
1 
 

Bioactivity descriptors for uncharacterized compounds 
Martino Bertoni1,*, Miquel Duran-Frigola1,*,†, Pau Badia-i-Mompel1,*, Modesto Orozco-Ruiz1, Oriol 

Guitart-Pla1 and Patrick Aloy1,2,† 

 

1. Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in 

Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 

Barcelona, Catalonia, Spain 

2. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain 

 

* These authors contributed equally to this work 

† Corresponding authors: miquel.duran@irbbarcelona.org; patrick.aloy@irbbarcelona.org 

 

Keywords: Bioactivity signatures, signature-activity relationships (SigAR) models, chemical 

space, chemoinformatics. 

Abstract 

Chemical descriptors encode the physicochemical and structural properties of small molecules, 

and they are at the core of chemoinformatics. The broad release of bioactivity data has 

prompted enriched representations of compounds, reaching beyond chemical structures and 

capturing their known biological properties. Unfortunately, ‘bioactivity descriptors’ are not 

available for most small molecules, which limits their applicability to a few thousand well 

characterized compounds. Here we present a collection of deep neural networks able to infer 

bioactivity signatures for any compound of interest, even when little or no experimental 

information is available for them. Our ‘signaturizers’ relate to bioactivities of 25 different types 

(including target profiles, cellular response and clinical outcomes) and can be used as drop-in 

replacements for chemical descriptors in day-to-day chemoinformatics tasks. Indeed, we 

illustrate how inferred bioactivity signatures are useful to navigate the chemical space in a 

biologically relevant manner, and unveil higher-order organization in drugs and natural product 

collections. Moreover, we implement a battery of signature-activity relationship (SigAR) models 

and show a substantial improvement in performance, with respect to chemistry-based 

classifiers, across a series of biophysics and physiology activity prediction benchmarks. 
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Introduction 

Most of the chemical space remains uncharted and identifying its regions of biological relevance 

is key to medicinal chemistry and chemical biology1, 2. To explore and catalogue this vast space, 

scientists have invented a variety of chemical descriptors, which encode physicochemical and 

structural properties of small molecules. These encodings are at the core of chemoinformatics 

and are fundamental in compound similarity searches, clustering and, when applied to 

computational drug discovery (CDD), structure optimization and target prediction.   

The corpus of bioactivity records available suggests that other numerical representations of 

molecules are possible, reaching beyond chemical structures and capturing their known 

biological properties. Indeed, it has been shown that an enriched representation of molecules 

can be achieved through the use of ‘bioactivity signatures’3. Bioactivity signatures are multi-

dimensional vectors that capture the biological traits of the molecule (for example, its target 

profile) in a format that is akin to the structural descriptors or fingerprints used in the field of 

chemoinformatics. Currently, public databases contain experimentally determined bioactivity 

data for about a million molecules, which represent only a small percentage of commercially 

available compounds4 and a negligible fraction of synthetically accessible chemical space5. In 

practical terms, this means bioactivity signatures cannot be derived for most compounds, and 

CDD methods are limited to using chemical information alone as a primary input, thereby 

hindering their performance and not fully exploiting the bioactivity knowledge produced over the 

years by the scientific community. 

Recently, we integrated the major chemogenomics and drug databases in a single resource 

named the Chemical Checker (CC), which is the largest collection of small molecule bioactivity 

signatures available to date6. In the CC, bioactivity signatures are organized by data type 

(ligand-receptor binding, cell sensitivity profiles, toxicology, etc.), following a chemistry-to-clinics 

rationale that facilitates the selection of relevant signature classes at each step of the drug 

discovery pipeline. In essence, the CC is an alternative representation of the small-molecule 

knowledge deposited in the public domain and, as such, it is also limited by the availability of 

experimental data and the coverage of its source databases (e.g. ChEMBL7 or DrugBank8). 

Thus, the CC is most useful when a substantial amount of bioactivity information is available for 

the molecules and remains of limited value for poorly characterized compounds9. In the current 

study, we present a methodology to infer CC bioactivity signatures for any compound of interest, 

based on the observation that the different bioactivity spaces are not completely independent, 
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and thus similarities of a given bioactivity type (e.g. targets) can be transferred to other data 

types (e.g. therapeutic indications). Overall, we make bioactivity signatures available for any 

compound of interest, assigning confidence to our predictions and illustrating how they can be 

used to navigate the chemical space in an efficient, biologically relevant manner. Moreover, we 

explore their added value through the implementation of a battery of signature-activity 

relationship (SigAR) models to predict biophysical and physiological properties of molecules.  

Results and Discussion 

The current version of the CC is organized in 5 levels of complexity (A: Chemistry, B: Targets, 

C: Networks, D: Cells and E: Clinics), each of which is divided into 5 sublevels (1-5). In total, the 

CC is composed of 25 spaces capturing the 2D/3D structures of the molecules, targets and 

metabolic genes, network properties of the targets, cell response profiles, drug indications and 

side effects, among others (Figure 1a). In the CC, each molecule is annotated with multiple n-

dimensional vectors (i.e. bioactivity signatures) corresponding to the spaces where experimental 

information is available. As a result, chemistry (A) signatures are widely available (~106 

compounds), whereas cell-based assays (D) cover about 30,000 molecules and clinical (E) 

signatures are known for only a few thousand drugs (Figure 1b). We thus sought to infer 

missing signatures for any compound in the CC, based on the observation that the different 

bioactivity spaces are not completely independent and can be correlated. 

Bioactivity signatures must be amenable to similarity calculations, ideally by conventional 

metrics such as cosine or Euclidean distances, so that short distances between molecule 

signatures reflect a similar biological behavior. Therefore, inference of bioactivity signatures can 

be posed as a ‘metric learning’ problem where observed compound-compound similarities of a 

given kind are correlated to the full repertoire of CC signatures, so that similarity measures are 

possible for any compound of interest, including those that are not annotated with experimental 

data. In practice, for each CC space (Si), we tackle the metric learning problem with a so-called 

Siamese neural network (SNN), having as input a stacked array of CC signatures available for 

the compound (belonging to any of the A1-E5 layers, S1-S25) and as output an n-dimensional 

embedding optimized to discern between similar and dissimilar molecules in Si. More 

specifically, we feed the SNN with triplets of molecules (an ‘anchor’ molecule, one that is similar 

to the anchor (‘positive’) and one that is not (‘negative’)), and we ask the SNN to correctly 

classify this pattern with a distance measurement performed in the embedding space (Figure 1a 

and S1). We trained 25 such SNNs, corresponding to the 25 spaces available in the CC. We 
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used 107 molecule triplets and chose an SNN embedding dimension of 128 for all CC spaces, 

scaling it to the norm so as to unify the distance magnitude across SNNs (see online Methods 

for details). As a result of this procedure, we obtained 25 SNN ‘signaturizers’ (S1-25), each of 

them devoted to one of the CC spaces (Si). A signaturizer takes as input the subset of CC 

signatures available for a molecule and produces a 128D signature that, in principle, captures 

the similarity profile of the molecule in the Si CC space, where experimental information may not 

be available for the compound. 

