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Abstract

Information about the macromolecular structure of viral protein complexes such
as SARS-CoV-2, and the related cellular and molecular mechanisms can assist the
search for vaccines and drug development processes. To obtain such structural in-
formation, we present DeepTracer, a fully automatic deep learning-based method for
de novo multi-chain protein complex structure prediction from high-resolution cryo-
electron microscopy (cryo-EM) density maps. We applied DeepTracer on a set of 62
coronavirus-related raw experimental density maps, among them 10 with no exist-
ing deposited model structure. We observed an average residue match of 84% with
the deposited structures and an average RMSD of 0.93Å. Larger comparative tests
further exemplify DeepTracer’s competitive accuracy and e�ciency of multi-chain all-
atom complex structure prediction, with the ability of tracing around 60,000 residues
within two hours. The web service and prediction results are globally accessible at
https://deeptracer.uw.edu.
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1 Introduction

The determining factor for a protein’s functionality is its structure, which is given by a
unique sequence of amino acids that make up the protein and their three-dimensional
arrangement [1]. Consequently, researchers can draw conclusions about the behavior
of a protein based solely on its molecular structure. These outcomes can be useful in
the development of new vaccines and drugs as viral fusion proteins play a central role
in how the viruses invade the host’s cells [2]. In order to prevent infections, researchers
attempt to develop vaccines and medicines that target these fusion proteins. This
strategy is currently applied to find an e↵ective vaccine for the SARS-CoV-2 virus
[3, 4, 5]. The structural information about the fusion proteins is crucial for researchers
to predict their behaviors and ultimately find the right vaccine [6].

To determine the structure of a protein, this work builds upon cryo-electron mi-
croscopy (cryo-EM) data [7]. Cryo-EM allows researchers to capture three-dimensional
maps of macromolecules, which describe the density of electrons at a near-atomic res-
olution. The technology has gained popularity in recent years as an alternative to
established structure determination methods, such as X-ray crystallography, due to its
improved quality and e�ciency [8, 9]. In the midst of the current global crisis, it is
telling that cryo-EM is being deployed right alongside X-ray crystallography in sup-
port of the search for medicines and vaccines to fight the current COVID-19 pandemic
[10]. To derive the structure of a protein based on its 3D cryo-EM electron density
map, researchers currently either have to manually fit the atoms or resort to exist-
ing template-based or homology modeling methods [11, 12, 13]. The manual fitting
of atoms represents an enormous e↵ort as proteins complexes usually consist of sev-
eral thousand atoms, making it virtually impossible for larger structures. Therefore,
there is a tremendous demand for a prediction method that automatically predicts the
molecular structure from a cryo-EM density map. Unfortunately, existing prediction
tools [14, 15, 16, 17, 18] such as Rosetta, MAINMAST, and Phenix predict fragments
of a protein complex, or require extensive manual processing steps. Due to the ability
of cryo-EM to capture multiple large proteins in the course of a single study [19, 20], a
fully automated, e�cient tool to predict complex structures would be crucial to increase
the throughput of the technology and speed up the development of medicines.

In this paper, we present DeepTracer, a fully automated software tool that predicts
the all-atom structure of a protein complex based solely on its cryo-EM density map
and amino acid sequence (Figure 1). No manual processing of the density map is
necessary, and the tool requires no further parameters to run predictions. The core of
the prediction method is a tailored deep convolutional neural network that allows for
fast and accurate structure predictions when combined with complex pre- and post-
processing steps. We also provide a web service and a CoV-related dataset along with
the prediction results at DeepTracer’s website. To our knowledge, this is the first web
service for fully-automated protein complex prediction and coronavirus modeling using
3D cryo-EM.
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Figure 1: DeepTracer prediction pipeline. All-atom structure of multi-chain protein com-

plexes is predicted fully automatic solely from a density map and amino acid sequence using

the steps shown in the center of the figure. The structure shown on the right side is an

actual DeepTracer prediction.
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2 Results

In this section, we applied DeepTracer to experimental coronavirus-related density
maps for evaluation purposes. Specifically, we compared its e↵ectiveness with the
existing Phenix map-to-model function. Larger comparative tests can be found in
the supplementary materials. The structure of this section is as follows: Section 2.1
describes the metrics we utilize to facilitate this comparison; Section 2.2 presents the
prediction results of both methods for a dataset of coronavirus-related density maps;
Section 2.3 conducts a brief analysis of DeepTracer’s computation time.

