference in cerebral vascular volume, the coefficient of variation was 

significantly greater in GF-based measurements (CoV: LP 1.2 18.76%, LP 0.8 14.63%, 

LP 0.4 17.56%) compared to TF (CoV: LP 1.2 7.81%, LP 0.8 6.97%, LP 0.4 9.14%) 

for all CNRs, suggesting that while there is no significant difference in accuracy, the 

GF approach is less precise and consistently so across the range of CNR tested. 

To test this further, and whether data augmentation would be a suitable replacement 

to changing data acquisition, artificial noise was added to data and vascular volumes 

again quantified. CNR was successfully decreased with this approach (Fig. 5G) and 

vascular volume was statistically significantly increased with GF (p 0.0247) but not TF 

(p>0.9999). Similar to experimentally derived data, GF CoV (31.56%) was larger than 

TF CoV (9.69%) in augmented data.  
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Figure 5. Validation of segmentation robustness. 

(A-C) Dataset with decreased image quality was produced by repeated image 

acquisition with reduced laser power (LP; 1.2%, 0.8% and 0.4%).  

(D-E) Data augmentation was achieved by addition of noise to images of LP 1.2. 

(F) In experimentally derived data, CNR (magenta) was decreased with LP decrease. 

No statistically significant difference of vascular volume was observed after GF (p 

0.3248; black) or SE (p 0.9981; grey) by LP reduction (n=10 4dpf embryos; 2 

experimental repeats; One-Way ANOVA). 

(G) In augmented data, CNR was also decreased (magenta). Vascular volume was 

statistically significantly increased following GF (p 0.0247) but not TF (p>0.9999). 

 

3.4. Segmentation Sensitivity to Biological Differences 

To test segmentation sensitivity, datasets with a predictable and known biological 

vascular volume difference were acquired before and after exsanguination (Fig. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213843doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213843
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

6A,B). Quantification of the cerebral vascular volume after GF showed no statistically 

significant difference between control and exsanguinated samples (p 0.2596; Fig. 6C; 

mean value difference 7.8%), while a statistically significant reduction was found after 

SE (p<0.0001; Fig. 6D; mean value difference 8.05%). Importantly, CoV after GF was 

found to be 38.26% and 26.28% in controls and exsanguinated samples respectively, 

while CoV was only 10.22% and 9.65% in controls and exsanguinated samples after 

SE. To confirm that data quality was not significantly altered by sample removal for 

the exsanguination procedure, CNR was quantified in the basilar artery (BA) before 

and after exsanguination and no statistically significant difference found (p 0.0876; 

Fig. 6E), indicating that data quality was largely unaltered. Furthermore, the CNR 

measured in both cases was towards the upper end of the range over which the 

methods have been shown to be accurate. These data indicated that SE was more 

sensitive, allowing the extraction of true biological differences due to the intrinsic lower 

variability of the method. In summary, all of the experiments performed so far to assess 

the accuracy, robustness and sensitivity of the segmentation approaches indicated 

that SE-based segmentation is more successful than the GF-based approach. 
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Figure 6. Validation of segmentation sensitivity. 

(A-B) Data were acquired before and after exsanguination. (C) Vascular volume 

quantification after GF showed no statistically significant difference between control 

and exsanguinated samples (p 0.2596; n=16 4dpf embryos; 2 experimental repeats; 

paired t-test). (D) Vascular volume quantification after SE showed a statistically 

significant decrease between control and exsanguinated samples (p<0.0001; paired 

t-test). (E) CNR was not statistically significant changed by the exsanguination 

procedure (p 0.0876; paired t-test). 

