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Abstract

The entry of the coronavirus SARS-CoV-2 into human cells can be inhibited by the approved drugs camo-
stat and nafamostat. Here we elucidate the molecular mechanism of these drugs by combining experiments
and simulations. In vitro assays confirm the hypothesis that both drugs act by inhibiting the human protein
TMPRSS2. As no experimental structure is available, we provide a model of the TMPRSS2 equilibrium
structure and its fluctuations by relaxing an initial homology structure with extensive 280 microseconds of
all-atom molecular dynamics (MD) and Markov modeling. We describe the binding mode of both drugs with
TMPRSS2 in a Michaelis complex (MC) state preceding the formation of a long-lived covalent inhibitory
state. We find that nafamostat to has a higher MC population, which in turn leads to the more frequent
formation of the covalent complex and thus higher inhibition efficacy, as confirmed in vitro and consistent
with previous virus cell entry assays. Our TMPRSS2-drug structures are made public to guide the design
of more potent and specific inhibitors.

1 Introduction
In December 2019 several cases of unusual and se-
vere pneumonia were reported in the city of Wuhan,
China. These cases were traced back to a new coro-
navirus, SARS-CoV-2 (Severe acute respiratory syn-
drome coronavirus 2); the disease is called COVID-19
[1]. As of July 1st 2020 there are over 10 million con-
firmed COVID-19 cases and more than 500,000 deaths
[2], with both numbers likely to be severe underesti-
mates. Given estimates of the infection mortality rate
of 0.4 to 1.4 % [3–5] the virus has the potential to kill
tens of millions of people unless efficient vaccines or
drugs are available.

As other coronaviruses [6–9], SARS-CoV-2, ex-
ploits host proteins to initiate cell-entry, in particu-
lar TMPRSS2 and ACE2, two membrane-bound pro-
teins expressed in the upper respiratory tract. TM-
PRSS2 contains an extracellular trypsin-like serine-
protease domain that is thought to be essential for
activation of the spike (S) protein on the surface
of SARS-CoV-2 viral particles [10] (Fig. 1a). To-
gether with its activation, the binding of S-protein to
ACE2 [11], triggers the cell-entry process [12]. TM-
PRSS2 is also required by other viruses, including
several strands of influenza [13, 14]. Moreover, epi-
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demiological data of prostate cancer patients under-
going androgen-deprivation therapies, which lowers
TMPRSS2 levels, indicate a lower risk of contracting
the SARS-CoV-2 infection [15]. TMPRSS2 knock-
out mice have no severe phenotype [16], indicating
that inhibiting TMPRSS2 function may not lead to
adverse side-effects. Consequently, TMPRSS2 is a
promising therapeutic targets to stifle or block coro-
navirus infection, while simultaneously maintaining a
low risk of drug resistance development.

Here, we study the structural basis and molecu-
lar mechanism of TMPRSS2 inhibition by camostat
and nafamostat. Both guanidinobenzoate-containing
drugs are approved in Japan and have been demon-
strated to inhibit SARS-CoV-2 cell-entry [10, 17, 18].
We report experimental measurements demonstrat-
ing that these drugs inhibit TMPRSS2 activity by
using our recently established cell-based assays [19],
consistent with in vitro enzymatic TMPRSS2 activity
assays [20].

While TMPRSS2 is an excellent drug target
against SARS-CoV-2 and other viruses, we are, as
yet, lacking an experimental structure. We here go
beyond the previous dependency on homology models
by an extensive 280 microseconds of high-throughput
all-atom molecular dynamics (MD) simulations and
Markov modeling. This approach provides an ensem-
ble of equilibrium structures of the protein-drug com-
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Figure 1: A overview of viral entry. B structures of tested
drugs in native protonation state. C Dose response behav-
ior of TMPRSS2 inhibition by camostat and nafamostat with
computation of IC50 (normalized, background subtracted).

plex and also drug binding kinetics. Nafamostat and
camostat are both covalent inhibitors with an iden-
tical covalent complex, but the greater inhibitory ac-
tivity of nafamostat can be explained by a greater
stability of its Michaelis complex preceding the co-
valent complex. These findings, combined with the
simulation structures that we make publicly available,
provide a keystone for developing more potent and
specific TMPRSS2 inhibitors.