2.1 Metrics

To ensure the objectivity of the comparison with the existing Phenix method, we used
the phenix.chain comparison tool [21], which is available at no cost as part of the
Phenix software suite, to evaluate the accuracy of predicted structures. This tool
compares predicted and deposited model protein structures by finding a one-to-one
matching between model and predicted residues based on Ca positions. For a model
residue to match a predicted residue, it cannot be further apart from the other than
3Å. Based on this matching, several metrics determining the prediction accuracy are
calculated. The first metric is the root-mean-square deviation (RMSD), which ex-
presses the average distance between Ca atoms of the matched model and predicted
residues. Second, the coverage of the prediction is expressed using the matching per-
centage. This value represents the proportion of deposited model residues, which have
a matching predicted residue and is calculated by dividing the number of matches by
the total number of model residues. Third, to evaluate how well the amino acid types
were predicted, the chain comparison tool calculates the sequence matching percent-
age, which denotes the percentage of matched model and predicted residues that have
the same amino acid type. Lastly, to get a sense of how well the predicted residues
are connected, the mean length of matched segments is calculated where consecutive
matches are connected both in the deposited model and predicted structure. Besides
the metrics calculated by the phenix.chain comparison tool, we also apply the LGA
(Local-Global Alignment) algorithm, which aligns the predicted and native structures
and computes the GDC (Global Distance Calculation) score. This score measures the
similarity of two structures based on all atoms (including side-chains) on a range of 0
to 100 with 100 being a perfect match [22, 23]. We applied it on the most important
dataset of SARS-CoV-2 density maps due to the high manual and computational e↵ort
involved in the calculation of this metric.

2.2 Coronavirus-Related Predictions

In the search for an e↵ective COVID-19 vaccine and medicine, structural information
about the viral protein are crucial. Therefore, we applied DeepTracer on a set of
coronavirus-related density maps to demonstrate how it can aid researchers in obtaining
such structural information. To create a point of comparison, we applied Phenix on
the same set of density maps. The dataset was aggregated by the EMDataResource
and contained 62 high-resolution density maps, 52 of which have a deposited model
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PDB structure [24]. The dataset and prediction results will be actively updated at
DeepTracer’s website as more and more data is deposited to EMDR. To our knowledge,
this is the first CoV-related 3D cryo-EM modeling test dataset.

The scatter plots in Figure 2 show the evaluation results for the metrics calculated
by Phenix’s chain comparison tool, for the 52 coronavirus-related density maps that
have a deposited model structure. We can see that DeepTracer outperformed Phenix
in all four metrics. The average percentage of matched model residues is 84% for
DeepTracer and 49.8% for Phenix. This means that, on average, around 34% more
residues were correctly predicted by DeepTracer than by Phenix. The RMSD metric
calculated an average value of 1.37Å for Phenix’s structure predictions compared to
0.93Å with DeepTracer. Thus, DeepTracer not only predicts more residues correctly
than Phenix, but the correctly predicted residues were also closer to the model residues
by around 0.4Å. For the sequence matching results, Phenix scored 24.95%, while Deep-
Tracer achieved a sequence matching percentage of 63.08%. For higher-resolution maps
this value is significantly higher, as side-chain information, which DeepTracer uses to
determine the amino acid type of a residue, is usually hardly visible in lower-resolution
maps. Finally, the mean length of consecutively matched predicted and model residues
increased from 8.9 with Phenix to 20 with DeepTracer. Although multiple factors can
influence this value, the results show that DeepTracer can provide predictions that
match the deposited model structures better than those from Phenix.

The SARS-CoV-2 results from Table 1 show a similar pattern as the results of
all coronavirus-related maps. DeepTracer outperformed Phenix in every metric with
the most significant di↵erences in the matching percentage and sequence matching.
Additionally, the DeepTracer achieved a GDC score almost three times that of the
Phenix method.

Figure 3 illustrates a comparison between the deposited model and predicted struc-
tures from DeepTracer and Phenix for the EMD-30178 density map showing a SARS-
CoV-2 polymerase. The deposited model structure consists of 1213 residues connected
in 4 chains. DeepTracer’s prediction comprises 1194 residues in 7 chains whereas Phenix
predicted only 1057 residues split into 33 di↵erent chains. We can see that Phenix’s
prediction is more fragmented with many missing parts where DeepTracer correctly
placed residues. This observation aligns with the metric numbers described above and
shown in Figure 2.