 

3.5. Quantification of cerebral vascular volume in development 

The promising segmentation results in Tg(kdrl:HRAS-mCherry)s916 using SE 

combined with Otsu thresholding encouraged us to quantify vascular volume from 3-

to-5dpf to study cerebrovascular volume in development. After both GF and SE, a 

statistically significant increase of vascular volume was observed (p 0.0009 and 

p<0.0001, respectively; Fig. 7A,B), but CoV was again higher after GF (3dpf 17.18%, 
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4dpf 17.96%, 5dpf 27.14%) than TF (3dpf 12.94%, 4dpf 14.59%, 5dpf 13.20%). Visual 

assessment showed satisfying segmentation results after SE (Fig. 7C). Importantly, 

these data suggested that SE-processed data were less variable and therefore lower 

sample numbers would be required to extract biologically relevant vascular volumes. 

This supports the previous findings presented in Section 3.4, where biological 

differences were only found when using vascular volumes derived from TF-based 

segmentation and not from GF. This is also exemplified by the fact that mean vascular 

volume increases are about 12% (GF 3-4dpf 11.42%, 4-5dpf 12.59%; TF 3-4dpf 

11.99%, 4-5dpf 11.39%), thus accurate measurements are needed to extract subtle 

differences.   

 

 

Figure 7. Application to quantify cerebral vascular volume. 

(A) Quantification of vascular volume after GF showed a statistically significant 

increase from 3-to-5dpf (p 0.0009; 3dpf n=12, 4dpf n=13, 5dpf n=15; 2 experimental 

repeats; One-Way ANOVA). (B) Quantification of vascular volume after SE showed a 

statistically significant increase from 3-to-5dpf (p<0.0001; One-Way ANOVA). (C) 
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Visual comparison of original data with segmented after GF (D) and SE (E) suggested 

SE delivered better results. 

 

3.6. Application to other transgenic lines 

As our enhancement and segmentation approach was optimized for the transgenic 

reporter line Tg(kdrl:HRAS-mCherry)s916, there was the rational to evaluate whether 

the suggested approach would be generalizable to other transgenic lines. Thus, we 

examined the cerebrovascular volume in three different double-transgenics, namely 

(1) Tg(fli1a:eGFP)y1, Tg(kdrl:HRAS-mCherry)s916, (2) Tg(fli1a:CAAX-eGFP), 

Tg(kdrl:HRAS-mCherry)s916, and (3) Tg(fli1a:LifeAct-mClover)sh467, Tg(kdrl:HRAS-

mCherry)s916. We hypothesised that signal driven under the fli1a promotor would be 

more challenging to segment due to lower vascular specificity and higher image 

artefact levels, such as reflection from the skin (Fig. 8A,C). 

Segmentation results in the reporter lines under the fli1a promotor showed 

enhancement and segmentation of non-vascular signal (Fig. 8D-E). 

Quantification of the cerebral vascular volume showed a statistically significantly 

higher vascular volume under the fli1a promotor in all three examined lines (p<0.0001 

for all three; Fig. F-H). Even though CoV were low (17.28% Tg(fli1a:eGFP)y1, 14.55% 

Tg(fli1a:CAAX-eGFP), 13.18% Tg(fli1a:LifeAct-mClover)sh467) this exemplifies that 

further optimization and processing will be needed to reliably extract vascular signal 

from transgenics other than Tg(kdrl:HRAS-mCherry)s916 for which our approach was 

optimized. 
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Figure 8. Segmentation of different transgenic lines. 

(A-C) In all three double-transgenics ((1) Tg(fli1a:eGFP)y1, Tg(kdrl:HRAS-

mCherry)s916, (2) Tg(fli1a:CAAX-eGFP), Tg(kdrl:HRAS-mCherry)s916, and (3) 

Tg(fli1a:LifeAct-mClover)sh467, Tg(kdrl:HRAS-mCherry)s916) non-vascular signal was 

observed in the fli1a driven transgenic (arrowheads). 

(D-E) Segmentation results of the three double-transgenics showed non-vascular 

signal to be enhanced and segmented in the transgenics under fli1a promotor.  