2 Results
Camostat and Nafamostat inhibit the catalytic
activity of TMPRSS2 First we confirm the hy-
pothesis that camostat and nafamostat inhibit cell
entry of SARS-CoV-2 and other coronaviruses by in-
hibiting the TMPRSS2 protein. To this end, we use
our recently reported assay [19] of full-length TM-
PRSS2 activity on the surface of live cells with both
inhibitors (Fig. 1B). Briefly, we transfected the hu-
man cell-line HEK-293T with TMPRSS2. We then
measured the protease activity of the transfected cells
using the fluorogenic peptide substrate BOC-QAR-
AMC, following incubation of the cell with increasing
inhibitor concentrations. Peptide-digestion induced
a minimal increase in fluorescent signal in control
cells without exogenous TMPRSS2 expression (un-
normalized mean enzyme activity = 2.4), while TM-
PRSS2 over-expression resulted in a much faster pep-
tide digestion (normalized mean enzyme activity =
12.8). Therefore, our assay is mostly specific for TM-
PRSS2 [19]. Significantly lower enzyme activity at
higher drug concentrations can thus be attributed to
TMPRSS2 inhibition.

For both camostat and nafamostat, we see a clear
dose-dependent inhibition and estimate their respec-
tive IC50 values to 142 ± 31 nM and 55 ± 7 (Fig. 1C).
Our results are consistent with the finding that both
drugs inhibit cell entry of SARS-CoV-2 and other
coronaviruses, and that nafamostat is the more po-
tent inhibitor [17, 18, 20].

Equilibrium structures of TMPRSS2 in com-
plex with Camostat and Nafamostat We now
set off to investigate the molecular mechanism of TM-
PRSS2 inhibition by camostat and nafamostat. While
no TMPRSS2 crystal structure is available to date, it
has been shown that all-atom MD simulations can
reliably model the equilibrium structures of proteins
when (i) a reasonable model is available as start-
ing structure, and (ii) simulations sample extensively,
such that deficiencies of the starting structure can be
overcome [22–26].

Here, we initialize our simulations with recent ho-
mology models of the TMPRSS2 protease domain
and with camostat/nafamostat docked to them [27].
Trypsins adopt a common fold and share an active-
site charge relay system whose structural require-
ments for catalytic activity are well understood [28],
and we selected protein consistent with these struc-
tural requirements. In particular, we focused on sys-
tems with Asp435 deprotonated and His296 in a neu-
tral form (N� protonated), as well as on the interac-
tions of a charged lysine nearby the catalytic Asp345
(Figs. S1,S2).

In order to overcome artifacts of the initial struc-
tural model and simulate the equilibrium ensemble of
the TMPRSS2-drug complexes, we collected a total
of 100 µs of simulation data for TMPRSS2-camostat
and 180 µs for TMPRSS2-nafamostat. Both simu-
lations sample various drug poses and multiple asso-
ciation / dissociation events. Using Markov model-
ing [29–33] we elucidate the structures of the long-
lived (metastable) states and characterize, protein-
drug binding kinetics and thermodynamics.

We find TMPRSS2 has flexible loops around the
binding site but to maintain stable structural fea-
tures shared by other trypsin-like proteases (Fig. 2A).
These enzymes cleave peptide-like bonds in two cat-
alytic steps, assisted by a conserved catalytic triad
(Asp345, His296, and Ser441 in TMPRSS2). The first
step involves the formation of a covalent acyl-enzyme
intermediate between the substrate and Ser441 [28].
During this step His296 serves as a general base to de-
protonate the nucleophilic Ser441, and subsequently
as a general acid to protonate the leaving group of the
substrate. The second step involves the hydrolysis of
the acyl-enzyme intermediate, releasing the cleaved
substrate and restoring the active form of the enzyme.