In Figure 4, we can see DeepTracer’s predictions of the EMD-30044 density map,
which captures the human receptor angiotensin-converting enzyme 2 (ACE2) to which
the spike protein of the SARS-CoV-2 virus binds to [11] and the EMD-21374 density
map of a SARS-CoV-2 spike glycoprotein. No model structure has been deposited
to the EMDR for either density map as of the date this paper is announced. This
represents an ideal opportunity to showcase the potential of DeepTracer. Without
any other parameters or manual processing steps, DeepTracer can predict detailed
structural information based on the density maps. Researchers can use the predictions
to develop therapeutics targeting the binding process between the spike protein and
the human enzyme.
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Figure 2: Prediction results for coronavirus-related density maps. Evaluation of prediction

results from DeepTracer (blue) and Phenix (red) for 52 coronavirus-related high-resolution

density maps. The dotted lines represent the trend for each prediction method. Computation

times are shown on a logarithmic scale. Precise data can be found in Table S2.
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Figure 3: Prediction results for SARS-CoV-2 polymerase density map (EMD-30178). Com-

parison of the deposited model (gold) and predicted structures by DeepTracer (blue) and

Phenix (red) for the SARS-CoV-2 polymerase density map (EMD-30178). Upper row shows

structures in ribbon view and lower row in all-atom view. The four red circles mark areas

where DeepTracer prediction is more accurate than Phenix’s prediction.
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Figure 4: Predictions of SARS-CoV-2 density maps, which do not have deposited model

structures in the EMDR. DeepTracer predictions for the EMD-30044 density map (top)

showing a human receptor angiotensin-converting enzyme 2 (ACE2) to which spike proteins

of the SARS-CoV-2 virus bind to and the EMD-21374 depicting a SARS-CoV-2 spike gly-

coprotein. No model structure has been deposited to the EMDataResource for the density

maps as of the date this paper is announced.
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Table 1: Comparison of DeepTracer (DT) and Phenix (P) for SARS-CoV-2 dataset.

EMDB PDB Residues %
Matching

RMSD % Seq ID GDC

DT P DT P DT P DT P
21375 6vsb 2905 84.90 48.60 1.14 1.40 45.90 20.90 17.88 5.39
21452 6vxx 2916 91.40 53.80 0.96 1.18 61.30 40.00 - -
30039 6m17 3072 80.30 53.10 1.72 1.72 69.80 54.60 11.84 8.31
30127 6m71 1077 91.70 54.20 1.02 1.20 58.60 16.60 20.74 8.89
30178 7btf 1227 94.90 81.00 0.83 1.09 85.80 51.80 65.57 23.06
30209 7bv1 1102 87.60 67.00 0.84 1.29 87.50 30.50 55.62 18.15
30210 7bv2 1006 92.40 78.20 0.78 1.08 88.90 53.70 40.90 13.32

Avg. 89.03 62.27 1.04 1.28 71.11 38.30 35.42 12.85

GDC score could not be calculated for the EMD-21452 density map as the LGA web service could
not process the predicted structures due to their size.

2.3 Computation Time

A major bottleneck of the existing prediction methods is their computational com-
plexity, which renders them unable to predict larger protein complexes. Thus, we
conducted an analysis of DeepTracer’s computational time versus Phenix’s. The result
is shown in Figure 2. The predictions were executed on a machine with an Nvidia
GeForce GTX 1080 Ti GPU, 8 processors, and 62 GB of memory. Although a compar-
ison with the Phenix method is not entirely fair as Phenix does not take advantage of
the machine’s GPU, this comparison provides a glimpse of the possibility that Deep-
Tracer can achieve. We observed that Phenix took about 45 minutes to process a map
containing 79 residues, while DeepTracer processed a map containing 2798 residues
in only 26 minutes. Furthermore, the largest cryo-EM map (EMD-9891) that Deep-
Tracer was tested on required around 14 minutes to complete the prediction, whereas
Phenix’s processing time for this map was over 60 hours. DeepTracer is able to exploit
the processing power of the GPU, which is becoming a staple on modern computing
systems, increasing the throughput of scientific discovery. This means that DeepTracer
can predict even very large protein complexes in a matter of hours. As an example, it
traced around 60,000 residues for the EMD-9829 density map within only two hours.
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3 Discussion