(F) Vascular volume in Tg(fli1a:eGFP)y1 was statistically significantly higher than 

Tg(kdrl:HRAS-mCherry)s916 (p<0.0001; n=21 paired; t-test). 

(G) Vascular volume in Tg(fli1a:CAAX-eGFP) was statistically significantly higher than 

Tg(kdrl:HRAS-mCherry)s916 (p<0.0001; n=17paired; t-test). 

(H) Vascular volume in Tg(fli1a:LifeAct-mClover)sh467 was statistically significantly 

higher than Tg(kdrl:HRAS-mCherry)s916 (p<0.0001; n=23 paired; t-test). 

  

Together, this suggests that vascular volume can be extracted in other transgenics, 

but accuracy and precision are reduced. The challenges encountered, showed that 

non-vascular signal (pan-endothelial) as well as non-specific (eg. skin) signal both lead 

to an increase in extracted vascular volume. To address this, future work might include 

pre-processing to enhance vascular and decrease non-vascular signal, exclusion of 

non-connected components, exclusion of objects under a specified size-threshold, or 

exclusion based on peripheral position. 

 

 

3.7. Deep Learning 

In addition to the conventional image processing approaches, based on GF and SE 

filtering combined with Otsu thresholding, we aimed to develop the first deep learning 

approach for segmentation of zebrafish vascular data from the single transgenic 

Tg(kdrl:HRAS-mCherry)s916. To achieve this, we trained an original U-Net, SegNet, 

and three modified U-Nets (dU-Net1-3) on our training dataset using segmented 

masks obtained after SE as the ground truth (Fig. 9A-C) and the resulting trained 

network was then applied to the evaluation dataset.  

The results of the ML-based segmentation approaches were compared visually to SE-

based segmentation (Fig. 9D-H; example 3D renderings are provided in Videos 3-7).  
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Quantification of the evaluation dataset produced Dice Coefficient (compared to the 

SE based segmentation) (Fig. 9I), vascular volume (Fig. 9J), and Bland-Altman ratio 

(Fig. 9K-O) showed U-Net architectures to deliver better results than SegNet, which 

over-segmented the vasculature (Table 2). Comparing the different U-Net 

architectures, the original U-Net and dU-Net1 delivered the best results with an 

average Bland-Altman ratio of 0.896 and 0.809 and a vascular volume CoV of 9.78% 

and 8.65% for U-Net and dU-Net1, respectively. There was a tendency for the deep 

learning methods to systematically over-estimate the vascular volume and all except 

the original U-Net showed statistically significant increases. With the exception of the 

SegNet output, the differences were generally small with comparable CoV to the SE 

based volume measurements, suggesting that the deep learning methodology should 

have comparable sensitivity to volume changes, even though those volumes are 

slightly over-estimated. 

This is likely due to the fact that SegNet architectures are usually used to segment 

natural images with sharp edges (such as landscapes), while the original U-Net was 

developed for biomedical images. 

Together, this showed that deep learning based segmentation can be applied to our 

data, and that U-Net based architectures outperform the SegNet architecture, while 

changes in the U-Net architecture (convolutional layers, employing batch 

normalization, and dropout procedures) did not significantly impact segmentation 

outcomes. 

The deep learning approaches presented here operate in 2D on a slice-by-slice basis 

with a 1-2 second segmentation time (after training) per slice (approx. 400-700 slices 

per stack) resulting in typical run times of between 7 and 23 minutes for segmenting a 

full stack. In contrast, SE-based segmentation typically require about 50 minutes in 

total per stack, suggesting a significant time benefit in favour of the deep learning 

approach. Nevertheless, future work is needed to examine the performance of deep 

learning approaches in zebrafish at different ages, in different transgenic lines, 

exploring and optimising alternative network configurations, implementing a 3D 

segmentation approach, and investigating alternative methods for generating training 

data that are independent of our SE-based method.  

In summary, we have found that deep learning approaches provide a promising 

alternative to conventional image processing methods for zebrafish vasculature 

segmentation, with U-Net based architectures performing particularly well. 
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Figure 9. Machine learning results when trained from original data.  