Along these two steps, the so called “oxyanion

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.21.214098doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214098
http://creativecommons.org/licenses/by/4.0/


B

A

D435
S1 pocket

Oxyanion
hole

hydrophobic
patch

catalytic
triad

H296

D345

S441

V280

D

C

F

Lysine
head

Guanidinium
head

camostat

180°

Guanidinium
head

nafamostat

Amidinium
head

nafamostat

Amidinium
head

G

E299

E

nafamostat

camostat

Figure 2: TMPRSS2 structure and Michaelis complex with
camostat and nafamostat. A: Overview of catalytic domain
of TMPRSS2 simulation structures and detailed view of active
site, catalyic triad shown in black. B: substrate processing
shown at example of trypsin (PDB ID 4Y0Y [21]). C: camo-
stat associated to TMPRSS2; guanidinium head is interact-
ing with D435 in S1 pocket. D+E: nafamostat associated to
TMPRSS2 with aminidinium (D) or guanidinium (E) heads
interacting with D435. F+G: Markov model simulations of
minimal camostat (F) and nafamostat (G) distance to D435
(S1 pocket binding, blue) and reactivity coordinate (mean of
drug ester carbon to catalytic serine oxygen and catalytic serine
hydrogen to catalytic histidine nitrogen). Reactivity, i.e. when
both reactive distances are within range, is indicated with red
markers.

hole”, formed by the backbone NHs of Gly439 and
Ser441, helps to activate and stabilize the carbonyl
of the scissile bond. Another important structural
feature is the S1 pocket, which contains a well con-
served aspartate (Asp435) that is essential for sub-
strate binding and recognition. At the opposite site
of the S1 pocket, a loop containing a hydrophobic
patch delimits the binding region of substrates within
enzymatic active site. All these structural elements,
known to play crucial roles in the function of serine
proteases [28], are generally stable and preserved in
our equilibrium structures.

Structural basis of TMPRSS2-inhibition by
Camostat and Nafamostat Drugs with a guani-
dinobenzoate moiety can inhibit trypsins by mimick-
ing their natural substrates (Fig. 2B). Indeed, the
ester group, resembling a peptide bond, can react
with the catalytic serine with rates that are orders of
magnitude faster [34], forming the acyl-enzyme inter-
mediate. In contrast to peptide catalysis, the drug’s
guanidinobenzoyl group stays covalently linked to the
catalytic serine with a small off-rate, rendering it an
effective chemical inhibitor [35].

In our MD simulations, we sample different con-
formations of the complex formed by the enzyme and
each of the drugs, and we can thus elucidate how they
bind and how specificity (or lack thereof) arises before
the catalytic step. They primarily mimic interactions
made between trypsins and their substrates, with ly-
sine heads interacting with a conserved asparatate in
the S1 pocket (Asp435, Fig. 2B).

A fraction of the bound-state structures resem-
bles a reactive Michaelis complex (MC), with the
guanidinium head interacting with Asp435 (for both
camostat and nafamostat) as well as a flipped ori-
entation where the amidinium head of nafamostat,
also charged, docks into the S1 pocket and inter-
acts with Asp435 (Fig. 2C,D,E). Interestingly, in this
inverted orientation of nafamostat, the guanidinium
head mainly interacts with Glu299, with the drug
reactive center slightly displaced from the oxyanion
hole, while the other orientation keeps the amidinium
head mainly nearby Val280, with the ester center
well positioned for the reaction. This observation is
in agreement with several crystal structures of acyl-
enzyme intermediates between different trypsins and
guanidinobenzoyl molecules bound to the S1 pocket
(e.g. PDBs 2AH4 [36], 3DFL [37], 1GBT [38]). There
are also “inverse substrates” known to react with rates
comparable to the ones of normal esters, suggesting
that the inverted nafamostat orientation may also be
reactive [28].