In this paper, we present DeepTracer, a fully-automatic tool that predicts the all-atom
structures of protein complexes based on their cryo-EM density maps, using a tailored
deep convolutional neural network and a set of computational methods. We applied
this novel software on a set of coronavirus-related density maps and compared the re-
sults to Phenix, the state of the art cryo-EM prediction method [14]. We found that
DeepTracer correctly predicted, on average, around 34% more residues than Phenix
with an average RMSD improvement of around 0.4Å, from 1.37Å to 0.93Å. We also
applied DeepTracer on a dataset of 476 density maps aggregated by Phenix’s team,
and calculated a coverage of 76.93% compared to 45.65% with Phenix and an average
RMSD value of 1.18Å for DeepTracer and 1.29Å for Phenix. Detailed description and
discussion can be found in the supplementary material. Furthermore, we compared
DeepTracer with Rosetta and MAINMAST on nine density maps and observed sig-
nificant RMSD improvements in comparison with Rosetta from 1.37Å to 0.85Å and
much more complete predictions compared to MAINMAST with a coverage increase
of 57%, from 36.4% to 93.4%. Detailed description and discussion can be found in
the supplementary material. These results represent a significant accuracy boost, re-
sulting in more complete protein structures. Particularly, for large protein complexes,
DeepTracer can complete a prediction much faster than other methods, predicting tens
of thousands of residues with million of atoms within only a few hours. We achieved
the results without any manual pre-processing steps, such as zoning or cutting of the
density map using a deposited model structure. This means we can run predictions
without any prior knowledge about the cryo-EM map, and the users do not need to
tune any parameters in order to obtain an accurate prediction.

As the cryo-EM technology becomes more readily available, the number of cap-
tured density maps, especially larger protein complexes, is rising rapidly. DeepTracer
allows for a greater throughput of cryo-EM as it can automatically and accurately infer
structural information from density maps of macromolecule. This outcome ultimately
accelerates the scientific discovery process, which is particularly urgent today, given
the ongoing coronavirus pandemic. Coronavirus-related density maps are deposited
to the EMDR on a daily basis. Our e�cient and automated method to model these
maps is an important tool for researchers to resolve the structural information of the
virus-related macromolecules.
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4 Methods

DeepTracer performs an array of tasks to predict the structure of a protein. It pre-
processes each density map for the neural network, feeds the density map to the net-
work, and then transforms the output into a protein structure. An overview of the
steps involved in this process is provided in Figure 1. In this section, we focus on
all prediction steps starting with the neural network. A detailed description of the
pre-processing steps can be found in the supplementary material.

4.1 Neural Network Architecture

The convolutional neural network is the central piece of DeepTracer. Its job is to predict
three vital pieces of information: the locations of amino acids, secondary structure
positions, and amino acid types. Here, we take a closer look at the architecture of the
neural network as used by DeepTracer. We start by looking at architectural details of
our tailored U-Net, and then examine how multiple U-Nets are connected to form the
complete network.

The U-Net is a convolutional network architecture developed by researchers at the
University of Freiburg. Its name derives from the U-shape of its architecture. The
U-Net excels in fast and precise image segmentation tasks, particularly for biomedical
applications [25]. For DeepTracer, we modified its original 2D architecture for 3D
density maps. The detailed architecture of the model used by DeepTracer can be seen
at the bottom of Figure 5. The pre-processed cryo-EM density maps are fed to the 643

input layer. The output layer has the same 643 shape with N di↵erent channels. The
number of channels depends hereby on the number of classes the U-Net predicts and
is explained in more detail in the following.