To handle the acute incompleteness of experimental signatures accessible for training the 

SNNs (Figure 1b), we devised a signature-dropout sampling scheme that simulates a realistic 

prediction scenario where, depending on the CC space of interest (Si), signatures from certain 

spaces will be available while others may not. For example, in the CC, biological pathway 

signatures (C3) are directly derived from binding signatures (B4), thus implying that, in a real B4 

prediction case, C3 will never serve as a covariate. In practice, signature sampling probabilities 

for each CC space Si were determined from the coverage of S1-S25 signatures of molecules 

lacking an experimental Si signature. Overall, chemical information (A1-5), as well as signatures 

from large chemogenomics databases (e.g. B4-5), could be used throughout (Figure S2). 

Signatures related to the subset of drug molecules (e.g. MoA: B1, indications: E2, side-effects: 

E3, etc.) were mutually inclusive; however, they were more frequently dropped out in order to 

extend the applicability of signaturizers beyond the relatively narrow space of known drugs. 

We evaluated the performance of a signaturizer Si in an 80:20 train-test split both (a) as its 

ability to classify similar and dissimilar compound pairs within the triplets (Figures 1c and S3), 

and (b) as the correlation observed between each ‘predicted’ signature (i.e. obtained without 

using Si as part of the input (S1-S25)) and, correspondingly, a ‘truth’ signature produced using 

only Si (Figures 1c and S3). In the online Methods section, we further explain these two metrics, 

as well as the splitting and signature-dropout methods that are key to obtain valid performance 

estimates. In general, as expected, ‘chemistry’ (A) signaturizers performed almost perfect 

(Figure 1c), although these are of little added value since chemical information is always 

available for compounds. At the ‘targets’ levels (B), the performance of the signaturizers was 

high for large-scale binding data B4), while accuracy was variable at deeper annotation levels 

where the number of compounds available for training was smaller (e.g. MoA (B1) or for drug-

metabolizing enzymes (B2)) (Figure 1d). Performance at the ‘networks’ level (C) was high, as 

this level is directly informed by the underlying ‘targets’ (B) level. Not surprisingly, the most 

challenging models were those related to cell-based (D) and clinical (E) data, probably due to 
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the inherent complexity of these data with respect to the number of annotated molecules. On 

average, the accuracy of cell-based signaturizers was only modest (~0.7) and true-vs-predicted 

correlation of clinical signatures such as therapeutic classes (ATC; E1) was variable across 

molecules. The performance of SNNs varied depending on the CC space and molecule of 

interest, with signatures being well predicted in all spaces. Figure 1e-f illustrates this 

observation for three drugs (namely perphenazine (1), acebutolol (2) and perhexiline (3)), which 

have predicted signatures of variable quality in the transcriptional (D1) and side-effects (E3) 

spaces. Overall, bioactivity maps were well covered by test-set molecules, indicating that our 

SNNs are unbiased and able to generate predictions that are spread throughout the complete 

bioactivity landscape (Figures 1g and S4). 

Large-scale inference of bioactivity signatures 

Having trained and validated the signaturizers, we massively inferred missing signatures for the 

~800,000 molecules available in the CC, obtaining a complete set of 25x128-dimensional 

signatures for each molecule (chemicalchecker.org/downloads). To explore the reliability of the 

inferred signatures, we assigned an ‘applicability’ score (α) to predictions based on the 

following: (a) the proximity of a predicted signature to true (experimental) signatures available in 

the training set; (b) the robustness of the SNN output to a test-time data dropout10; and (c) the 

accuracy expected a priori based on the experimental CC datasets available for the molecule 

(Figure 2a). A deeper explanation of this score can be found in the online Methods, along with 

Figure S5 showing the relative contribution of a, b and c factors to the value of α. In a similarity 

search exercise, we found that α scores ≥ 0.5 retrieved a significant number of true hits (odds-

ratios > 8, P-values < 1.7·10-21 (Figure S6)). This observation shows that, even for modest-

quality CC spaces such as D1 (transcription), the number of signatures available can be 

substantially increased by our method (in this case from 11,638 molecules covered in the 

experimental version of the CC to 69,532 (498% increase) when SNN predictions are included 

(Figure S7)). Moreover, low- and high-α areas of the signature landscape can be easily 

delimited, indicating the presence of reliable regions in the prediction space (Figure 2b). 

The 5x5 organization of the CC (A1-E5) was designed to capture distinct aspects of the 

chemistry and biology of compounds, and a systematic assessment of the original 

(experimental) resource revealed partial correlations between the 25 data types6. The original 

pattern of correlations was preserved among inferred signatures, especially for the high-α ones 

(Figures 2c and S8), thereby suggesting that the data integration performed by the SNNs 
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conserves the genuine information contained within each data type, and implying that 

signatures can be stacked to provide non-redundant, information-rich representations of the 

molecules. For example, the 25 CC spaces can be concatenated horizontally to obtain a global 

signature (GSig) of 3,200 dimensions (25x128D), encapsulating in a unique signature all the 

bioactivities assigned to a molecule (Figure 2d). Similarity measures performed in the GSig 

space up-rank pairs of compounds with the same MoA or ATC code (Figure 2e) and have an 

overall correlation with the rest of experimental data available from the CC, capturing not only 

chemical similarities between molecules but also common target profiles, clinical characteristics 

and, to a lesser degree, cell-based assay read-outs (Figure 2f). 

Indeed, as shown in Figure 2g, a 2D projection of GSigs reveals clusters of molecules with 

specific biological traits. Of note, some of the clusters group molecules with similar chemistries 

(e.g. ESR1,2 ligands), while others correspond to sets of diverse compounds (e.g. MAPK8,9,10 

inhibitors). Most of the clusters have a mixed composition, containing subgroups of chemically 

related compounds while also including distinct molecules, as is the case for the HSP90AA1-

associated cluster, of which compounds 4 and 5 are good representatives (Figure 2h). 