Kinetic mechanism of TMPRSS2-inhibition by
Camostat and Nafamostat Finally, we investi-
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Figure 3: Binding rate model of camostat (top) and nafamostat (bottom). Inhibition process is depicted from left to right. Single
representative structures are shown for the sake of readability, we however note that states show flexibility. Rates and populations
predicted by our model are annotated to reaction arrows and states. Covalent inhibition by nafamostat binding group depicted at
example of prostatin (PDB 3DFL [37]).

gate the molecular basis for the greater inhibition by
nafamostat and formulate starting points for design-
ing new and more efficient covalent TMPRSS2 in-
hibitors following these leads.

To illustrate the reversible binding of camostat
and nafamostat to TMPRSS2 we used our Markov
models to simulate long-time scale trajectories of 50
µs (Fig. 2F,G). We see a clear correlation between
the formation of a tight interaction to Asp435 in the
S1 pocket to the inhibitor, and the ester group of the
inhibitors into close contact with the catalytic serine,
thereby forming a reactive complex. In other words,
the binding of reactive drugs in the S1 pocket favors
the interactions that lead to a catalytically competent
MC.

We estimate the dissociation constant for the MC,
i.e. the ratio of dissociated state and MC popu-
lation, to be 5.95mm (5.64, 78.3) for camostat and
6.07mm (6.033, 28.6) for nafamostat (67% confidence
intervals). Comparing to an experimental estimate of
the overall dissociation constant of Ki = 11.5 µm for
nafamostat to bovine pancreatic trypsin [35], this in-
dicates that the major source of inhibition is not the
non-covalent MC, but rather the longer-lived cova-
lent acyl-enzyme complex. However, as camostat and
nafamostat yield identical acyl-enzyme complexes,
their differences can only arise from either (1) the for-
mation or population of their MCs, or (2) differences
in the catalytic rate kcat of acylation.

Interestingly, we observe a three-fold higher pop-
ulation of the of the MC with nafamostat compared
to camostat, as well as a significantly higher on-rate
(Fig. 3). A simple three-state kinetic model of dis-
sociated state, MC and covalent complex shows that

the overall association constant (Ka, ratio of inhibited
versus apo protein states) directly scales with the as-
sociation constant of the MC (KM

a , ratio of MC versus
dissociated states) by a constant factor (Methods):

Ka = KM
a

kcat + kdis
kdis

(1)

Simply speaking, this indicates that nafamostat is a
better inhibitor because it is more often found the
reactive MC state, and is therefore more likely to be
attacked by the catalytic serine oxygen and enter the
long-lived acyl-enzyme inhibitor complex.

Moreover, we note that the kcat of acylation of
these drugs may depend on their leaving group pKa’s.
Indeed, leaving groups with a low pKa will require
less assistance from acid catalysis and will be eas-
ily displaced by the nucleophilic serine, favoring the
formation of the acyl-enzyme intermediate. We ex-
pect the leaving group of nafamostat to have a lower
pKa than the one of camostat, following the values of
similar molecules such as naphtol (9.57 [39]) and 4-
methylphenol (10.26 [40]), respectively. This suggests
that the kcat of acylation will be also slightly faster
for nafamostat, further contributing to its superior
inhibition of TMPRSS2.

3 Discussion
Camostat and nafamostat are promising drug candi-
dates for a COVID-19 drug treatment strategy. Here
we have combined cell-based assays, extensive molec-
ular simulations, and Markov modeling to unravel the
molecular action principle of these drugs and provide
data that may help to improve them further.
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Our binding assays provide evidence that both in-
hibitors directly act on TMPRSS2 and that nafamo-
stat is more potent compared to camostat, and this
qualitative difference is in agreement with comple-
mentary in vitro assays on purified protein [20] cell-
entry assays [17, 18]. We note that the absolute IC50s
values differ between these three assay types, reflect-
ing differences in experimental conditions and which
function is being inhibited and measured.

While no crystallographic structure of TMPRSS2
is available, we provide extensive 280 microseconds
of all-atom MD simulations starting from a homol-
ogy model that generate stable equilibrium struc-
ture ensembles of the two protein-drug complexes.
These simulations sample multiple association / dis-
sociation events and various drug poses in the pro-
tein active site. Our analyses show that the non-
covalent complexes of camostat and nafamostat with
TMPRSS2 are relatively short-lived, suggesting that
the main inhibitory effect is due to the formation of
the long-lived covalent acyl-enzyme complex between
the drug’s guanidinobenzoyl moiety and the catalytic
serine of TMPRSS2.