As aforementioned, the deep learning model predicts multiple structural aspects of
a protein, including the atom positions, secondary structure elements, and the amino
acid types. The model also predicts the backbone location of the protein structure to
allow for the post-processing step described in Section 4.3, which connects the predicted
atoms. For each of those predictions we use separate U-Nets which are all combined to
a single model as shown in Figure 5. The input of the model is a 643 volume data grid
from the pre-processed density map. The atoms U-Net is responsible for predicting
whether each voxel contains either a Ca atom, a nitrogen atom, a carbon atom, or no
atom. Therefore, the output of this U-Net has four channels, one for each predicted
class. The backbone U-Net predicts whether each voxel belongs to the backbone,
meaning either carbon alpha, carbon, or nitrogen atom, part of a side chain, or not
a part of the protein, which leads to three di↵erent output channels. The secondary
structure U-Net is responsible for predicting the secondary structure of each voxel.
Therefore, we have a four-channel output for loops, sheets, helices, and no structure.
Additionally, U-Net predicts the amino acid type for every voxel. As 20 di↵erent types
of amino acids have been found in nature, we have 21 output channels, representing
the amino acids plus the case in which the voxel is not part of the protein. Next, we
can take a closer look to the U-Net itself.
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Figure 5: Architecture of tailored convolutional neural network. Top shows overview of

DeepTracer’s neural network architecture consisting of four parallel U-Nets. The gray boxes

show the input and output maps, with their dimensions noted to the left and the number of

channels marked below. Bottom dashed box shows the detailed architecture of each parallel

U-Net. The blue boxes show the output maps of the di↵erent layers where the dimensions

of the maps are depicted on the left and the number of channels is depicted on top.
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4.2 Data Collection

Before training the U-Net model, we have to collect a training dataset. Previous
projects, such as [17], used simulated density maps to train their neural networks.
However, for the network to learn common noise patterns in cryo-EM density maps,
we decided to use experimental maps. The maps were downloaded from the EM-
DataResource website [26] together with their deposited model structures that served
as the ground truth in the training process and were fetched from RCSB Protein Data
Bank [27]. As this work focuses on high resolution maps, we only used density maps
with a resolution of 4Å or better. In total, we downloaded 1,800 experimental density
maps and their corresponding deposited model structures. The maps were randomly
split into training and validation sets with an 80:20 ratio.

To label each density map, we created masks with the same dimensions as the
grid of the density map, providing a label for each voxel. The labels of the masks
were hereby created based on the deposited model structures of each density map. As
shown in Figure 5, the model has four di↵erent outputs, for each of which we created
separate masks. The atoms mask should provide a label for each voxel whether or
not it contains a Ca, C, or N atom. Therefore, we filtered out these atoms from the
protein structure, calculated the corresponding grid indices for their location, and set
that voxel and all directly neighboring voxels to the value representing the atom (1 for
Ca, 2 for C and 3 for N atoms). A visualization of an atom mask can be found in the
supplementary material in Figure S8.

The masks for the backbone, secondary structure, and amino acid type U-Net, were
created in a similar manner. The backbone mask filters all backbone atoms and side-
chain atoms and sets the respective voxels and all surrounding voxels with a distance
of 2 to 1 for backbone and 2 for side chain. To create the secondary structure mask, we
filtered all atoms for helices, sheets, and loops and then set all voxels with a distance
of 4 surrounding the atoms to 1 for loop, 2 for helix, and 3 for sheet. Finally, for the
amino acid type mask, all Ca atoms for each of the 20 amino acid types were filtered
out, and all surrounding voxels within a distance of 3 were set to a value between 1
and 20, where each value corresponds to a specific amino acid type. An example of
all masks can be seen in Figure 6. An example of a raw prediction from the trained
neural network for the EMD-6272 density map can be found in Figure S4 from the
supplementary materials.

4.3 Tracing Backbone

This step uses the output of the U-Net to create an initial protein structure predic-
tion which only contains Ca atoms connected into chains. This is a central post-
processing step, and its accuracy determines to a great extent how well the remaining
post-processing steps will perform. The step can be split into three di↵erent parts.
First, we identify disconnected chains which can be processed independently. Second,
we calculate the x,y, and z coordinates of the Ca atoms. Last, we connect them into
chains by applying a modified travelling salesman algorithm.

Identifying chains prior to any atom prediction has two advantages. First, it im-
proves the performance of the step as each chain will contain a lower number of atoms
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Figure 6: Example masks from the training dataset based on the PDB-6NQ1 deposited

model structure. (A) Deposited model structure. (B) Backbone (Ca, C, and N atoms) in

purple and side chains in green. (C) Atoms mask with labels for Ca, C, and N atoms. (D)

Secondary structure mask with helices in turquoise, loops in pink and sheets in orange. (E)

Amino acid type mask with 20 di↵erent colors.
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that have to be connected by the travelling salesman algorithm. Second, it decreases
the number of incorrect connections between atoms of separate chains as they are pro-
cessed independently. To identify chains, we used the output of the backbone U-Net.
We rounded each voxel of the confidence map to either zero or one and then found
connected areas of voxels with a value of one. Disconnected areas were then identified
as separate chains. An example of the chain identification process visualized for the
EMD-0478 density map can be seen in Figure 7.

