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Abbreviations	

	

iTRAQ isobaric tags for absolute and relative quantification 

TMT  tandem mass tags 

PTM  post-translational modifications  

MNAR missing not at random 

KNN   K nearest neighbors 

PCA  principal component analysis 

CPTAC Clinical Proteomic Tumor Analysis Consortium 

TCGA  The Cancer Genome Atlas 

CCRCC clear cell renal cell carcinoma 

Cor  Pearson Correlation Coefficient 

NRMSD normalized root mean squared deviation 

PNNL  Pacific Northwest National Laboratory 

JHU  Johns Hopkins University 

NAT  normal adjacent tumor 

MCMC Markov Chain Monte Carlo 

SVM  support vector machine 

ANN  artificial neural network 
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Abstract 

Deep proteomics profiling using labeled LC-MS/MS experiments has been 
proven to be powerful to study complex diseases. However, due to the dynamic 
nature of the discovery mass spectrometry, the generated data contain a 
substantial fraction of missing values. This poses great challenges for data 
analyses, as many tools, especially those for high dimensional data, cannot deal 
with missing values directly. To address this problem, the NCI-CPTAC 
Proteogenomics DREAM Challenge was carried out to develop effective 
imputation algorithms for labeled LC-MS/MS proteomics data through crowd 
learning. The final resulting algorithm, DreamAI, is based on an ensemble of six 
different imputation methods. The imputation accuracy of DreamAI, as 
measured by Pearson correlation, is about 15%-50% greater than existing tools 
among less abundant proteins, which are more vulnerable to be missed in 
proteomics data sets.  This new tool notably enhances data analysis capabilities 
in proteomics research. 
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Introduction	

Proteins are responsible for nearly every task of cellular life and are important 
molecules for disease diagnosis, prevention and treatment. The technique of 
Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) using isobaric 
labeling methods, including isobaric tags for absolute and relative quantification 
(iTRAQ) and tandem mass tags (TMT), allows detection and quantification of 
thousands of proteins and tens of thousands of their post-translational 
modifications (PTM) in a given biological sample [1,2]. Isobaric labeling not only 
greatly enhances the precision of quantification, but also improves the 
throughput [3,4], as multiple samples can be combined into one multiplex and 
profiled simultaneously. These technological developments greatly accelerate 
the application of proteomics in various diseases studies [1,2,5,6,7,8]. However, 
missingness in mass spectrometry (MS) based proteomics can limit the usability 
of this data. 

Only a subset of peptides and PTMs in a biological sample can be detected and 
quantified in each LC-MS/MS experiment, due to a number of factors, including: 
the proteome complexity of many biological samples; the stochastic sampling 
procedure; and the limited duty cycle of mass spectrometry based discovery 
proteomics. The members of this detectable subset vary from experiment to 
experiment. Thus, when proteomic profiles from a collection of LC-MS/MS 
experiments are analyzed together, a substantial number of missing values are 
present [9]. In addition, the multiplex structure of isobaric labeling experiments 
affects the missingness rate, since the detection of a peptide is performed for all 
samples in MS1 within the multiplex. Consequently, a peptide is either observed 
or missing for all samples analyzed together in one multiplex.  This type of 
experimentally-induced multiplex-level missing mechanism constitutes the 
majority of missing events when using isobaric labeling. For example, in 
proteomics data sets generated in CPTAC/TCGA Ovarian Cancer Study with 
iTRAQ platform[2], among all detected proteins and phospho-sites, 31.1% 
proteins and 98.3% phospho-sites had missing values in at least one sample 
(Fig. 1a-b, Fig. S1a-b). And more than 95% or 99% of total missing events in 
the global or phospho-proteomics data sets are multiplex-level missing (Fig. 1c). 
This multiplex-level missingness is also prevalent in data from TMT platforms, 
as illustrated in Fig. 1a-b and S1a-b based on data examples from the CPTAC 
Prospective Ovarian Cancer Study [7]. 
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Missingness in mass spectrometry (MS) based proteomics data could be 
caused by many technical factors. As suggested in previous works [10,11,12], in 
labeled proteomics experiments, failures of the mass spectrometer to detect a 
peptide can be due to low peptide abundance, low peptide-dependent ionization 
efficiency, different distributions across multiple peptide charge states, and 
different modified forms of the peptide [13]. These factors all contribute to the 
abundance dependent missing tendency, wherein peptides/proteins with lower 
abundances tend to have higher probabilities of being missed, as illustrated in 
Fig. 1d-e, and S1c-d using MS1 (parent ion) intensity based qualification 
(please see Supplement A3 for quantification details). Unsurprisingly, the 
degree of this dependence between missing probability and the abundance to 
be measured in labeled proteomics data varies across different experiments and 
studies, as many factors mentioned above work together to cause the 
missingness. The dependence between the propensity of missing on data points 
and the underlying values is referred to as MNAR --- missing not at random [14]. 
It has been well established in the statistical literature that, in the presence of 
MNAR, analysis based on the observed data only shall lead to biased estimates 
and incorrect inference [14].  

The substantial missing rates combined with multiplex dependent MNAR bring 
great challenges to the downstream data analysis. The simply strategy of 
focusing only on proteins observed in all samples [1,2] makes the downstream 
data analysis convenient, but abandons a large amount of information from 
hundreds or thousands of proteins in each proteomics data set. Unfortunately, 
some very important proteins for understanding disease mechanisms could be 
abandoned in this process, as disease-relevant proteins are often low abundant 
or subtypes specific and therefore less likely to be measured in all samples.  

Thus, there is a pressing need to have strategies other than simply ignoring 
proteins and PTMs with missing values in proteomics data analysis. Two 
commonly used methods for handling data with missing values are: 1. to 
substitute missing values with some constants (e.g., a small number or an 
estimated mean/median value) [15]; and 2. to perform analysis using observed 
data only [1,2]. The constant imputation, as well as its enhanced variation 
Perseus [16] which fills in missing values with random variables independently 
drawn from a pre-specified Gaussian distribution, do not work for labeled 
proteomics data, due to the experimentally induced multiplex-level missing 
patterns. On the other hand, for mass spectrometry data with MNAR, it is 
dangerous to perform analyses based on observed data points only, which 
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could lead to biased estimates and incorrect inferences [10,14]. In addition, for 
multivariate and high-dimensional analysis, a subset of samples with completely 
observed features could be small or non-existent.  

A more sensible solution is to perform stage-wise learning: firstly, use 
information from observed data points to “learn” the unobserved data points, i.e. 
impute the missing values; and then conduct statistical analysis based on the 
imputed matrices. Since proteins and PTMs that interact with each other usually 
have correlated abundances, the measured abundances in a given sample 
contain substantial information of other unobserved proteins and PTMs. 
Information from other samples with shared properties can also be useful in this 
learning step.  

A few imputation strategies have been proposed to handle missing values in 
high dimension omics data sets in the past decades. Some of the strategies 
take advantage of local similarity within the data set. For example, the 
commonly used KNN imputation method predicts missing values based on 
information from K nearest neighbors (proteins or samples) [17,18](see 
Supplement A8). This strategy has been applied to a few proteogenomics 
studies [5]. In addition, MissForest, which builds Random Forest models to 
predict missing values of one feature based on observed values of all other 
features[19] (see Supplement A8), is another effective local similarity based 
imputation strategy and has been adopted in multiple genomics studies[20,21].  