Although the MC state is not the main cause of
inhibition, its population directly translates into the
potency of the inhibitor as higher MC population cor-
responds to a higher catalytic rate and therefore a
higher overall population the protein spends locked
down in the covalent inhibitory complex. Consis-
tently with the higher potency of nafamostat, it is
found to have a threefold more stable MC compared
to camostat. A second contribution may be the pKa
of drug leaving groups, affecting the rate of enzyme
acylation.

Our detailed models of the thermodynamic and ki-
netics of inhibitor binding highlight the bound state’s
heterogeneity, with both drugs adopting multiple dis-
tinct poses. We note the importance of residue
Asp435 in the conserved S1-pocket, which stabi-
lizes the MC state and helps to orient the reactive
molecules in a conformation that is suited for cataly-
sis. Nafamostat has two groups that can potentially
bind into the S1 pocket, whereas camostat has only
one. However, we find that the population of S1
associated states are similar between camostat and
nafamostat, suggesting that non-covalent inhibition
is likely a minor contribution to the overall inhibition
of TMPRSS2.

We conclude that the design of future TMPRSS2
inhibitors with increased potency and specificity
should incorporate the following points

First, stabilizing the non-covalent complex with
the TMPRSS2 active site is beneficial for both, cova-
lent and non-covalent inhibitors. As S1 pocket bind-
ing is a major contribution to the stability of the non-
covalent complex, effective drugs may contain hydro-

gen bond donors and positively charged moieties that
could interact principally with Asp435, but also with
different backbone carbonyls of the loops that com-
pose the cavity (e.g. from Trp461 to Gly464).

Second, for covalent inhibitors, we must consider
that the catalytic serine is at a distance of around
1.3 nm from Asp435. Thus the reactive center of an
effective drug and its S1-interacting moieties should
be within that distance. We further suggest that a
drug should be size-compatible to the hydrophobic
patch on the S1 distal site (Fig. 2A). We speculate
that drugs with a large end to end distance and high
rigidity may not fit well in the described TMPRSS2
scaffold, and in particular, might be significantly less
reactive.

Third, optimizing the pKa of the drug’s leaving
group might be beneficial for improving covalent TM-
PRSS2 inhibitors. The first step of the reaction would
be faster, and the acetyl-enzyme intermediate would
accumulate. We note that the deacetylation off-rate
must be very low, ideally on the order of magnitude
of guanidinobenzoate moiety containing drugs.

Finally, we make our simulated equilibrium struc-
tures of TMPRSS2 in complex with camostat and
nafamostat available, hoping they will be useful to
guide future drug discovery efforts.
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Software and data availability
Structural ensembles of camostat and nafamostat
binding poses are published online at https://
github.com/noegroup/tmprss2_structures.

Materials and Methods
TMPRSS2 activity assays TMPRSS2 activity
assay was described previously [19]. Briefly, we trans-
fected HEK-293T with a PLX304 plasmid contain-
ing the open reading frame (ORF) sequence of TM-
PRSS2 which encodes for the full length protein (492
amino acids). Control experiments are conducted
with PLX304 plasmids.
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Eighteen hours later, we replaced the media to
either PBS alone or PBS in the presence of varying
concentrations of candidate inhibitors camostat and
nafamostat. Fifteen minutes later, we added the fluo-
rogenic substrate BOC-QAR-AMC to the wells to in-
duce a measurable signal of enzyme activity. We mea-
sured the fluorescent signal immediately after adding
the substrate, in 15 minutes intervals for a total time
of 150 minutes [19]. A baseline proteolytic activity
of control cells was measured; we hypothesize that
this is because of proteolytic cleavage of the substrate
by endogenous transmembrane proteases. However,
the TMPRSS2 overexpression cells have significantly
increased proteolytic activity compared with control
cells [19].