Bioactivity-guided navigation of the chemical space 

Taken together, CC signatures offer a novel bioactivity-driven means to organize chemical 

space, with the potential to unveil higher levels of organization that may not be apparent in the 

light of chemical information alone. In Figure 3a, we analyze a diverse set of over 30 compound 

collections, ranging from species-specific metabolomes to purchasable building-block (BB) 

libraries. To expose the regions of the global bioactivity space covered by these collections, we 

first performed a large-scale GSig-clustering on the full CC. We then calculated GSigs for each 

compound in each library and mapped them to the CC clusters, thereby obtaining a specific 

cluster occupancy vector for each collection. Finally, we used these vectors to hierarchically 

group all the compound libraries. As can be seen, drug-related libraries (e.g. IUPHAR and IDG) 

had similar occupancy vectors to the reference CC library, meaning they were evenly distributed 

in the bioactivity space, which is expected given the over-representation of medicinal chemistry 

in our resource. Libraries containing BBs from different providers (ChemDiv, Sigma Aldrich and 

ChemBridge) were grouped together, although with an uneven representativity of the CC 

bioactivity space. Similar trends were observed for species-specific metabolomes (Yeast, E. coli 

and Human (HMDB)) and natural products collected from various sources (Traditional Chinese 

Medicines (TCM), African substances (AfroDb) or food ingredients (FooDB)). 
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To gain a better understanding of the bioactivity areas encompassed by each collection, we 

chose five examples related to drug molecules, metabolomes and natural product extracts. 

More specifically, we considered 6,505 approved and experimental drugs (REPO Hub)11, 8,603 

endogenous human metabolites (HMDB)12, 6,355 metabolites found in other species beyond 

vertebrates (MetaboLights)13, 49,818 food constituents (FooDB; www.foodb.ca) and 6,502 plant 

chemicals (CMAUP)14. Figure 3b shows that, despite their variable depth of annotation (Figure 

S9),  these collections, for the most part, are laid out in high-α regions of the GSig space. 

Moreover, Figure 3c offers a comparative view of the bioactivity areas occupied by each 

collection, with some overlapping regions as expected, especially between natural product 

collections. The map reveals a region that is specific to drug molecules, possibly belonging to a 

set of bioactivities that is outside the reach of natural metabolites. 

A deeper dive reveals further structure in the bioactivity maps. For example, when we focus on 

drug molecules (REPO Hub), broad therapeutic areas such as infectious diseases, 

neurology/psychiatry, cardiology and oncology can be circumscribed within certain regions of 

the GSig landscape (Figure 3d), and the same applies to finer-grained disease categories 

(indications) and mechanisms of action (Figure S10). Thus, the chemistry-to-clinics scope of 

GSigs provides a multi-level view of the chemical space, clustering compounds first on the basis 

of their targets and, in turn, keeping targets close in space if they belong to the same disease 

area. This is exemplified by PI3K, CDK and VEGFR inhibitors, which have their own well-

defined clusters within the oncology region of the map, and by histamine receptor antagonists 

and acetylcholine receptor agonists, which are placed together in an area assigned to 

neurology/psychiatry (Figures 3d and S10). 

Analogous observations can be made beyond the well-annotated universe of drug molecules, 

consistently organizing the chemical space in relevant ways. For example, the HMDB map 

highlights tissue- and biofluid-specific regions with varying degrees of chemical diversity 

(Figures 3d and S11), and the MetaboLights cross-species metabolome database is well 

organized by taxonomy (e.g. Chordata, Ascomycota, Actinobacteria), revealing conserved 

metabolite regions as well as species-specific ones (in general, we found the former to be less 

chemically diverse (Figure S11)). Likewise, plants can be organized in families and species by 

means of their ingredient signatures, as exemplified in Figure 3d for three Lamiaceae and two 

Apiaceae species. Finally, the map of food ingredients displays clear bioactivity clusters of food 

chemicals, adding to recent work suggesting that the food constituents landscape can be 

charted and exploited to identify links between diet and health15. 
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Enhanced prediction capabilities compared to chemical descriptors 

In addition, we examined whether our signaturizers could be used as molecular features to 

predict the outcome of a given bioassay of interest, analogous to the use of chemical 

descriptors in structure-activity relationship (SAR) studies. We thus developed signature-activity 

relationship (SigAR) models, and trained machine-learning classifiers to learn discriminative 

features from the CC signatures of ‘active’ (1) and ‘inactive’ (0) compounds, with the goal of 

assigning a 1/0 label to new (untested) compounds.  

To evaluate the SigAR approach in a wide range of scenarios, we used nine state-of-the-art 

biophysics and physiology benchmark datasets available from MoleculeNet16. More specifically, 

we considered bioassays extracted from PubChem (PCBA), namely an unbiased virtual 

screening dataset (MUV), inhibition of HIV replication (HIV), inhibition of beta-secretase 1 

activity (BACE), blood-brain barrier penetration data (BBBP), toxicity experiments (Tox21 and 

ToxCast), organ-level side effects (SIDER), and clinical trial failures due to safety issues 

(ClinTox). Although none of these benchmark datasets are explicitly included in the CC 

resource, data points can be shared between MoleculeNet and the CC, which would trivialize 

predictions. To rule out this possibility, we excluded certain CC signature classes from some of 

the exercises, as detailed in Table S1 (e.g. side-effect signatures (E3) were not used in the 

SIDER set of MoleculeNet tasks). 

Each MoleculeNet benchmark dataset has a given number of prediction tasks, ranging from 617 

(ToxCast) to just one (HIV, BACE and BBBP). The number of molecules also varies (from 1,427 

in SIDER to 437,929 in PCBA) (Table S1). We trained a classifier for each MoleculeNet task 

independently, following a conformal prediction scheme that relates the prediction score to a 

measure of confidence17. We chose to use a general-purpose machine-learning method (i.e. a 

random forest classifier) with automated hyperparameter tuning, allowing us to focus on the 

added value of the CC signatures rather than the classification algorithm. Finally, although CC 

signatures are abstract representations that do not offer direct structural/mechanistic 

interpretations, we devised a strategy to obtain high-level explanations for predicted activities. 

More specifically, for each molecule, we measured the cumulative explanatory potential 

(Shapley values18) of each signature type (S1-25) across the GSig space, indicating the classes 

of data (chemistry, targets, etc.) that were more determinant for the classifier decision (online 

Methods). In sum, we implemented an automated (parameter-free) SigAR methodology, the 
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outcome of which can be interpreted at the signature-type level and is calibrated as a probability 

or confidence. 