To better accommodate the MNAR in proteomics data, Chen et. al. (2014) [22] 
proposed an exponential function based probability model to characterize the 
abundance dependent missing pattern in unlabeled LC-MS/MS proteomics data, 
and a penalized EM algorithm (PEMM) to fit the model, which can be used for 
imputation[23]. To further accommodate the multiplex level missing structure in 
the labeled proteomics data, the authors further introduced mixEMM [10], which 
not only models the abundance dependent batch-level missing pattern but also 
utilizes mixed effects to better account for experimental variations across 
multiplexes. Based on mixEMM, in [6], the authors implemented an Abundance-
Dependent Missing ImputatioN algorithm for labeled proteomics data [6], which 
essentially utilized a weighted average of neighboring data points to impute the 
missing values (see Supplement A8). This method is referred to as ADMIN in 
the rest of the paper. 
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Besides methods relying on local similarity in the data, there is a collection of 
imputation algorithms utilizing global structure of the data based on low rank 
matrix completion. Those methods that stemmed from the field of image de-
noising[17,24,25,26], have flourished in a broad range of applications to solve 
various imputation problems, such as completion of single cell RNA-seq data[27] 
and GWAS data[28], as well as prediction of miRNA-Disease association[29]. 
Low rank matrix completion techniques have been recently applied to 
proteomics data imputation too. For example, pcaMethods, a principal 
component analysis (PCA) based method for matrix completion [30], has been 
applied to impute missing values in TMT proteomics data sets in a recent 
publication.[31]  

Thorough efforts have been made to evaluate the performances of different 
imputation strategies on label-free proteomics data [12,32]. Consensus 
conclusions from these studies suggest that local similarity based methods and 
global structure based methods perform better than the constant imputation 
methods in the presence of MNAR [12,32]. In addition, one study [32] reported 
superior performance of methods based on global structure, such as low-rank 
matrix completion [18] and linear model based maximum likelihood estimate [33] 
[34] compared to those of local similarity based methods (KNN) for label free 
proteomics data. Moreover, as expected, it is more challenging to impute 
missing values for features with missing rate higher than 50% than those with 
lower missing rates [12].  

Recently, pioneer efforts have also been made to study how various imputation 
tools work on labeled LC-MS/MS data sets. The investigation by Palstrøm et. 
al.[31] confirms the advantage of KNN and low rank matrix completion over 
constant imputation for labeled proteomics data. But the investigation is 
incomprehensive, due to the limited number of imputation methods considered 
and the inadequate numerical examples with rather simplified missing 
mechanism assumptions. In another recent review work [23], Bramer et. al. 
compared the performance of nine imputation algorithms on isobaric labeling-
based proteomics data and found that PEMM and missForest have the best 
performances. However, most of the imputation methods considered in this 
investigation are not specifically developed for labeled LC-MS/MS data or even 
proteomics data. Therefore, it is of great interest to develop and systematically 
assess tools for imputing the missing values in proteomics data from labeled 
LC-MS/MS experiments.  
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Towards this goal, we carried out a NCI-CPTAC (Clinical Proteomic Tumor 
Analysis Consortium) DREAM Proteogenomics Imputation Challenge 
(https://sagebionetworks.org/research-projects/nci-cptac-dream-
proteogenomics-challenge/). The challenge aimed to leverage techniques from 
multiple research fields such as statistical computation and machine learning, 
and to achieve a superior solution for the data imputation problem for labeled 
LC-MS/MS proteomics data sets through crowd learning.  

The Challenge included a competition phase and a collaborative phase. In the 
competition phase, participants were invited to build imputation algorithms with 
training data sets and submit algorithms to test on additional data sets for 
evaluation and ranking. Training and testing data sets were simulated from the 
proteomics data sets in CPTAC breast cancer studies[1,8]. In the collaborative 
phase, together with the three winning teams from the competition phase, we 
further enhanced and integrated different imputation techniques. This effort led 
to the development of the final Aggregation based Imputation algorithm --- 
DreamAI, which is based on ensemble of six different imputation methods 
including: two low-rank matrix completion methods, two prediction based 
imputation methods, and two KNN type methods. The performance of DreamAI 
and other imputation tools were then systematically evaluated and compared 
using the CPTAC/TCGA Ovarian Cancer proteomics data sets, which contain 
profiles of duplicate tumor samples from the same patients [2]. The imputation 
accuracy of DreamAI, as measured by Pearson correlation coefficient (Cor), is 
about 15%-50% greater than the few leading popular tools, including ADMIN [6], 
KNN[17,18], missForest[19] and pcaMethods[30]. 

To illustrate the usage of imputation in proteomics data analysis, we performed 
proteogenomic integrative analysis using newly published data of deep TMT 
proteomics profiling of 103 clear cell renal cell carcinoma (CCRCC) samples 
and 80 adjacent normal tissue samples[35]. We observed improved RNA-
protein concordances between transcriptomics and proteomics data after 
performing imputation on proteomics data. When evaluating the power to detect 
proteins having significantly different abundances between tumor and adjacent 
normal tissues, we further observed an advantage of DreamAI imputation as 
compared to mean- and KNN- imputation, as well as no imputation.    

In summary, this work represents a landmark crowd-sourced community effort to 
address the problem of imputation for labeled LC-MS/MS proteomics data sets. 
The resulting source code, including an R package and Docker image of 
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DreamAI are publicly available. This tool can benefit data analysis practice in a 
broad range of proteomics research. 

Experimental	Design	and	Statistical	Rationale	

Challenge overview 

The NCI-CPTAC DREAM Proteogenomics Imputation Challenge was carried 
out to develop a benchmark imputation strategy for labeled LC-MS/MS 
proteomics data sets through crowd learning. The challenge consists of two 
phases: a challenging and a community phase. In the challenging phase, 
participants were invited to build their own imputation algorithms and winners 
were identified based on performances of submitted imputation algorithms on 
test data sets. In the community phase, the 3 top-performing teams worked 
jointly to develop a benchmark imputation strategy for labeled LC-MS/MS 
proteomics data.  

The challenging phase 

Imputation is an unsupervised learning, which makes judging results particularly 
challenging. To objectively evaluate different imputation algorithms in the 
challenge phase, we implemented a simulation framework to generate decoy 
data sets with missing patterns mimicking that of the real data sets. We made 
use of the global proteomics profiles of labeled LC-MS/MS experiments from the 
CPTAC/TCGA breast cancer and ovarian cancer studies [1,7]. We started with 
the subsets of proteins with complete measurements and superimposed pseudo 
missing data points generated from probability models, mimicking the missing 
mechanisms in labeled proteomics experiments. We introduced both biological 
and instrumental missing events, with the probability of the latter depending on 
protein abundance measurements (see Supplement A2 and A3 for more 
details of data sets and data generation).  

In total, 10 training data sets and 100 testing data sets were generated. The 
large number of test data sets was to allow a thorough evaluation of 
performances of submitted imputation algorithms (Fig 2a, Supplement A4). The 
training data sets were generated based on the global proteomics data from the 
CPTAC/TCGA Breast Cancer Study [1] and were shared with the challenge 
participants. The testing datasets were generated based on the global 
proteomics data from CPTAC Prospective Ovarian Cancer Study [7], which 
were not available to the public during the challenging period. Moreover, the 
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simulated testing data sets were not shared with the participants. Each 
participating team needed to firstly develop an imputation algorithm based on 
training data sets, and then submit their final algorithm to Synapse to perform 
imputation on testing data sets.  