To validate the exogenous expression of TM-
PRSS2, we performed western-blot analysis of cell
lysates from TMPRSS2 overexpressing cells and con-
trol cells. A 60kDa band was observed in TMPRSS2
overexpressing cells but not in control cells, which
is the expected molecular weight of TMPRSS2 pro-
tein after post transcriptional modifications, indicat-
ing that the target protein has been successfully ex-
pressed.

IC50 estimation We used a generalized log-
logistic dose-response model

f(x, (b, c, d, e)) = c+
d� c

1 + eb(ln(x)�ln(e))

with the concentration x, c and d representing the
lower and upper limits, b steepness of the curve, and
e to estimate IC50 values [41].

Upper and lower limits were set to the means com-
puted from control experiments with no drug (upper
limit) and PLX plasmid (no TMPRSS2; background
noise). We used scipy’s [42] curve fitting algorithms
to extract the IC50 with error estimates.

Molecular dynamics simulations MD simula-
tions were run with OpenMM 7.4.0 [43] using the
CHARMM 36 force field (2019 version) [44]. Camo-
stat and nafamostat structures were taken from Pub-
Chem [45] with PubChem CIDs 4413 (nafamostat)
and 2536 (camostat), respectively, and modeled with
the CHARMM general force field (CGenFF v. 4.3)
[46]. We generated our MD setups with CharmmGUI
[47]. We initiate a simulation box of side length 7.5
nm with a NaCl ion concentration of 0.1 mol/l at
neutral charge and the TIP3P water model [48]. The
setups contain 12038 (camostat) and 12039 (nafamo-
stat) water molecules.

We run simulations in the NPT ensemble and keep
the temperature at 310 K (physiological temperature)
and the pressure at 1 bar. We use a Langevin integra-
tor with 5 fs integration step and heavy hydrogen ap-
proximation (4 amu). PME electrostatics, rigid water

molecules, and a 1 nm cutoff for non-bonded interac-
tions are used. Simulation times vary between 100
and 500 ns and accumulate to 100 µs (camostat) and
180 µs (nafamostat), respectively. Structures were
visualized using VMD [49].

Due to the lack of a crystal structure for TM-
PRSS2, MD simulations were seeded from a homol-
ogy model. It is taken from Ref. [27], model 3W94 is
chosen based on precursive MD analyses that showed
that 3W94 has the most stable catalytic triad config-
uration (Figs. S1,S2). The construct includes amino
acids 256 to 491 of the full sequence, correspond-
ing to the catalytic chain except for a C-terminal
Glycine missing due to homology modeling against
a shorter sequence. MD simulations are seeded as fol-
lows: Equilibrated docking poses (highest scorers of
Ref. [27]) of the ligand were generated in a precur-
sive run using another homology model. We note that
the used camostat docking pose resembles the one de-
scribed by [50]. This data set was equilibrated with
local energy minimization, 100 ps simulations with
2 fs time steps in NVT and NPT ensemble subse-
quently. Frames are selected based on a preliminary
metastability analysis, protein conformation is con-
straint to 3W94 homology model using a constraint
force minimizing minRMSD. Production run MD sim-
ulations are started from these poses, i.e. from the
same protein configuration and with 77 (nafamostat)
and 60 (camostat) ligand docking poses, respectively.
To ensure convergence of sampling statistics, we ran
multiple adaptive runs of simulations, seeding new
simulations with coordinates associated with sparsely
sampled states.

Markov modeling We model the binding and un-
binding rates in a two step procedure using Markov
state type models [29–32, 51–53]. First, we describe
drug unbound and associated states using a hidden
Markov model (HMM) [54]. Second, we define a re-
active state by using distance cutoffs.

In detail, in the first stage we define distance
features between drug guanidinium group and TM-
PRSS2 Asp435 (minimal distance), drug amidinium
group and TMPRSS2 Asp435 (minimal distance,
nafamostat only). We further use a binary "reac-
tive" distance feature defined by drug ester carbon
to catalytic Ser441-OG, and catalytic serine (HG) to
catalytic histidine (NE2) and a threshold of 0.35 nm.
If both last mentioned distances are below the thresh-
old, both nucleophilic attack of the serine-OG to the
drug ester group and proton transfer from serine to
histidin are possible, thus defining the reactive state.