In Figures 4a-d and S12, we show the characteristics of a representative classifier, 

corresponding to the heat shock factor response element (SR-HSE) task in the Tox21 panel. In 

a 5-fold cross-validation, active molecules got higher prediction scores than inactive compounds 

(Figure S12). Moreover, the SigAR model outperformed the conventional chemical Morgan 

fingerprints (MFps) (Figure 4a). Additionally, the accuracy of the classifier was more robust to 

successive removal of training data (Figure 4b), suggesting that, in principle, fewer data would 

be necessary to achieve a proficient model if CC signatures are used. Of note, some molecules 

had a high prediction score with the GSig-based model but were nonetheless predicted to be 

inactive by the MFp-based counterpart, and vice versa (Figure 4c), thus pointing to 

complementarity between the SigAR and SAR approaches. Indeed, CC chemistry levels were 

not among the best ‘explanatory’ signature types for the SR-HSE classifier. Instead, HTS 

bioassays (B5) and cell morphology data (D4) appeared to be more informative (Figure 4d), an 

observation that is also apparent when active molecules are laid out on the B5 and D4 2D maps 

(Figure 4e). 

Figure 4f demonstrates that GSigs are generally favorable to MFps across the 12 toxicity 

pathways defined in the Tox21 benchmark dataset, with particularly large differences for the 

SR-p53, NR-Aromatase, NR-AR, NR-PPAR-gamma and SR-HSE tasks, and essentially the 

same performance for the NR-AhR and NR-ER tasks. Figures S13-S17 give further details for 

these classifiers, supporting the robustness of the SigAR approach and demonstrating that, 

depending on the classification task, the model will benefit from specific CC signature types 

(Figures 4e, S16 and S17). The NR-AhR model, for instance, mostly leverages the chemical 

levels (A), whereas SR-ATAD5 benefits from cell sensitivity data (D2), and NR-ER-LBD exploits 

the functional (e.g. biological process (C3)) information contained within the network levels of 

the CC. 

More comprehensively, in Figure 4f we evaluate the predictive power of the SigAR classifiers 

across the full collection of MoleculeNet benchmark datasets, comprising 806 prediction tasks 

(Table S1). Our SigAR predictions were generally more accurate than the equivalent chemistry-

based models, meaning that our signaturizers feed additional, valuable information to a broad 

range of activity prediction tasks. We observed a remarkable added value of the SigAR 

methodology for the physiology benchmark datasets (e.g. SIDER and ClinTox), which are, a 
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priori, those that should benefit most from an integrative (data-driven) approach like ours. 

Overall, we observed 8.5% median improvements in performance with respect to chemistry-

based classifiers (IQR: 1.4%-19.5%, Wilcoxon’s test P-value = 5·10-60) (Figure 4i). This implies 

a median reduction of the gap between actual and perfect (ideal) performance of 17.6% (IQR: 

24.4%-31.5%). Reassuringly, considering only molecules with reported bioactivity (i.e. included 

in the CC) further accentuated the difference in performance (Figure S18), highlighting the 

importance of data integration methodologies to overcome the limitations of a classical 

(chemistry-only) approach. 

Code and models 

Software for generating CC signatures is available as a python package at 

http://gitlabsbnb.irbbarcelona.org/packages/signaturizer. The ‘signaturizer’ API allows 

conversion of molecules (represented as SMILES strings) to the 25 signature types available 

from the CC. These pre-trained signaturizers are light-weight versions of the SNNs presented 

here, freeing the user from the need of setting up a full version of the CC (online Methods). 

Signaturizers are available as TensorFlow Hub ‘SavedModel’ instances and are automatically 

downloaded by the API the first time they are used. The full CC repository is open-sourced at 

http://gitlabsbnb.irbbarcelona.org/packages/chemical_checker. 

Concluding remarks 

Drug discovery is a funneling pipeline that ends with a drug being selected from a starting pool 

of hundreds of thousands, if not millions, of compounds. Computational drug discovery (CDD) 

methods can aid in many steps of this costly process19, including target deconvolution, hit-to-

lead optimization and anticipation of toxicity events. An efficient mathematical representation of 

the molecules is key to all CDD methods, 2D structural fingerprints being the default choice in 

many cases. 

The renaissance of (deep) neural networks has fueled the development of novel structure 

‘featurizers’20 based on graph/image convolutions of molecules21-23, the apprehension of the 

SMILES syntax24, or even a unified representation of protein targets25. These techniques are 

able to identify problem-specific patterns and, in general, they outperform conventional chemical 

fingerprints. However, neural networks remain challenging to deal with, and initiatives such as 

DeepChem are contributing to making them accessible to the broad CDD community26. The CC 
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approach presented here shares with these initiatives the will to democratize the use of 

advanced molecular representations. Our approach is complementary in that it does not focus 

on optimally encoding chemical structures. Instead, we have undertaken the task of gathering, 

harmonizing and finally vectorizing the bioactivity data available for the molecules in order to 

embed a wide array of bioactivities in a compact descriptor. 

Since CC signatures are simple 128D vectors, they are compatible with other CDD toolkits that 

primarily use multi-dimensional descriptors to represent molecular structures. This compatibility 

presents a unique opportunity to inject biological information into similarity searches, 

visualization of chemical spaces, and clustering and property prediction, among other widely 

used CDD tasks.  

In this study, we showed how CC signatures can be used to navigate the chemical space in a 

biological-relevant manner, revealing somehow unexpected high-order structure in poorly 

annotated natural product collections. Moreover, compared to using chemical information alone, 

we observed a superior performance of SigAR models across a series of biophysics and 

physiology activity-prediction benchmark datasets. We chose to train models with minimal 

parameter tuning, illustrating how our signaturizers can be used in practice with minimal 

knowledge of machine learning to obtain state-of-the-art performances. 

A limitation of CC signatures is that they are difficult to interpret in detail. That is, the underlying 

data points (binding to receptor ‘x’, occurrence of drug side effect ‘y’, etc.) cannot be 

deconvoluted from the 128D signature. This caveat is common to other machine-learning 

applications (e.g. natural language processing) where embedded representations of entities are 

favored over sparser, more explicit ones27. Nonetheless, we show that CC signatures can be 

interpreted at a coarser level, indicating which signature types are more informative for a certain 

prediction task. Another caveat of our approach is the likely existence of ‘null’ signatures 

corresponding to innocuous molecules with no actual bioactivity in a given CC data type28. 