Imputation performances were assessed based on two metrics: protein-wise 
Pearson correlation coefficients (Cor) and normalized root mean squared 
deviation (NRMSD) between imputed and true values (see Supplement A6). 
Specifically, NRMSD was computed as the root of mean squared deviation 
normalized by the range of true values. The final ranking of participating teams 
during the challenge phase was determined by a tie breaking strategy applied 
on their performance evaluation (see Supplement A6 and Supplemental Table 
S2,S3).  

The community phase 

The goal of the community phase was to construct a consensus imputation 
algorithm by integrating multiple methods with diverse strategies. We not only 
utilized the winning algorithms from the challenging phase, but also leveraged 
existing tools that provide complementary strengths. We extensively evaluated 
the integration strategies and developed a baggingbased aggregation 
framework that enhances the robustness of the final algorithm. We refer to the 
final algorithm as DreamAI (Aggregated Imputation). Methodology and 
performance details of DreamAI are discussed in the Result Section.  

To evaluate imputation performances, we utilized two replicate sets of protein 
abundance profiles of 32 tumors from the CPTAC/TCGA Ovarian Cancer Study 
[2] (see Supplement A2, A3 and A5 for data set details and quality 
assessment). Specifically, the two replicate sets were independently generated 
by two proteomics labs: the Pacific Northwest National Laboratory (PNNL); and 
a proteomics lab from Johns Hopkins University (JHU). We thus referred to the 
two data sets of 32 samples as the PNNL-data and JHU-data respectively.   

All methods were firstly applied to the PNNL-data (3027 proteins by 32 samples) 
to impute the missing values. The corresponding observed data points in the 
JHU-data were then used as approximation for the true values to evaluate the 
imputation results. There were 3700 missing values in the PNNL-data, and most 
(>99%) of them were observed in the JHU-data. To adjust for “background” 
abundance measurement differences between the two proteomics labs due to 
technical and/or biological factors, we employed the Scaled-Cor and NRMSD-δ 
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for performance evaluation. Specifically, for each protein, background Cor and 
background NRMSD were first obtained using paired data points observed in 
both data sets. In addition, imputation Cor and imputation NRMSD were derived 
as the Cor and NRMSD between imputed values of the PNNL-data and the 
corresponding non-missing values in the JHU-data, respectively. Scaled-Cor of 
one protein was then calculated as the ratio of the imputation Cor to the 
background Cor of this protein. And NRMSD-δ was defined as the difference 
between the imputation NRMSD and the background NRMSD. In addition, to 
ensure robust evaluation, we restricted our performance evaluation on a subset 
of 289 proteins which had at least 5 missing data points and background Cor 
greater than 0.3.  

 

Validation of DreamAI performance on real application 

To illustrate the impact of imputation on downstream data analysis of proteomics 
data, we applied DreamAI to a large TMT proteomics data set from a recent 
proteogenomics study of clear cell renal cell carcinoma (CCRCC) [35]. In this 
study, 103 treatment naïve renal cell carcinoma and 80 paired normal adjacent 
tumor (NAT) tissue samples were profiled using a proteogenomic approach 
wherein each tissue sample was homogenized via cryopulverization and 
aliquoted to facilitate genomic, transcriptomic, and proteomic analyses on the 
same tissue sample.  

We calculated the concordance between RNAseq and global proteomics data 
by testing gene-wise Spearman correlations between these two types of data on 
the same set of samples. Evaluation of the concordance was based on proteins 
(n=2012) with at least one missing value in the tumor samples.  

We also evaluated whether different treatments of missing values may impact 
statistical powers for detecting proteins associated with normal-tumor status or 
immune subtypes. We considered four data versions: the original abundance 
table with missing values, and the imputed abundance tables based on three 
different imputation methods: mean imputation, KNN imputation and DreamAI 
imputation. We focused on a subset of 92 genes in the CPTAC CCRCC 
proteomics data, whose imputed protein abundances by KNN and that by 
DreamAI are rather different (the NRMSD between the imputed abundance by 
KNN and that by DreamAI is greater than 0.2). We then performed Wilcoxon 
two-sample tests comparing tumor and NAT samples; and Kruskal–Wallis tests 
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to screening for proteins associated with four different immune subtypes [35].  

 

Rational of Statistical Tests in the Study 

The assumption of normal distribution is not always proper for proteomics 
abundance data from labeled mass spectrometry experiments. In Figs S1e-f, 
we illustrated the normality (Shapiro) test results for the CPTAC/TCGA Ovarian 
Cancer data sets. Majority of the proteins (>75%) in both the PNNL- and JHU-
data showed significant deviation from the normal distribution (p < 0.05). 
Therefore, we chose to use non-parametric tests for all the statistical inference. 
Specifically, we employed the Spearman correlation based tests to assess RNA-
protein concordance, the Wilcoxon Rank test to identify differentially expressed 
proteins between normal and tumor samples, and the Kruskal-Walis tests for 
screening for proteins associated with four different immune subtypes. 

	

Result	

Competition results in the challenging phase 

We implemented two rounds of leader board competition and one final round of 
official competition evaluation during the challenging phase (see Supplement 
A1). Among 21 teams participating in this challenge, 17 received valid scores in 
the final round. Names and affiliations of all participants were listed in Table S4. 
The corresponding 17 imputation methods include 6 methods based on 
prediction models, 5 using matrix completion techniques, 2 relying on constant 
imputation, 2 employing multiple strategies and 2 other methods with missing 
algorithm strategies reports. The performances of these 17 algorithms were 
illustrated in Fig. 2b,	2c. Interestingly, diverse performances were observed for 
teams employing the same category of methods. For example, among the five 
low-rank matrix completion based imputation methods by five different teams, 
two showed superior performance, but the other three produced much less 
reliable results compared to the baseline imputation method, KNNimpute [17,18] 
(Fig. 2b). This observation suggests that customized treatment for labeled 
proteomics data in employing these imputation techniques is important to assure 
good performance. Also, as expected, the two methods based on constant 
imputation showed poor performances, suggesting this simple treatment does 
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not work well for labeled proteomics data with complicated missing 
mechanisms.    

The top three methods were SpectroFM, RegImpute, and Birnn (please see 
Supplement A6 for ranking details). Both SpectroFM and Birnn used matrix 
completion techniques, while RegImpute employed prediction models. 
Methodology details are discussed in the following section and Supplement A9. 
The corresponding teams of the three winning algorithms --- SpectroFM, 
RegImpute, and Birnn --- were then invited to participate in the community 
phase. 

 

DreamAI: Methodology and Performance 

In the community phase, we constructed a consensus imputation algorithm by 
integrating multiple methods with diverse strategies. The final product, DreamAI, 
is based on an aggregated imputation framework [36]. Specifically, it consists 
three major steps (Fig. 3a): generating 100 bagging sets with pseudo missing 
values based on the original data; imputing each bagging set with a consensus 
imputation strategy; and averaging imputed values of each missing spot across 
different bagging sets.  

The consensus imputation strategy 

The central piece of DreamAI --- the consensus imputation strategy, is based on 
results from six imputation algorithms: the three winning algorithms in the 
challenging phase --- spectroFM: Team DMIS_PTG; RegImpute: Team Jeremy 
Jacobsen; Birnn: Team BruinGo; and 3 baseline algorithms --- ADMIN[6], 
KNN[17,18], and missForest[19] (Fig. 3b).  