(A) Original image, (B) enhanced, (C) segmented using Otsu thresholding (referred to 

as SE/TH). (D) MIP of SE/TH (green) and original U-Net (magenta) segmentation, 

showing high degrees of overlap (white), while certain vessels were extracted with SE 

but not U-Net (arrowheads). (E) MIP of SE/TH (green) and SegNet (magenta) 
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segmentation, showing consistent over-segmentation with SegNet. (F) MIP of SE/TH 

(green) and dU-Net1 (magenta) segmentation, showing high degrees of overlap 

(white), while certain vessels were extracted with SE/TH but not dU-Net1 

(arrowheads). (G) MIP of SE/TH (green) and dU-Net2 (magenta) segmentation. (H) 

MIP of SE/TH (green) and dU-Net3 (magenta) segmentation. (I) Dice Coefficient of 

segmentation outcomes. (J) Quantified vascular volumes. (K-O) Bland-Altman ratio 

test comparing vascular volume values. 

 

Video 3. 3D rendered segmentation results of U-Net. Video shows 3D rendered 

3dpf Tg(kdrl:HRAS-mCherry)s916 after SE-based segmentation (green) and U-Net 

segmentation (magenta). 

 

Video 4. 3D rendered segmentation results of SegNet. Video shows 3D rendered 

3dpf Tg(kdrl:HRAS-mCherry)s916 after SE-based segmentation (green) and SegNet 

segmentation (magenta). 

 

Video 5. 3D rendered segmentation results of dU-Net1. Video shows 3D rendered 

3dpf Tg(kdrl:HRAS-mCherry)s916 after SE-based segmentation (green) and dU-Net1 

segmentation (magenta).  

 

Video 6. 3D rendered segmentation results of dU-Net2. Video shows 3D rendered 

3dpf Tg(kdrl:HRAS-mCherry)s916 after SE-based segmentation (green) and dU-Net2 

segmentation (magenta).  

 

Video 7. 3D rendered segmentation results of dU-Net3. Video shows 3D rendered 

3dpf Tg(kdrl:HRAS-mCherry)s916 after SE-based segmentation (green) and dU-Net3 

segmentation (magenta).  

 

Table 2. Dice Coefficient and Jaccard Index of ML-based segmentation approaches 

in comparison to SE-based segmentation.  
 

UNet SegNet dU-Net1 dU-Net2 dU-Net3 

Dice 

Coefficient 

0.754 ± 

0.023 

0.616 ± 

0.030 

0.755 ± 

0.025 

0.740 ± 

0.046 

0.739 ± 

0.024 
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Jaccard 

Index 

0.606 ± 

0.031 

0.445 ± 

0.032 

0.607 ± 

0.033 

0.589 ± 

0.058 

0.587 ± 

0.031 

 

4. Conclusion 

In this work, we demonstrated that enhancement and segmentation of the zebrafish 

vasculature is possible using a variety of approaches based on general filtering, Sato 

enhancement, or deep learning.  Validation of GF- and SE-based approaches involved 

studying their robustness, sensitivity, as well as applicability to other transgenics. In 

all cases, we found that the SE-based segmentation outperformed results based on 

GF. We successfully quantified cerebrovascular volume from 3-to-5dpf, indicating that 

biologically relevant vascular volumes can be objectively quantified. Once validated, 

we used SE-based segmentation to train deep learning methods, finding that U-Net 

based architectures returned vascular segmentation with comparable accuracy and 

precision.  

In conclusion, the proposed segmentation allows for quantification of cerebral vascular 

volume, facilitating the study of mechanisms of vascular development and disease, as 

well as the effect of drugs or chemical components. Importantly, the application of 

robust objective quantification allows for the reduction of sample size needed to 

assess the vascular phenotype, which is important from an ethical as well as 

computational point of view. 
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