We discretize this space into 240 (camostat) and
490 (nafamostat) states using regular spatial clus-
tering and use an HMM at lag time 5 ns with 5
(camostat) or 8 (nafamostat) hidden states. Nafamo-
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stat yields two S1 associated states encoding for both
binding directions, camostat a single one, that are
defined by being at salt bridge distance to Asp435.
We note no significant correlation between the hid-
den states and the reactive state, i.e. reactivity is not
metastable. The described HMMs are used to gen-
erate the time series presented in Fig. 2. Reactivity
according to this basic HMM does not necessitate S1
pocket binding.

In the second stage, we bisect the HMM bind-
ing poses into reactive and non-reactive by combin-
ing HMM Viterbi paths [55] and the reactive state
trajectories to one single discrete trajectory consist-
ing of 3 states. We define the S1 associated states
by filtering the Viterbi paths of the HMM according
to S1-association. We use the reactivity trajectories
to further bisect the S1 associated state into reac-
tive and non-reactive states, yielding a three state
discretization of the drug binding mode. Note that
the S1-reactive state is a subset of the reactive state
in the plain HMM model (stage 1).

We estimate a maximum likelihood Markov state
model (MSM) from the stage 2 trajectories. We
report the stationary probability vector as well as
transition rates. The latter are approximated us-
ing the matrix logarithm approximation of scipy [42]
to compute the transition rate matrix R from the
transition probability matrix T using the definition
T = exp(R⌧) with the lag time ⌧ . We found that all
reported quantities are converged with respect to the
lag time above ⌧ = 500ns which was thus chosen as
the model lag time. Errors are estimated by boot-
strapping validation using a random subset of 80%
of the data (without replacement). All MSM/HMM
analyses were conducted using the PyEMMA 2 soft-
ware [56].

Kinetic model Simplifying the binding kinetics
into a three-state model describing the binding to /
dissociation from the Michaelis complex (ligand con-
centration c and rates kon, ko↵), catalytic rate of en-
tering the covalent complex (kcat) and dissociation to
the apo state (kdis), the kinetics are described by the
rate matrix:

K =

2

4
�c kon c kon 0
ko↵ �ko↵ � kcat kcat
kdis 0 �kdis

3

5 (2)

with the (unnormalized) equilibrium distribution

⇡ =

2

4
kdis(koff+kcat)

c kon+kcat

kdis/kcat
1

3

5 (3)

The overall dissociation constant is then:

Kd =
⇡1

⇡2 + ⇡3
=

kdis(ko↵ + kcat)

kon(kdis + kcat)
(4)

The non-covalent dissociation constant of the
Michaelis complex:

KM
d =

⇡1

⇡2
=

ko↵
c kon + kcat

(5)

The dissociation constant scales as:

Kd = KM
d

kdis
kcat + kdis

(6)

And thus the association constant scales with the sta-
bility of the Michaelis complex by a constant factor
given by the rates of chemical catalysis and dissocia-
tion:

Ka = KM
a

kcat + kdis
kdis

(7)
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X-ray structures

5TJX model 6O1G model5CE1 model 4NA8 model

3W94 model 2ANY model 1O5E model

Figure S1: Selection of homology model from Ref. 27 by specific interactions around the catalytic triad. Comparison of TMPRSS2
models (black) and four serine protease structures that contain a lysine residue next to the catalytic aspartate (cyan, PDBs 1EKB,
1FUJ, 3W94 and 4DGJ). Note that the four crystal structures show a very conserved and rigid environment around the catalytic
aspartate, with just few fluctuations of the lysine head (K99 in 1EKB). The structural models of TMPRSS2, instead, show a wide

variability of conformations of both the backbone and sidechains, with 3W94 being the most conservative model.

Figure S2: Relevant distances of the catalytic triad for different homology models from Ref. [1] as computed from roughly 30µs
of MD data for the drug free protein.
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