Both spectroFM and Birnn are based on low rank matrix completion methods. 
Specifically, spectroFM employs LibFM, a factorization machine library [37] to 
approximate the normalized protein abundance matrix (with missing values) with 
the product of two dense latent low rank matrices corresponding to proteins and 
samples respectively. In addition, a regularized Markov Chain Monte Carlo 
(MCMC) algorithm is implemented in spectroFM to solve the optimization 
problem. Birnn, which employs a similar low rank matrix decomposition 
framework, uses a different regularization technique --- the smoothly clipped 
absolute deviation (SCAD) penalty [38] --- to constrain the ranks of the 
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decomposed matrices, and implements an iteratively reweighted nuclear norm 
(IRNN) [39] algorithm to solve the optimization problem (see Supplement A9).          

Similar to missForest [19], RegImpute tackles the problem of imputation through 
prediction. The idea is to use observed abundances of other proteins (samples) 
to estimate the missing abundance of a given protein (sample). Specifically, 
RegImpute utilizes ridge regressions [40], and incorporates an iterative 
procedure to refit the prediction models leveraging the imputed values from the 
last iteration (see Supplement A9). This iterative procedure helps improve the 
prediction accuracy, and usually converges after 10 iterations.             

KNN based imputation, the most commonly used imputation strategy in omics 
studies, can also be viewed as a prediction approach: a small set of features 
(samples) in the neighborhood of the feature (sample) to be imputed are used to 
fit a prediction model, which often takes the form of a linear combination 
(weighted average). ADMIN [6] can be viewed as an enhanced version of KNN. 
It specifically models the abundance-dependent missing mechanism in labeled 
proteomics data sets, and uses the joint likelihood of protein abundances and 
missing mechanisms to calculate the optimal weights for predicting the missing 
values (see Supplement A8).  

In addition, when selecting baseline methods to be included in DreamAI 
aggregation, we also considered pcaMethods [30], a low-rank matrix completion 
method that has been applied to missing value imputation of labeled proteomics 
data [31]. However, the performance of pcaMethods is substantially worse than 
that of KNN, MissForest, and ADMIN on the CPTAC/TCGA Ovarian Cancer data 
set (Fig S3). Thus, we did not include this algorithm in the final consensus of 
DreamAI.  

All selected methods provide complementary strengths. While the low rank 
matrix completion based methods effectively leverage the strong global 
covariance structure among proteins, the prediction-based methods provide 
more flexible imputation solution based on small neighbors (individual features) 
in the data. In addition, missForest helps to capture non-linear relationship 
among proteins, and ADMIN directly utilizes the abundance-dependent missing 
trend in proteomics data. Thus, by aggregating all these strategies in an 
effective way, we expect to achieve more accurate and robust imputation 
performance. Specifically, we propose to average the imputation results of all 
the 6 methods on one data set as the consensus imputation strategy. The 
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bagging procedure, described below, makes this simple average rather robust 
and effective.              

Model aggregation through bagging 

A modified bagging strategy is adopted in DreamAI to improve the robustness 
and accuracy of imputation algorithms. Instead of sub-sampling subjects or 
proteins, DreamAI generates “bagging” (perturbed) data matrices by setting a 
small subset of observed data points in the original data matrix as pseudo NAs. 
Specifically, these data points were selected according to a probability model 
reflecting the abundance-dependent missing mechanism with parameters 
estimated based on the original data matrix. Then DreamAI applies imputation 
algorithms on a collection of bagging matrices with both true and pseudo 
missing values, and reports the average of the imputed values of each missing 
spot across all bagging matrices as the final imputed values.  

To illustrate the benefit of bagging aggregation on imputation, we applied 
individual imputation method with or without bagging aggregation on the PNNL 
data. Specifically, we utilized 100 bagging matrices, and set the missing rates in 
the bagging matrices to double that of the original data set. For each method, 
Scaled-Cor between imputed values and the observed “true” values from the 
JHU data set of the corresponding data points were used for evaluation (see 
The Community Phase section for definition of Scaled-Cor). Fig 3c illustrates 
Scaled-Cor of imputation results from methods using (y-axis) and not using the 
bagging aggregation strategy (x-axis) across protein groups with different 
characteristics. Specifically, protein groups were defined according to protein 
closeness scores, pseudo missing performances, or average protein 
abundances. For a given protein, the protein closeness score refers to the 
average correlation between this protein and its 50 closest neighbors; the 
pseudo missing performances were calculated as the NRMSD between the 
imputed values of the pseudo missing data points introduced during the bagging 
procedure and their “true” abundances; and the average protein abundances 
were derived based on observed protein abundance measurements in the 
PNNL-data. More details of definitions of these protein groups were provided in 
Supplement A7.   

As shown in Fig. 3c, the results based on bagging aggregation showed overall 
improved Scaled-Cor compared to those without using bagging aggregation. 
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Additionally, the improvement from bagging is more dramatic for baseline 
methods than the winning algorithms from the challenging phase.  

Overall performance evaluation 

We compared the performance of DreamAI with that of each individual 
imputation algorithm (with bagging). The average Scaled-Cor and NRMSD 
based on all proteins are shown in Fig. 3d. DreamAI achieves higher Scaled-
Cor and lower NRMSD than all the six individual imputation methods.  
Specifically, the imputation accuracy of DreamAI, as measured by Scaled-Cor, 
is about 20% greater than KNN and ADMIN, and 15% greater than missForest. 
In addition, the performance of DreamAI was also compared to that of 
pcaMethods, and a 50% improvement on Scaled-Cor was observed (Fig S3). In 
addition, the dashed line in the NRMSD plot represents the reference NRMSD 
based on all paired data points observed in both the PNNL and the JHU data 
sets. Interestingly, NRMSD of DreamAI is smaller than the reference NRMSD, 
implying superior performance of DreamAI.  

As illustrate in Fig. 3d, the three winning algorithms from the Challenge all 
outperformed the three baseline methods, which is consistent our observations 
from the challenge phase. An immediate question, then, is whether it helps, in 
the aggregation exercise, to include any or all of the baseline methods, which 
have suboptimal performances. We thus also evaluated strategies of 
aggregating none or a subset of the baseline methods in DreamAI. As illustrated 
in Fig. S2a, without any of the baseline methods, the Scaled-Cor of imputation 
result is about 13% lower than the result from aggregating all 6 methods. This 
clearly demonstrates the benefit of aggregating methods with complementary 
strengths. Moreover, ADMIN appears to be a more important player than KNN 
and missForest, such that the Scaled-Cor drops more if ADMIN were ommitted 
from the aggregation, compared to when missForest or KNN were left out. This 
illustrates the benefit of incorporating the abundance dependent missing 
mechanism, a common feature of proteomics data, in the imputation framework. 
Between KNN and missForest, KNN is less helpful in the aggregation, such that 
the method by leaving KNN out achieves even slightly better performance in 
terms of Scaled-Cor. More detailed investigation further suggests that KNN 
helps only for proteins with close neighbors and high abundances (Fig. S2b-c).           