Likewise, the accuracy of the signatures may vary depending on the molecule. To control for 

these factors, CC signatures are accompanied by an applicability score that estimates the 

signature quality on the basis of the amount of experimental data available for the molecule, the 

robustness of the prediction and the resemblance of the predicted signature to signatures 

available from the training set. 

Contrary to most chemical descriptors, CC signatures evolve with time as bioactivity 

measurements accumulate in the databases. We will release updated versions of the 
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signaturizers once a year and, as developers of the CC, we are committed to keeping abreast of 

the latest phenotypic screening technologies and chemogenomics datasets. Although the 

current version of the CC is constrained to 25 categories, our resource is prepared to 

accommodate new data types, offering the opportunity to customize and extend the current 

repertoire of signaturizers. The growth of the CC resource is restricted by the number and 

quality of publicly accessible datasets, a limitation that is likely to be ameliorated with the 

implementation of private-public partnerships and the general awareness that, in the markedly 

gene-centric omics era, the depth of small molecule annotation lags behind genomes and 

proteomes29, 30. The ever-growing nature of chemical matter (in contrast to the finite number of 

genes) demands computational methods to provide a first estimate of the biological properties 

of compounds31. We believe that CC signaturizers can bridge this gap and become a reference 

tool to scrutinize the expected bioactivity spectrum of compounds. 

online Methods 

Data collection 

Experimental CC signatures were obtained from the CC repository (version 2019/05). Drug 

Repurposing Hub molecules and annotations were downloaded from https://clue.io/repurposing 

(June 2019). HMDB and FooDB data were downloaded from http://hmdb.ca and http://foodb.ca, 

respectively (April 2020). Plant ingredients were collected from CMAUP (July 2019) and cross-

species metabolites from https://www.ebi.ac.uk/metabolights (April 2020). MoleculeNet 

benchmark datasets were downloaded from http://moleculenet.ai in June 2019. The remaining 

compound collections were fetched from ZINC catalogs (http://zinc.docking.org) (June 2020). 

Siamese neural networks 

We carried out all procedures specified below for each CC dataset (Si) independently, and we 

trained 25 SNNs based on existing CC signatures and molecule triplets reflecting Si similarities. 

SNNs use the same weights and neural architecture for the three input samples to produce 

comparable output vectors in the embedding space. 

Covariates matrix. We trained a SNN having horizontally concatenated signatures (S1-S25) as a 

covariates matrix (X), and producing 128D-vectors as output (Y). The covariates matrix was 

stacked with a pre-compressed version of CC signatures (named signatures type II) with 128 
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dimensions. Only CC datasets covering at least 10% of Si were stacked in X. Thus, given n 

molecules in Si, and having m S1-25 datasets cross-covering at least 10% of n, X would be of 

shape (n, 128·m). For each molecule (row), missing signatures were represented as not-a-

number (NaN) values. 

Triplet sampling. We sampled 107 molecule triplets (i.e. 107/n triplets per anchor molecule). 

Positive samples (i.e. molecules similar to the anchor) were drawn using the FAISS k-nearest 

neighbor search tool32. The value of k was empirically determined so that it maximized the 

average ROC-AUC of similarity measures performed against the rest of CC datasets, and it was 

then clipped between 10 and 50. Negative samples were randomly chosen from the pool of 

molecules at larger distance than the positive compounds. 

SNN architecture. SNNs were built and trained using Keras (https://github.com/fchollet/keras). 

After the 128·m-dimensional input layer, we added a Gaussian dropout layer (σ = 0.1). We then 

sequentially added two fully connected (dense) layers whose size was determined by the m 

magnitude. When m·128 was higher than 512, the two hidden layers had sizes of 512 and 256, 

respectively. For smaller m values, we linearly interpolated the size between input and output 

(128) dimensions (e.g. for m = 7, the two hidden layers had sizes of 448 and 224, respectively). 

Finally, a dense output layer of 128 dimensions was sequentially added. For the hidden layers, 

we used a SeLU activation with alpha-dropout regularization (0.2), and the last (output) layer 

was activated with a Tanh function, together with an L2-normalization. 

Signature dropout. We devised a dropout strategy to simulate availability of CC signatures at 

prediction time. To do so, we measured the proportion of experimental S1-25 signatures available 

for not-in-Si molecules. These observed (realistic) probabilities were then used to mask input 

data at fitting time, more frequently setting those CC categories with the smaller probabilities to 

NaN. The Si signature was dropped out with an oscillating probability (0-1) over the training 

iterations (5,000 oscillation cycles per epoch). 

Loss functions. To optimize the SNN, we used a pair of loss functions with a global orthogonal 

regularization33. The first one was a conventional triplet loss, checking that the distance 

between the anchor and the positive molecule measured in the embedding (128D) space was 

shorter than the anchor-negative distance (margin = 1). The second loss was exclusively 

applied to the anchor molecule, and it controlled that the embedding resulting from the signature 

dropout was similar to the embedding obtained using Si alone (mean-squared error (MSE)). 
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Global orthogonal regularization (alpha = 1) was used to favor maximal spread-out of signatures 

in the embedding space. The Adam optimizer was used with a default learning rate of 10-4.  

Evaluation. For each Si, we split the list of n molecules into train (80%) and test (20%) sets. 

Splitting was done after removing near-duplicates with FAISS. We then defined three triplet 

splits, i.e. train-train, test-train and test-test, using molecules from the train and test sets as 

anchors and positives/negatives, correspondingly. For CC spaces with less than 30,000 

molecules, we trained the model for 5 epochs, whereas the largest datasets were trained for 2 

epochs. Two accuracy measures were defined: (a) a triplet-based accuracy quantifying the 

proportion of correctly classified triplets by Euclidean distance measurements in the embedding 

space (dropping out Si); and (b) an anchor-based accuracy measuring the correlation between 

the Si-dropped-out embedding and the Si-only embedding. Given the bimodal distribution 

endowed by the Tanh activation, we chose to use a Matthews correlation coefficient (MCC) on a 

contingency table of binarized data (positive/negative along the 128 dimensions). 

Light-weight signaturizers. We ran predictions for all molecules available in the CC universe (N 

= 778,531), producing 25 matrices of shape (n, 128). These matrices were used to learn 

chemistry-to-signature (CTS) signaturizers that are easy to distribute, allowing us to obtain 

signatures for a given molecule on-the-fly. CTS signaturizers were trained on a large number of 

molecules (N) with the aim to approximate the pre-calculated signatures presented in this work. 