Figure 7: Backbone confidence map of the EMD-0478 density map with identified chains

annotated in di↵erent colors.

To find the x, y, and z coordinates of the Ca atoms, we utilized the Ca channel from
the output of the atoms U-Net. A voxel value in this map describes the confidence of
whether this voxel contains a Ca atom. The coordinates were then calculated in two
steps. First, we found the indices of all local maximums in the confidence map within a
distance of 4 voxels that have a minimum value of 0.5. Next, we refined the indices by
calculating the center of mass of all voxels within a distance of 4 surrounding the local
maximums. This is possible as we moved away from integer indices towards floating
point coordinates, giving us the opportunity to express locations more precisely.

The most challenging part of this prediction step is to connect the predicted Ca
atoms into chains correctly. The factorial growth of the number of ways in which the
atoms can be connected makes it infeasible to test all possible solutions even for a low
number of atoms. Therefore, we decided to solve the problem using an optimization
algorithm, particularly, for the travelling salesman problem (TSP). However, our prob-
lem does not match every criterion of the traveling salesman problem. The shortest
possible path is not necessarily the correct one as the ideal distance between Ca atoms
is 3.8Å [28]. Deviations from this value are, however, possible due to prediction inac-
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curacies. Additionally, it is often di�cult to decide only based on the distance which
atoms to connect if there are multiple possibilities with a similar distance. To address
these issues, we developed a custom confidence function instead of solely relying on
the euclidean distance between atoms. The confidence function’s idea is to return a
score between 0 and 1, which expresses how confident we are that these two atoms are
connected. The goal of the TSP algorithm is then to connect the atoms such that the
sum of all confidence scores between connected atoms is maximized.

The calculation of the confidence score between Ca atoms considers two factors: the
Euclidean distance between the atoms, and the average density values of voxels that
lay in between the atoms on the backbone confidence map predicted by the backbone
U-Net. The latter factor is to ensure that connections are made along the backbone
of the structure. The voxels that lay between the atoms are found using Bresenham’s
algorithm [29]. To transform these metric values to a confidence score, we used a
probability density function p(x, µ,�) with a mean m, which represents the ideal metric
value, and a standard deviation s. To make sure that the function returns exactly 1
at the mean, we normalized it by dividing it by the probability density value at the
mean. For the euclidean distance, we used a mean of 3.8 and a standard deviation
of 1. The average backbone confidence has a mean of 1 and a standard deviation
of 0.3. The standard deviations were determined based on several rounds of testing.
Both probability density functions can be seen in Figure S9. In order to combine both
results into a single confidence score, we simply multiply both values. As the TSP
algorithm was designed to minimize distances between paths, we then just subtract
the confidence score from 1 and provide it to the algorithm.

To apply the TSP algorithm, we had to specify a start/end point. However, we
could not know yet at which atom the chain will start and end. Therefore, we added
a new atom that is connected to every other atom with a confidence of 1. This atom
was then specified as the start/end and later on removed from the actual chain. An
example of the application of the TSP on a list of Ca atoms can be seen in Figure 8.

Figure 8: Traced backbone atoms. Predicted Ca atoms for the EMD-4054 density map in

blue before (left) and after (right) the backbone tracing step compared to the deposited

model structure in pink.
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4.4 Amino Acid Sequence Mapping

To realize the side-chain prediction for the protein structure, we first need to know each
amino acid’s type. As discussed in Section 4.1, one output of the deep learning model
is the amino acid type prediction. However, depending on the resolution of the density
map, this prediction is of limited accuracy with around 10% to 50% since some amino
acids have a similar appearance in electron density maps. The goal of this step is to
improve the amino acid type accuracy by aligning intervals of the initially predicted
sequence to the known true amino acid sequence (protein primary structure) and then
updating the types of the predicted amino acids accordingly (see Figure 9).
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Figure 9: Protein sequence alignment algorithm. Interval of the predicted sequence is aligned

with the target sequence using a custom dynamic algorithm. The amino acid confusion

matrix depicts the relative frequency of pairs of predicted and true amino acid type and was

calculated based on a set of test density maps. The numbers shown in the score matrix are

solely for illustrative purposes and do not reflect real data.