In practice, the DreamAI R-package provides the flexibility for users to specify 
any combination of the 6 individual methods to perform DreamAI imputation. 
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When the data dimension or computational cost is not a concern, one may 
choose to include ADMIN and missForest, in addition to the three winning 
algorithms, to achieve the optimal performance. When the data matrix has a 
large dimension, computational time required by missForest could be 
substantial, and the users may choose to include ADMIN and KNN instead of 
missForest to balance the tradeoff between performance and computational 
burden. 

Performance across different protein groups 

To further understand the impact of various protein characteristics on the 
imputation results, we assess the performance of DreamAI among protein 
groups with different protein closeness scores, pseudo missing 
performances, or average protein abundances as defined in the previous 
section and in the Supplement A7.  

As illustrated in Fig. 4a, imputation performance of DreamAI, in term of scaled-
Cor, shows an increasing trend with protein closeness. Moreover, the 
improvement of DreamAI over KNN is the most dramatic, more than 65%, for 
the protein group with the lowest closeness. This suggests the advantage of 
leveraging the information in the whole data set for data points with 
uninformative neighbors when performing imputation. A similar pattern is 
observed based on NRMSD-δ as well (Fig. 4a).    

Across the four protein groups with different pseudo missing performance 
evaluations, both DreamAI and KNN showed better imputation accuracy in term 
of Scaled-Cor for the group with the best pseudo missing performance than the 
others. The improvements of DreamAI over KNN, however, are quite 
comparable across the four clusters (Fig. 4b). 

While protein abundance correlates with the imputation performance of KNN, it 
does not show obvious association with performance of DreamAI (Fig. 4c). And 
DreamAI showed the biggest improvement over KNN for the protein group with 
the lowest abundances. NRMSD-δ of both DreamAI and KNN appeared to be 
negatively associated with the protein abundance, which seems to imply that 
NRMSD depends on the scale of the value to be imputed, and thus its 
interpretation needs to be taken with cautious.  
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Imputation helps gain biological insights 

To illustrate the benefit of proper imputation of proteomics data on downstream 
proteogenomic analysis, we applied DreamAI on the global proteomics data set 
of 103 treatment naïve renal cell carcinoma and 80 paired normal adjacent 
tumor (NAT) tissue samples from the CPTAC CCRCC study [35]. The data set 
contained protein abundance measurements of 9209 genes that were detected 
in at least 50% of the samples. 2059 of the 9209 genes had missing 
measurements in at least one sample. The overall missing rate of the protein 
abundance matrix of these 2059 genes was 20.4%, and sample wise missing 
rate ranges from 2.5% to 7%. The abundance dependent missing (MNAR) 
trends in the proteomics data of tumor and NAT samples are illustrated in Fig. 
5a and S4a respectively. 

We first considered the 103 tumor samples and assess the protein-RNA 
concordance for the protein abundance matrices with and without DreamAI 
imputation. Since the noises from any analytical, experimental or data 
preprocessing steps in the proteomics data should be independent from that in 
the RNA data, better protein-RNA concordance shall reflect richer information 
that is biological relevant in the corresponding data sets. As illustrated in Figure 
5b, for 2012 proteins with at least one missing value in tumor samples, their 
gene-wise protein-RNA Spearman correlations based on DreamAI output were 
significantly higher than that without imputation (pvalue<10e-16). The DreamAI 
result also led to a greater number of genes with significantly non-zero 
Spearman correlation at various p-value cutoffs (Figs 5c, 5d). Parallel analysis 
applied to proteogenomics data of NAT samples reveals similar improvement of 
protein-RNA concordance based on protein abundance table with DreamAI 
imputation over that without imputation (Fig. S4).    

We also observed increased power of biological signal identification based on 
DreamAI imputation results, as compared to other imputation strategies. 
Specifically, Fig. S5a illustrated the p-value distributions of the Wilcoxon two-
sample tests comparing tumor and NAT samples based on either the original 
abundance table or those resulted from different imputation strategies. The p-
values based on the DreamAI imputation tended to be more significant than 
those resulting from the mean- or KNN-imputation, as well as that of no 
imputation. Moreover, Fig. S5b shows a similar benefit on power for screening 
for proteins associated with four different immune subtypes [35] by using 
DreamAI imputation over other imputation strategies.  
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Furthermore, to investigate whether imputation may induce (artificial) changes of 
the abundance distributions, we assessed whether/how different imputation 
strategies could impact the standard deviations (SD) of individual protein 
abundances (Figs. S5c). First, as expected, for a large number of proteins, the 
mean-imputation resulted in decreased SDs, which might cause artificially 
inflated false discovery rate in downstream statistical inferences. The KNN 
imputation leads to both deflated and inflated SDs for different groups of 
proteins. DreamAI, on the other hand, demonstrated the least perturbation on 
the SDs of protein abundances.  

These examples illustrate the advantage of using proteomics data with DreamAI 
imputation in downstream statistical analysis over other alternative strategies. 
Nevertheless, we also want to note that without knowing the ground truth in the 
real data, one needs to interpret the power comparison for differential 
expression analysis with caution.   

   

Software and Computational Time 

An R package of DreamAI has been implemented and is available to public at 
Github (https://github.com/WangLab-MSSM/DreamAI). We have also provided a 
Docker image of the software at https://hub.docker.com/r/cptacdream/sub1.  

To illustrate the computational time of the algorithm, we applied the docker 
version of DreamAI to the CPTAC CCRCC proteomics data (9209 
genes/proteins by 207 samples) using a cloud based "medium" size Linux virtual 
machine comprised of 2 vCPUs and 4gb RAM with an Ubuntu operating system. 
The imputation took 4hr50min when all 6 imputation methods included in the 
DreamAI package were used for the ensemble. The running time reduced to 
1hr50min when missForest is not included in the ensemble procedure. Thus, 
when computational burden is a concern, the users could choose to omit 
missForest in the DreamAI function to speed up the imputation. This strategy, in 
general, will not sacrifice much of the imputation accuracy as illustrated in the 
CPTAC/TCGA ovarian cancer data example (Figure S2). Please see more 
discussion on the recommended choices of collection of ensemble methods in 
DreamAI in the Overall performance evaluation section. 

Here we want to note that the computational time of DreamAI on a typical 
proteomics data set is rather comparable to other computational steps in a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

proteomics data analysis pipeline. Protein identification and quantification often 
takes much longer time than the imputation procedure. For example, it takes 
about 15hrs to produce a protein level abundance matrix from raw file of the 
CPTAC CCRCC proteomics data on a horizontal server with 56 cores (Intel(R) 
Xeon(R) CPU E5-2690 v4 @ 2.60GHz), and 500 RAM by computational tools 
including: MSFragger and Philosopher[35,42,43]. 

 

Discussion	

How to handle missing values in MS based proteomics data has been a long-
standing challenge in proteomics research. As the study size increases, the 
issue of missing values becomes more significant, as data from more mass 
spectrometry experiments need to be merged together. On one hand, the 
isobaric labeling technique greatly enhances the quantitation precision and 
experiment throughput; on the other hand, it further exacerbates the missing 
data problem. With experimental induced multiplex-level missing pattern as well 
as the abundance dependent missing trend, proteomics data from labeled MS 
experiments cannot be properly or effectively analyzed by using observed data 
only (either ignoring all features with missing samples or ignoring subsets of 
samples with missing data points in feature-wise modeling).     