Thus, in practice, a CTS signaturizer will often act as a mapping function, since the number of 

pre-calculated signatures is very large and covers a considerable portion of the medicinal 

chemistry space. CTS signaturizers were trained for 30 epochs and validated with an 80:20 

train-test split, using 2048-bit Morgan Fingerprints (radius = 2) as feature vectors. Three dense 

hidden layers were used (1024, 512 and 256 dimensions) with ReLU activations and dropout 

regularization (0.2). The output was a dense layer of 128 dimensions (Tanh activation). The 

Adam optimizer was used (learning rate = 10-3). CTS signaturizers achieved a correlation with 

the type III signature of 0.769 +/- 0.074. 

Applicability domain estimation 

An applicability score (α) for the signatures can be obtained at prediction time by means of a 

linear combination of five factors related to three characteristics that help increase trust in the 

predictions. These factors were tuned and calibrated on the test set. 
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Distance. Signatures that are close to training-set signatures are, in principle, closer to the 

applicability domain. We measured this distance in an unsupervised way (i.e. average distance 

to 5/25 nearest-neighbors) and in a supervised way by means of a random forest regressor 

trained on signatures as features and prediction accuracy (correlation) as dependent variable. In 

addition, we devised a measure of ‘intensity’, defined as the mean absolute deviation of the 

signatures to the average (null) signature observed in the training set. 

Robustness. The signature-dropout procedure presented above can be applied at prediction 

time to obtain an estimate of the robustness of the prediction. For each molecule, we generated 

10 dropped-out inputs, thereby obtaining an ensemble of predictions. Small standard deviations 

over these predictions indicate a robust output. 

Expectancy a priori. We calculated the accuracy that is expected given the input signatures 

available for a particular molecule. Some CC signature types are highly predictive for others; 

thus, having these informative signatures at hand will in principle favor reliable predictions. This 

prior expectancy was calculated by fitting a random forest classifier with 25 absence/presence 

features as covariates and prediction accuracy as outcome. 

Signature-activity relationship (SigAR) models 

For each classification task in the MoleculeNet, we sought to predict active/inactive (1/0) 

compounds using horizontally stacked CC signatures. A random forest classifier was trained 

using hyperparameters identified with HyperOpt34 over 10 iterations (number of estimators: 

(100, 500, 1000), max depth: (None, 5, 10), minimum sample split: (2, 3, 10), criterion: (gini, 

entropy), maximum features: (square root, log2)). Classifiers were calibrated using a Mondrian 

cross-conformal prediction scheme over 10 stratified splits. Evaluation was done with five 

stratified 80:20 train-test splits. Large MoleculeNet datasets such as PCBA were trained on a 

maximum of 30 under-sampled datasets, each comprising of 10,000 samples. Scaffold-aware 

stratified splits, when necessary, were done ensuring that Murcko scaffolds35 observed in the 

training set were not present in the test set36. 

Signature importance for each prediction was calculated by aggregating Shapley values (SHAP) 

as follows. First, features were ranked by their absolute SHAP across molecules. We then 

calculated the cumulative rank specific to each signature type (Si) (up to 250 features). 

Signature types with more of their dimensions in highly ranked positions were deemed to be 

more ‘explanatory’ for the prediction task. 
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Figures and Tables 

 

Figure 1. Training and evaluation of CC signaturizers. (a) Scheme of the methodology. 

Signaturizers produce bioactivity signatures that ‘fill the gaps’ in the experimental version of the 

CC. A SNN is trained using a signature-dropout scheme over 107 triplets of molecules (anchor, 

positive, negative) to infer missing signatures in each bioactivity space. The inferred signatures 

are finally evaluated. (b) Coverage of the experimental version of the CC. The bar plot indicates 

the number of molecules available for each CC data type. The heatmap shows the cross-

coverage between datasets, i.e. it is a 25x25 matrix capturing the proportion of molecules in one 

dataset (rows) that are also available in other datasets (columns) (c) Accuracy of the 25 

signaturizers, measured as the proportion of correctly classified cases within a triplet. ‘Train-test’ 

refers to the case where the ‘anchor’ molecule belongs to the ‘test’ set, and the ‘positive’ and 

‘negative’ molecules belong to the training set. ‘Test-test’ corresponds to the most difficult case 

where none of the three molecules within the triplet has been utilized during the training. (d) 

Performance of the 25 signaturizers, measured for each molecule as the correlation between 
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the ‘true’ and ‘predicted’ signatures along the 128 dimensions. Given the bimodal distribution of 

signature values, signatures are binarized (positive/negative) and correlation is measured as a 

Matthew’s correlation coefficient (MCC) over the true-vs-predicted contingency table. (e) Three 

exemplary molecules (1, 2 and 3) are shown for the D1 and E3 spaces. True and predicted 

signatures are displayed as color bars, both sorted according to true signature values. (f) 

Correspondingly, t-SNE 2D projections of D1 and E3 predictions, where 1, 2 and 3 are 

highlighted. (g) 2D-projected train (gray) and test (colored) samples for the 25 CC spaces. The 

legend at the bottom specifies the A1-E5 organization of the CC. 
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Figure 2. Large-scale bioactivity prediction using the signaturizers (~800k molecules). (a) 

Features combined to derive the applicability scores (α). (b) Applicability scores for the 

predictions, displayed across the 25 (A1-E5) 2D-projected signature maps. A grid was defined 

on the 2D coordinates, molecules were binned and the average α is plotted in a red (low) to 

blue (high) color scale. (c) Cross-correlation between CC spaces, defined as the capacity of 

similarities measured in Si (rows) to recall the top-5 nearest neighbors in Sj (columns) (ROC-

AUC). Top 10k molecules (sorted by α) were chosen as Si. (d) Scheme of the signature 

stacking procedure. Signatures can be stacked horizontally to obtain a global signature (GSig) 

of 3,200 dimensions. (e) Ability of similarity measures performed in the GSig space to identify 

pairs of molecules sharing the MoA (left) or ATC code (right) (ROC-AUC). (f) Likewise, ability of 

GSigs to identify the nearest neighbors found in the experimental (original) versions of the A1-