Aligning amino acid sequences is a common problem in the field of bioinformatics,
and previous research has led to the development of multiple algorithms [30, 31, 32].
However, these algorithms are usually applied between di↵erent proteins to measure
their sequence similarities, which does not quite fit our use-case. The main problem is
that we require an algorithm that does not treat all matches and mismatches in the
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same way. This stems from the fact that some amino acid types have a more similar
appearance in density maps than others, which leads to some mismatches of the U-Net
being more likely than others. To analyze the relative frequency of a certain match
of predicted and true amino acid type, we applied the U-Net to 200 di↵erent density
maps and compared the predicted amino acid types with the actual types from the
deposited model structures. The heatmap depicting this analysis is shown in Figure
9. As expected, the most frequent matches are those of the same predicted and true
amino acid type. However, we can also see that the U-Net often mixes up some types
(e.g., ALA and SER) and struggles more with other types (e.g., CYS).

To incorporate the U-Net prediction behavior described in the previous section into
the alignment algorithm, we defined a reward function r which returns a score denoting
how valuable a certain match of predicted type p and true type t is. With f(p, t) defined
as the relative frequency of a match, we constructed the reward function shown in
Equation (1). The constant 100 as a multiplier is used to balance the match rewards
with gap penalties described in the next section, and was chosen based on multiple
rounds of testing. The 0.05 constant was chosen as this represents the likelihood of
a correct match if we would chose the amino acid type randomly, since there are 20
di↵erent types of amino acids. The score is zero if the relative frequency equals this
random likelihood.

r(tp, tt) = 100⇥ (f(p, t)� 0.05) (1)

In addition to the match reward, our algorithm also requires a gap penalty. A gap
represents a skipped amino acid in either the predicted or true sequence. This penalty,
however, cannot simply be a static value as not all gaps are the same. For example,
gaps in the beginning of a sequence before any matches were made should not result in
any penalties as we only match short intervals of the predicted sequence, meaning it is
highly unlikely that they align at the first amino acid of the true sequence. Additionally,
the number of consecutive gaps is important. Cases where DeepTracer misses an amino
acid or predicts an extra amino acid appear relatively frequent meaning that a single
gap is not unlikely. However, two missed amino acids in a row is very uncommon, and
three gaps in a row virtually never happens. Therefore, we must define our penalty
function p such that it takes the number of consecutive gaps g into account. Let i be
the index of the amino acid that is not skipped. Then we can define p as shown in
Equation (2). The constants 20 and 30 were chosen based on test runs to create a good
balance with the rewards function.

p(g, i) =

8
><

>:

0, if i = 0

1, if g � 3

20 + (g ⇥ 30), otherwise

(2)

Since we have defined a reward and penalty function, we can find the ideal alignment
by maximizing the sum of all rewards and penalties using a dynamic algorithm. To do
so, we defined a recursive equation which calculates the optimal solution based on an
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index i, which points to the current amino acid in the true sequence, an index j, which
points to the current amino acid in the predicted sequence, and g, which counts the
number of previous consecutive gaps. With t and p as the true and predicted sequence,
we defined this function as shown in Equation (3). To e�ciently find the solution, we
applied the dynamic programming ”bottom up” approach [33].

OPT(i, j, g) =

8
>>>><

>>>>:

0, if i = 0 or j = 0 or g � 3

max{OPT(i� 1, j � 1, 0) + r(ti, pj),

OPT(i, j � 1, g + 1) + p(g, i),

OPT(i� 1, j, g + 1) + p(g, j)}, otherwise

(3)

4.5 Carbon, Nitrogen, and Oxygen Prediction

So far, the predicted residues consist solely of Ca atoms. A complete protein backbone
prediction also consists of carbon, nitrogen, and oxygen atoms. Previous research has
introduced various methods for reconstruction of a protein backbone from a reduced
representation, such as one contains only Ca atoms [34]. Instead of employing these
theoretical methods, we chose to implement our own backbone reconstruction method
to make use of the information captured from the 3D cryo-EM density maps. This
section presents our all-atom backbone reconstruction method. This step is necessary
for the next prediction step in the pipeline, resolving the side-chain atoms.