Another strategy to handle missing data is through imputation, which has been 
widely adopted in many research fields, such as image processing, single-cell 
RNAseq studies, and label free proteomics data analysis. Its usage in 
proteomics data from labeled MS experiments is still limited, largely due to a 
lack of a benchmark imputation method suitable for this type of data. Because of 
the complicated missing structure in labeled proteomics data, imputation tools 
developed for other data types do not apply or do not perform well.      

The goal of this study is to develop a benchmark imputation algorithm for 
labeled proteomics data sets. Specifically, we conducted the NCI-CPTAC 
DREAM Proteogenomics Imputation Challenge to achieve this goal through 
crowd learning. 21 teams from a broad range of research fields participated in 
the Challenge and contributed diverse expertise. As expected, many general 
imputation algorithms used in other disciplines/applications did not perform well 
on labeled proteomics data sets. Indeed, only a subset of teams achieved better 
performance than the KNN imputation on Challenge data sets, suggesting 
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customization of the imputation algorithm for labeled proteomics data is 
important in order to effectively tackle this problem.  

The three winning teams from the Challenge further participated in a 
collaborative phase, and we jointly developed the final algorithm --- DreamAI --- 
an ensemble based imputation method. DreamAI employs a bagging framework 
to aggregate results from 6 diverse imputation methods: three winning 
algorithms from the Challenge (two based on low-rank matrix completion and 
one based on prediction model fitting), as well as three baseline imputation 
methods which have been used in previous proteogenomics data analysis --- 
KNN, ADMIN, and missForest [5,6,20,21]. This ensemble strategy of DreamAI 
leads to greatly improved performance compared to that of individual algorithms. 
The imputation accuracy on Scaled-Cor of DreamAI is 15-50% better than that 
of the individual baseline tool, or 9-15% better than that of the individual winning 
algorithm on the CPTAC/TCGA Ovarian Cancer proteomics data set.       

The bagging framework in DreamAI not only enhances the imputation 
performance, but also helps one gain insights on the imputation quality of each 
feature. Specifically, for a given feature, DreamAI estimates its imputation 
quality using the Cor between the true and imputed values of pseudo missing 
data points of this feature across different bagging iterations. In the 
CPTAC/TCGA Ovarian Cancer data application, the Cor assessment for the 
protein group with the best pseudo missing performance is 0.75, at least 26% 
higher than the remaining protein groups. Therefore, the pseudo missing 
performance score of each feature is informative to shed light on feature-specific 
imputation quality.      

Since imputation is an unsupervised learning problem, it has been a challenging 
task to objectively assess the performance of imputation methods. Thus, one of 
the major efforts during the Dream Challenge was to create high-quality bench-
mark simulation data sets to objectively evaluate imputation performances. 
Specifically, simulations were set up to mimic missing patterns in real 
proteomics data sets as closely as possible. Multiple training and testing data 
sets with varying proportions of biological and experimental missing rates, as 
well as different degrees of abundance dependent missing trend were 
generated based on global proteomics data from CPTAC breast and ovarian 
cancer studies [1,7]. Especially, global proteomics data from the CPTAC 
Prospective Ovarian Cancer Study [7], which were not publicly available during 
the Challenge Phase, were used to generate the testing data sets. 
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Moreover, to complement the usage of simulated data sets during the Challenge 
phase, in the community phase, we utilized the CPTAC/TCGA Ovarian Cancer 
proteomics data set [2], which contained proteomics profiles of two replicate 
biological samples of 32 ovarian tumors. This provided a unique opportunity to 
directly assess imputation performances on real missing data points in cancer 
proteomics studies.  

Although we provided NRMSD values on all examples, we used Cor as the main 
metric to evaluate imputation performance. NRMSD measures the distance 
between the imputed values and the true values of missing data points 
normalized by the varying range of abundances of each protein. Despite being a 
normalized distance measure, NRMSD still depends on the scale and 
distribution of the protein abundances. On the other hand, Cor is a scale free 
measure. As illustrated in Fig. 4c, among protein groups with different mean 
abundance levels, performance based on Cor is very stable, while NRMSD has 
an obvious trend to be positively associated with protein mean abundances.  

The benefit of using imputed data in downstream analyses stems from the 
improvement of sample size and thus the analysis power. As illustrated in the 
application on CPTAC CCRCC proteomics data, imputation helps to improve the 
overall RNA-protein concordance. Note, as reported by multiple proteogenomic 
cancer studies [1,7,8,35,44], only 50%-75% genes show significant Spearman 
correlations between their RNA expression and protein abundances, as a large 
number of proteins are subjected to post-translational modifications.  For 
example, in CPTAC CCRCC tumor and NAT data, about 74% and 52% of cis 
mRNA-protein pairs showed significant positive Spearman correlations 
respectively [35].  On the other hand, it’s reasonable to assume that noises 
coming from any analytical, experimental or data preprocessing steps in the 
proteomics data should be independent from that in the RNA data. Thus, for the 
protein data set showing higher levels of concordance with the corresponding 
RNA data, it is more sensible to assume the data set bears more relevant 
biological information, than to assume some artificial effects in the data set 
contributes to the better mRNA-protein concordance by chance. 

In the example of the CPTAC CCRCC study, using imputation result by 
DreamAI also leads to more significant p-values than that of other alternative 
strategies, when screening for proteins associated with tumor/normal status or 
immune subtypes. A further investigation on the impact of imputation on the SD 
of individual protein abundances suggests that DreamAI has the least 
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perturbation on the SDs of protein abundances. Nevertheless, we want to note 
that without knowing the ground truth in the real data, one needs to interpret the 
power comparison for differential expression analysis with caution.  

Other considerations in handling labeled proteomics data 

In the labeled MS experiments, it is recommended to include a common 
reference sample in each multiplex of the same study. Then, by using the 
relative abundance to the reference sample in each multiplex for downstream 
analysis, one can effectively remove the batch effect induced by different 
experimental variations across multiplex runs. As to the choice of the reference 
sample, it is preferred to use one as similar as possible to the target samples in 
the study. For example, in the CPTAC ovarian cancer and CCRCC projects, the 
reference samples were created by pooling equal amounts of individual tumor 
samples to be profiled in the studies.  

The usage of a common reference sample in each multiplex in isobaric labeled 
proteomics experiments also helps with the peptide-protein roll-up during protein 
quantification.  Specifically, rolling up from peptides to proteins can be 
performed at the log-ratio intensity level (i.e. log-ratio between intensity of a 
target sample and intensity of the reference sample in the same iTRAQ/TMT 
multiplex for one peptide). This strategy greatly improves the robustness and 
precision of protein quantification, while at the same time, effectively reduces 
the missing data percentage in protein level data compared to the peptide-level 
data. Thus, for isobaric labeled global proteomics experiments, it is preferable to 
perform biological/clinical data analysis based on the protein level data. And 
consequently, we would recommend performing imputation on the protein/gene 
level data as well. On the other hand, for data analysis of label free proteomics 
data, it has been suggested that directly model peptide abundance could be 
more efficient than performing imputation at the protein abundance level [12]. 
This is because the summary (or average) based peptide-protein intensity roll-
up used for label free proteomics data is vulnerable to many confounding factors. 
Modeling the peptide level abundances directly could effectively get around the 
variabilities induced in the roll-up step.  