E5 datasets. (g) t-SNE 2D projection of GSigs. The 10k molecules with the highest average α 

across the 25 signatures are displayed. The cool-warm color scale represents ‘chemical 

diversity’, red meaning that molecules in the neighborhood are structurally similar. A subset of 

representative clusters is annotated with enriched binding activities. (h) Example of a cluster 

enriched in heat shock protein 90 (HSP90AA1) with highlighted representative molecules with 

distinct (4) or chemically related (5) neighbors. 
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Figure 3. Signature-based analysis of compound collections. (a) Chemical libraries are 

hierarchically clustered by their proximity to the full CC; here, proximity is determined by the 

cluster occupancy vector relative to the k-means clusters identified in the CC collection (number 

of clusters = (N/2)1/2; GSigs are used). Proximal libraries have small Euclidean distances 

between their normalized occupancy vectors. Size of the circles is proportional to the number of 

molecules available in the collection. Color (blue-to-red) indicates the homogeneity (Gini 

coefficient) of the occupancy vectors relative to the CC. (b) Occupancy of high-applicability 

regions is further analyzed for five collections (plus the full CC). In particular, we measure the 
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average 10-nearest-neighbor L2-distance (measured in the GSig space) of molecules to the 

high-α subset of CC molecules (103, see Figure 1). The red line denotes the distance 

corresponding to an empirical similarity P-value of 0.01. The percentage indicates the number of 

molecules in the collection having high-α vicinities that are, on average, below the significance 

threshold. This percentage is shown for the rest of the libraries in panel a. (c) The previous five 

compound collections are merged and projected together (t-SNE). Each of them is highlighted in 

a different color. (d) Detail of the compound collections. The first column shows the chemical 

diversity of the projections, measured as the average Tanimoto similarity of the 5-nearest 

neighbors. Blue denotes high diversity and red high structural similarity between neighboring 

compounds. Coloring is done on a per-cluster basis. The rest of the columns focus on 

annotated subsets of molecules. Blue indicates high-density regions. 
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Figure 4. MoleculeNet benchmarks, comparing the predictive power of CC signatures with a 

classical MFp-based approach. (a) Precision-recall curves (PRCs) for the Tox21 SR-HSE task, 

trained with CC signatures (blue) and MFps (red). Shaded areas span the standard deviation 

over five stratified train-test splits. (b) Robustness of the SR-HSE classifier, understood as the 

maintenance of performance (ROC-AUC) as fewer training samples become available. (c) 

Prediction scores (probabilities) of active test molecules using MFps (x-axis) or CC signatures 

(y-axis). (d) Importance of CC datasets for the predictions. Features are ranked by their 

absolute Shapley value (SHAP) across samples (plots are capped at the top 250 features). For 

each CC dataset (Si), SHAPs are cumulatively summed (y-axis; normalized by the maximum 

cumulative sum observed across CC datasets). (e) 2D projections related to SR-HSE (first 

column) and other (second column) tasks, done for the A1, B5 and D4 CC categories (rows). A 

simple support vector classifier (SVC) is trained with the (x,y)-coordinates as features in order to 

determine an activity-decision function. Performance is given as a ROC-AUC on the side of the 
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plots. Blue and red areas correspond to likely active and likely inactive regions, respectively. 

Active compounds are overlaid as black dots. (f) Performance of CC signatures (blue) and 

MFps (red) on the 12 Tox21 tasks. Tasks are ranked by their CC ROC-AUC performance. (g) 

Global performances of biophysics (purple) and physiology (orange) benchmark tasks. PRC and 

ROC AUCs are used, following MoleculeNet recommendations. Shades of blue indicate 

whether all 25 CC datasets were used (light) or whether conservative dataset removal was 

applied (darker) (Table S1). Dashed and dotted lines mark respectively the best and average 

reported performance in the seminal MoleculeNet study13. (h) Relative performance of CC and 

MFp classifiers across all MoleculeNet tasks (split by ROC-AUC and PRC-AUC metrics, 

correspondingly; top and middle panels). Higher performances are achieved when more active 

molecules are available for training (x-axis). The average gain in AUC is plotted in the bottom 

panel. 
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Supplementary Figures and Tables 

 

Figure S1. Original and learnt triplet distances for three representative CC datasets, namely B1, 

D1 and E2. The upper row shows the anchor-positive (green) and anchor-negative (red) 

Euclidean distances observed in the signature type I space (i.e. experimental signatures). 

Positive samples are closer to the anchor than negative ones. Correspondingly, the bottom row 

shows the distances observed in the signature III space (i.e. SNN embedding). Only test-test 

comparisons, where none of the molecules were seen during training, are shown. 

 

Figure S2. Proportion of signatures kept by the signature-dropout strategy. Rows (i) represent 

the CC space for which the SNN is being trained, and columns (j) correspond to the signatures 

being sampled. Red indicates that j signatures were typically used to train the i signaturizer. 
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Figure S3. Performance of the signaturizers. (a) Performance (measured as a triplet-resolving 

accuracy) of signatures produced using all data (including the space of interest, ‘all’), only the 

space of interest (‘only-self’), and not using the space of interest (‘not-self’). Related to Figure 

1C. (b) MCC scores (‘predicted’ signature vs ‘known’ signature) for train and test samples, 

depicted as dashed lines and filled shapes, respectively. Related to Figure 1d. 
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Figure S4. t-SNE 2D projections for two exemplary datasets (B4 and E1). The first two columns 

correspond to molecules in the training and test sets. ‘Unknown’ refers to signatures obtained 

for molecules with no available annotation in the space. ‘Only-self’ shows predictions done 

taking only the B4/E1 space as input. 
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Figure S5. Correlation between the applicability score (α) and the true-vs-predicted signature 

correlation. The applicability score is determined by the linear combination of five factors, 

represented in the pie charts and abbreviated as follows; d: nearest-neighbor distance, r: 

robustness, p: prior (i.e. expected accuracy a priori), s: supervised distance, and i: intensity. The 

area covered by the pie chart corresponds to the coefficient of the linear combination to adjust 

an α score. Plots correspond to 80:20 train-test splits. 
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Figure S6. (a) Enrichment of GSig 10-nearest-neighbors at an α cutoff of 0.5, measured as the 

log2-odds ratio on a contingency table counting the number of neighbors common to Si and 

GSig. High enrichments mean that, in the light of the global information available from the CC 

(i.e. GSig), similarities encountered for the Si signature are relevant. The 25 CC categories are 

ranked by enrichment score. Color of the dot denotes CC level (A-E) and numbering indicates 

the sublevel (1-5). (b) Correlation between the two accuracy metrics (i.e. MCC and triplet 

accuracy) for train-train and test-test validations. 
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Figure S7. Number of molecules at different applicability (α) cutoffs, obtained for the full 

universe of CC molecules (~800k). The dashed line indicates the number of molecules with 