In addition to Ca prediction, the U-Net also provides information about carbon
and nitrogen atoms in the confidence map predicted by the U-Net. We can use this
information in combination with the previously predicted Ca atom positions to place
the carbon and nitrogen atoms. Between the Ca atoms of two connected amino acids,
there is always a nitrogen and carbon atom. Therefore, we can guess the initial position
of these atoms by calculating the vector from one Ca atom to the other and then placing
the nitrogen and carbon atoms at one third and two third of the distance of this vector.
To refine these initial positions we calculated the center of mass around them in the
carbon and nitrogen confidence maps. In Figure 10a we can see an example for the
initial and refined prediction of the carbon and nitrogen atoms.

After the initial refinement, we can further refine the positions of the carbon and
nitrogen atoms by applying well-known molecular mechanics of a peptide chain. We
made several assumptions about the positions of carbon, nitrogen, oxygen atoms rel-
ative to the Ca atoms as seen in Figure 10b. First, we assumed the planar peptide
geometry in which the Ca atom and carbon atom in the carbonyl group of an amino
acid are in the same plane as the next amino acid’s nitrogen and Ca atom [35]. Second,
we constructed a virtual bond between the neighboring Ca atoms. The angles between
this bond and Ca(i)–C(i) bond (j2) and between this bond and Ca(i+1)–N(i+1) bond
(f2) are 20.9� and 14.9�, respectively [35]. Third, the peptide bonds in a protein are
in the stable trans configuration [36].

To refine the position of the carbon atoms, we relied on the previous refinement.
Let us call the unit vector pointing from Ca(i) to C(i)refined v1, the unit vector pointing
from Ca(i) to C(i) v2, and the unit vector pointing from Ca(i) to Ca(i+1) v3.
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v1 =< a1, a2, a3 >

v2 =< b1, b2, b3 > (4)

v3 =< c1, c2, c3 >

The goal is to solve for the components of v1. Due to the planar peptide geometry,
v1, v2, and v3 exist in the same plane. Thus, their triple product equals to zero.

v1 ⇥ (v2 · v3) = 0 (5)

or

a1(b2c3 � b3c2)� a2(b1c3 � b3c1) + a3(b1c2 � b2c1) = 0 (6)

From this relation and the cross product of v1 and v2, and that of v2, v3, we can
construct a system of equations:

8
><

>:

a1b1 + a2b2 + a3b3 = cos(✓2 � ✓1)

a1c1 + a2c2 + a3c3 = cos(✓2)

a1(b2c3 � b3c2)� a2(b1c3 � b3c1) + a3(b1c2 � b2c1) = 0

(7)

Solving this system of equation yields a1, a2 and a3. Next, the vector v1 is scaled
appropriately to resolve the new position of the carbon atom. The position of the
nitrogen atom is refined in a similar manner.

To predict the location of the oxygen atom in the carbonyl group, we assumed the
coplanar relationship between the oxygen, Ca, carbon, and nitrogen atom [35], and
that the angle A↵CO and AOCN (see Figure 10c) are approximately identical. We then
derived a unit vector pointing in the direction of the C-O bond and scale it with the
C-O bond length to get the position of the oxygen atom.

4.6 Side Chain Prediction

The final step of DeepTracer is the side chain prediction. Its goal is to position the
side chain atoms of each amino acid based on its type and backbone structure. This
is done by using SCWRL4 [37], a tool developed by the Dunbrack lab, which predicts
side chain atoms for structures that have a complete backbone and amino acid types
set. The tool is integrated in the prediction pipeline of DeepTracer and runs fully
automatic as well. It also performs a collision detection to ensure that side-chains of
di↵erent residues do not overlap. In Figure S10 we can see an example of an a-helix
after the side chain prediction step.
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(a)

(b)

(c)

Figure 10: Carbon, nitrogen, and oxygen prediction. (a), Initial positioning of carbon

(yellow) and nitrogen (blue) atoms in between the Ca atoms (gray) on the left and their

initial refined positioning, which fits the U-Net prediction of carbon atoms (green volume)

and nitrogen atoms (blue volume), on the right. (b), The positions of carbon and nitrogen

atoms are refined further by forcing bond angles into their well-known values. The blue lines

represent the bonds from the initial refinement. The red lines represent the bonds from the

final refinement. (c), Position of oxygen atom in the carbonyl group by definition.
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