For phospho-proteomics experiments, since phospho-site is the biological unit 
for downstream analysis, it is more meaningful to work with the quantification at 
phospho-site level and perform imputation on phospho-site level data directly.  
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Intuitively, since experimental noise in the data, including sample loading 
variations and batch effects could result in misleading patterns during imputation, 
we recommend performing imputation on data sets after proper pre-processing 
treatments, such as normalization and batch correction. In general, if the study 
contains samples with different disease statuses or from different treatment 
groups, it is better to have a randomized design to allocate samples from 
different groups evenly across multiplexes. Otherwise, batch correction will be 
needed in addition to the adjustment using the common reference samples. For 
example, in the CPTAC CCRCC proteomics experiment, batch effect due to 
TMT multiplex was confounded with the tumor-normal status due to imbalanced 
experimental design for a small subset of TMT multiplexes. Therefore, a batch 
correction step was adopted before imputation and downstream analysis were 
carried out. [35] 

In the real data analysis, we removed features with missing rate higher than 
50% before imputation and downstream analysis. The choice of 50% cutoff is a 
trade-off between imputation accuracy and information (data feature) loss of the 
data set. For features with a high missing rate, the tasks to accurately identify 
close neighbors or to fit prediction models based on observed data points 
become very challenging due to the sample size limitation.  In a previous work, 
the authors suggested that, in general, imputation methods perform better on 
features with less than 50% missing values than on features with more than 50% 
missing values [12]. Additionally, in downstream analyses, it is preferred that the 
observed data points outweigh the imputed data points to ensure robustness. 
Thus, we settled with a cutoff at 50%.   

Although DreamAI has a general framework and can be applied to other 
proteomics data from label free experiments, its performance on those 
applications warrants future study. In addition, for proteomics data from targeted 
mass spectrometry experiments, such as MRM (multiple reaction monitoring), 
imputation could be less of a concern due to the relatively low missing rate. 
However, MRM experiments right now can handle at most a few hundred 
proteins/peptides in one run, and thus are not suitable for deep profiling in 
discovery studies. 

Application of SVM (support vector machine) or ANN (artificial neural network) 
on proteomics data imputation were not used by any of the 17 teams during the 
challenging, nor reported in any literature to the best of our knowledge. However, 
ANN based methods, which can be viewed as a non-linear extension of Low 
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Rank Matrix Completion, have been applied to solve imputation and batch 
correction for single cell RNAseq data recently [41]. Machine learning methods 
including ANN could be presumably useful for proteomics data imputation, 
which warrants future investigations.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

ACKNOWLEDGEMENT 

 

We would like to thank the National Cancer Institute’s Clinical Proteomic Tumor 
Analysis Consortium (CPTAC), a comprehensive and coordinated effort to 
accelerate the understanding of the molecular basis of cancer through the 
application of proteogenomics, on providing the data used in this challenge and 
making it freely available to the public. We also like to thank Dream Challenges 
organization for providing the opportunity to encourage researchers all around 
the world to take part in this cutting-edge research topic and all the participants 
in this challenge for building the algorithms and submitting the results. This work 
was partly supported by grants U24 CA210993 and U24 CA210972 from the 
National Cancer Institute Clinical Proteomic Tumor Analysis Consortium 
(CPTAC).  

 

 

COMPETING FINANCIAL INTERESTS 

The authors declare no competing interests. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

Reference 

1. Mertins, Philipp, D. R. Mani, Kelly V. Ruggles, Michael A. Gillette, Karl R. 
Clauser, Pei Wang, Xianlong Wang et al. "Proteogenomics connects 
somatic mutations to signalling in breast cancer." Nature 534, no. 7605 
(2016): 55. 

 

2. Zhang, Hui, Tao Liu, Zhen Zhang, Samuel H. Payne, Bai Zhang, Jason 
E. McDermott, Jian-Ying Zhou et al. "Integrated proteogenomic 
characterization of human high-grade serous ovarian cancer." Cell 166, 
no. 3 (2016): 755-765. 

 

3. Thompson, Andrew, Jürgen Schäfer, Karsten Kuhn, Stefan Kienle, Josef 
Schwarz, Günter Schmidt, Thomas Neumann, and Christian Hamon. 
"Tandem mass tags: a novel quantification strategy for comparative 
analysis of complex protein mixtures by MS/MS." Analytical chemistry 75, 
no. 8 (2003): 1895-1904. 

 

4. Ross, Philip L., Yulin N. Huang, Jason N. Marchese, Brian Williamson, 
Kenneth Parker, Stephen Hattan, Nikita Khainovski et al. "Multiplexed 
protein quantitation in Saccharomyces cerevisiae using amine-reactive 
isobaric tagging reagents." Molecular & cellular proteomics 3, no. 12 
(2004): 1154-1169. 

 

5. Gao, Qiang, Hongwen Zhu, Liangqing Dong, Weiwei Shi, Ran Chen, 
Zhijian Song, Chen Huang et al. "Integrated Proteogenomic 
Characterization of HBV-Related Hepatocellular Carcinoma." Cell 179, no. 
2 (2019): 561-577. 

 

6. Wang, Minghui, Noam D. Beckmann, Panos Roussos, Erming Wang, 
Xianxiao Zhou, Qian Wang, Chen Ming et al. "The Mount Sinai cohort of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

large-scale genomic, transcriptomic and proteomic data in Alzheimer's 
disease." Scientific data 5 (2018): 180185.  

 

7. McDermott, Jason E., Osama A. Arshad, Vladislav A. Petyuk, Yi Fu, 
Marina A. Gritsenko, Therese R. Clauss, Ronald J. Moore et al. 
"Proteogenomic characterization of ovarian HGSC implicates mitotic 
kinases, replication stress in observed chromosomal instability." Cell 
reports medicine 1, no. 1 (2020): 100004. 

 

8. Krug, Karsten, Eric J. Jaehnig, Shankha Satpathy, Lili Blumenberg, Alla 
Karpova, Meenakshi Anurag, George Miles et al. "Proteogenomic 
landscape of breast cancer tumorigenesis and targeted 
therapy." Cell 183, no. 5 (2020): 1436-1456 

 

9. Brenes, Alejandro, Jens L. Hukelmann, Dalila Bensaddek, and Angus I. 
Lamond. "Multi-batch TMT reveals false positives, batch effects and 
missing values." Molecular & Cellular Proteomics (2019): mcp-RA119. 

 

10. Chen, Lin S., Jiebiao Wang, Xianlong Wang, and Pei Wang. "A mixed-
effects model for incomplete data from labeling-based quantitative 
proteomics experiments." The annals of applied statistics 11, no. 1 
(2017): 114. 

 

11. Chen, Lin S., Ross L. Prentice, and Pei Wang. "A penalized EM algorithm 
incorporating missing data mechanism for Gaussian parameter 
estimation." Biometrics 70, no. 2 (2014): 312-322. 

 

12. Webb-Robertson, Bobbie-Jo M., Holli K. Wiberg, Melissa M. Matzke, 
Joseph N. Brown, Jing Wang, Jason E. McDermott, Richard D. Smith et 
al. "Review, evaluation, and discussion of the challenges of missing value 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

imputation for mass spectrometry-based label-free global proteomics." 
Journal of proteome research 14, no. 5 (2015): 1993-2001. 

 

13. Kammers, Kai, Robert N. Cole, Calvin Tiengwe, and Ingo Ruczinski. 
"Detecting significant changes in protein abundance." EuPA open 
proteomics 7 (2015): 11-19. 