‘experimental’ data in the corresponding CC space, while the dotted line indicates the number of 

molecules with no available data in the CC space. The solid line shows the total number of 

molecules. We can see that, for instance, with an α cutoff of 0.5 the number of molecules with 

reliable D1 signatures is 5-fold the number of molecules with experimental information.  
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Figure S8. Exploration of the α score. For each CC dataset Si, we measure, at a given α cutoff, 

the capacity to recall 10-nearest-neighbors across CC spaces, similar to what is done in Figure 

2b. The average ROC-AUC of Si along S1-25 is plotted as empty dots (right, colored axis). We 

consider the profile of ROC-AUCs obtained at the highest α to be the most genuine for the 

signature. We measure how the profile of ROC-AUCs diverges (cosine distance of the 25-

dimensional ROC-AUC vector) as lower α values are taken. Larger distances indicate less 

‘purity’ in the signature-correlation profile (filled dots, left axis). 
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Figure S9. Number of molecules (a) and CC coverage (b) of five selected compound collections 

with respect to the CC universe (~800k molecules). 
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Figure S10. Drug Repurposing Hub 2D projections. (a) t-SNE 2D projections based on GSigs 

(left) compared to Morgan fingerprint (MFp; 2048-bit, radius: 2) projections (right). Regions 

corresponding to certain MoAs are highlighted. (b) Level of clustering of the different 

annotations specified in the Drug Repurposing Hub, namely ‘targets’, ‘MoA’, ‘indications’ and 

‘disease areas’. Each dot corresponds to an annotation, and the size of the dot is proportional to 

the number of molecules. The average Euclidean distance in the 2D-projection between 

molecules with the same annotation is calculated, both for GSig- and MFp-based projections. 

For each annotation size, 100 randomly sampled points are drawn from the projection in order 

to scale the average distance measure. The x-axis measures the difference between GSig and 

MFp distances. Values close to 1 indicate that molecules of a certain annotation are well 

localized in the GSig projection and scattered in the MFp projection. Values close to -1 indicate 

the contrary. The red-to-blue color scale follows this axis. The y-axis is a measure of ‘difficulty’, 

i.e. the maximal inter-annotation distance observed between the GSig and MFp projections. 
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Values close to one indicate that, in one of the projections the distance between molecules in 

the annotation is large (i.e. scattered points), while values close to 0 indicate that in both 

projections molecules with the same annotation are close-by. Thus, points in the upper-right 

corner are favorable to the CC projection, points in the mid-bottom region are well-grouped in 

both projections, and points in the upper-left corner are favorable to the MFp projection. The 

numbering in the MoA subplot relates to the legend in the top panel. 
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Figure S11. Association analysis between clusters discovered in 2D projections and 

annotations available for the compounds. REPO Hub, HMDB, MetaboLights, FooDB and 

CMAUP datasets are analyzed separately. REPO Hub annotations: targets, MoAs, indications, 

disease areas. HMDB annotations: tissues, biofluids, biofunctions, cellular components and 

origin. MetaboLights annotations: organism name, group, genus, species, etc. FooDB: food 

group, subgroup and name. CMAUP: plant family and species. The DBSCAN clustering 

algorithm was used to identify clusters based on the (x,y)-coordinates of the 2D projection. 

Then, a Fisher’s exact test was performed for each cluster-annotation pair, based on a 

contingency table counting the number of molecules in/out of the cluster and the number of 

molecules with/without annotations; P-values < 0.01 with an FDR < 0.1 and a log2 odds-ratio > 

1.5 were considered to be significant. In the plots, the color of the projections denotes the 

number of annotations found to be statistically associated with each of the clusters. Blue regions 

are ‘unspecific’, in that they contain molecules belonging to multiple annotations. Red regions 

are more ‘specific’ as they are associated with few annotations. Gray clusters are not enriched 

with any annotation. The cumulative plots show the number of clusters associated with each 

annotation. In REPO Hub, for instance, most annotations are associated with one or two 

clusters, whereas most FooDB annotations are found enriched in five clusters. 
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Figure S12. Evaluation of the SR-HSE random forest classifier. (a) Number of active and 

inactive molecules, and proportion of molecules in the train and test sets. (b) Prediction score 

(PS) assigned to active (blue) and inactive (red) molecules in the test set. (c) Validity plot of the 

cross-conformal predictor. (d) Train and test ROC curves. (e) Train and test precision-recall 

curves. (f) Other classification scores (PS > 0.38). K: Cohen’s kappa. Prec.: precision, Rec.: 

recall, Bacc: Balanced accuracy. 
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Figure S13. ROC curves for the 12 Tox21 prediction tasks. CC- and MFp-based predictors are 

blue and red, respectively. 
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Figure S14. Performance (ROC-AUC) of the Tox21 models at different training set sizes and 

using GSigs (blue) and MFps (red) as feature vectors. 
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Figure S15. Prediction scores assigned to each active molecule by the predictors at test-time in 

a 5-fold cross-validation (Tox21 benchmark dataset). The color scale denotes the relative 

difference between CC scores and classic (MFp) scores. Blue indicates a high score by the CC 

predictor and a low score by the MFp predictor. Red indicates the opposite. 
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Figure S16. Explanatory potential of CC categories across the Tox21 benchmark dataset. Top 

250 features (ranked by average absolute Shapley values across samples) are summed up in 

the corresponding S1-25 slots. 
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Figure S17. Discriminative power (ROC-AUC) of SVCs based exclusively on 2D 

representations of the signatures. The analysis is done for each signature type (A1-E5) and the 

12 Tox21 tasks. 

 

Figure S18. MoleculeNet validation done exclusively with molecules having at least one 

bioactivity data point previously available in the CC. The plot relates to Figure 4g (see legend for 

details). 
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Table S1. MoleculeNet classification tasks. ‘Removed’ column indicates the CC spaces that are 

not used to make predictions. The parenthesis denotes the most aggressive removal. 

 

Category Name Molecules Tasks Split Metric Removed 

Biophysics PCBA 437,929 128 Random PR-AUC B5, (B4, C3, C4, C5) 

MUV 93,087 17 Random PR-AUC B4, (B5, C3, C4, C5) 

HIV 41,127 1 Scaffold ROC-AUC - 

BACE 1,513 1 Scaffold ROC-AUC (B4, B5, C3, C4, C5) 

Physiology BBBP 2,039 1 Scaffold ROC-AUC - 

Tox21 7,831 12 Random ROC-AUC (E4) 

ToxCast 8,575 612 Random ROC-AUC (E4) 

SIDER 1,427 27 Random ROC-AUC E3, (E4) 

ClinTox 1,478 2 Random ROC-AUC E1, E2, E3, E4, E5 
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