 

14. Little, Roderick JA, and Donald B. Rubin. Statistical analysis with missing 
data. Vol. 793. John Wiley & Sons, 2019. 

 

15. Clough, Timothy, Safia Thaminy, Susanne Ragg, Ruedi Aebersold, and 
Olga Vitek. "Statistical protein quantification and significance analysis in 
label-free LC-MS experiments with complex designs." BMC 
bioinformatics 13, no. 16 (2012): 1-17. 

 

16. Tyanova, Stefka, Tikira Temu, Pavel Sinitcyn, Arthur Carlson, Marco Y. 
Hein, Tamar Geiger, Matthias Mann, and Jürgen Cox. "The Perseus 
computational platform for comprehensive analysis of (prote) omics data." 
Nature methods 13, no. 9 (2016): 731. 

 

17. Hastie, Trevor, Robert Tibshirani, Gavin Sherlock, Michael Eisen, Patrick 
Brown, and David Botstein. "Imputing missing data for gene expression 
arrays." (1999). 

 

18. Troyanskaya, Olga, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor 
Hastie, Robert Tibshirani, David Botstein, and Russ B. Altman. "Missing 
value estimation methods for DNA microarrays." Bioinformatics 17, no. 6 
(2001): 520-525. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

19. Stekhoven, Daniel J., and Peter Bühlmann. "MissForest—non-parametric 
missing value imputation for mixed-type data." Bioinformatics 28, no. 1 
(2011): 112-118. 

 

20. Causey, Dwight R., Jin-Hyoung Kim, David A. Stead, Samuel AM Martin, 
Robert H. Devlin, and Daniel J. Macqueen. "Proteomic comparison of 
selective breeding and growth hormone transgenesis in fish: Unique 
pathways to enhanced growth." Journal of proteomics 192 (2019): 114-
124. 

 

21. Trilla-Fuertes, Lucía, Angelo Gámez-Pozo, Jorge M. Arevalillo, Mariana 
Díaz-Almirón, Guillermo Prado-Vázquez, Andrea Zapater-Moros, Hilario 
Navarro et al. "Molecular characterization of breast cancer cell response 
to metabolic drugs." Oncotarget 9, no. 11 (2018): 9645. 

 

22. Chen, Lin S., Ross L. Prentice, and Pei Wang. "A penalized EM algorithm 
incorporating missing data mechanism for Gaussian parameter 
estimation." Biometrics 70, no. 2 (2014): 312-322. 

 

23. Bramer, Lisa M., Jan Irvahn, Paul D. Piehowski, Karin D. Rodland, and 
Bobbie-Jo M. Webb-Robertson. "A review of imputation strategies for 
isobaric labeling-based shotgun proteomics." Journal of Proteome 
Research (2020). 

 

24. Mazumder, Rahul, Trevor Hastie, and Robert Tibshirani. "Spectral 
regularization algorithms for learning large incomplete matrices." Journal 
of machine learning research 11, no. Aug (2010): 2287-2322. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

25. Candès, Emmanuel J., and Benjamin Recht. "Exact matrix completion via 
convex optimization." Foundations of Computational mathematics 9, no. 6 
(2009): 717. 

 

26. Sun, Ruoyu, and Zhi-Quan Luo. "Guaranteed matrix completion via non-
convex factorization." IEEE Transactions on Information Theory 62, no. 
11 (2016): 6535-6579. 

 

27. Mongia, Aanchal, Debarka Sengupta, and Angshul Majumdar. 
"McImpute: Matrix completion based imputation for single cell RNA-seq 
data." Frontiers in genetics 10 (2019): 9. 

 

28. Jiang, Bo, Shiqian Ma, Jason Causey, Linbo Qiao, Matthew Price Hardin, 
Ian Bitts, Daniel Johnson, Shuzhong Zhang, and Xiuzhen Huang. 
"SparRec: An effective matrix completion framework of missing data 
imputation for GWAS." Scientific reports 6 (2016): 35534. 

 

29. Tang, Chang, Hua Zhou, Xiao Zheng, Yanming Zhang, and Xiaofeng 
Sha. "Dual Laplacian regularized matrix completion for microRNA-
disease associations prediction." RNA biology16, no. 5 (2019): 601-611. 

 

30. Stacklies, Wolfram, Henning Redestig, Matthias Scholz, Dirk Walther, 
and Joachim Selbig. "pcaMethods—a bioconductor package providing 
PCA methods for incomplete data." Bioinformatics 23, no. 9 (2007): 1164-
1167. 

 

31. Palstrøm, Nicolai Bjødstrup, Rune Matthiesen, and Hans Christian Beck. 
"Data imputation in merged isobaric labeling-based relative quantification 
datasets." In Mass Spectrometry Data Analysis in Proteomics, pp. 297-
308. Humana, New York, NY, 2020. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

 

32. Lazar, Cosmin, Laurent Gatto, Myriam Ferro, Christophe Bruley, and 
Thomas Burger. "Accounting for the multiple natures of missing values in 
label-free quantitative proteomics data sets to compare imputation 
strategies." Journal of proteome research 15, no. 4 (2016): 1116-1125. 

 

33. Schafer, J. L. "NORM: Analysis of incomplete multivariate data under a 
normal model." University Park, PA: The Methodology Center, The 
Pennsylvania State University, version 3 (2016). 

 

34. Karpievitch, Yuliya, Jeff Stanley, Thomas Taverner, Jianhua Huang, 
Joshua N. Adkins, Charles Ansong, Fred Heffron et al. "A statistical 
framework for protein quantitation in bottom-up MS-based 
proteomics." Bioinformatics 25, no. 16 (2009): 2028-2034. 

 

35. Clark, David J., Saravana M. Dhanasekaran, Francesca Petralia, Jianbo 
Pan, Xiaoyu Song, Yingwei Hu, Felipe da Veiga Leprevost et al. 
"Integrated proteogenomic characterization of clear cell renal cell 
carcinoma." Cell 179, no. 4 (2019): 964-983. 

 

36. Breiman, Leo. "Bagging predictors." Machine learning 24, no. 2 (1996): 
123-140. 

 

37. Rendle, Steffen. "Factorization machines with libfm." ACM Transactions 
on Intelligent Systems and Technology (TIST) 3, no. 3 (2012): 57. 

 

38. Fan, Jianqing, and Runze Li. "Variable selection via nonconcave 
penalized likelihood and its oracle properties." Journal of the American 
statistical Association 96, no. 456 (2001): 1348-1360. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

 

39. Lu, Canyi, Jinhui Tang, Shuicheng Yan, and Zhouchen Lin. "Generalized 
nonconvex nonsmooth low-rank minimization." In Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp. 4130-
4137. 2014. 

 

40. Tikhonov, Andrei Nikolaevich, A. V. Goncharsky, V. V. Stepanov, and 
Anatoly G. Yagola. Numerical methods for the solution of ill-posed 
problems. Vol. 328. Springer Science & Business Media, 2013. 

 

41. Lakkis, Justin, David Wang, Yuanchao Zhang, Gang Hu, Kui Wang, 
Huize Pan, Lyle Ungar, Muredach Reilly, Xiangjie Li, and Mingyao Li. "A 
Joint Deep Learning Model for Simultaneous Batch Effect Correction, 
Denoising and Clustering in Single-Cell Transcriptomics." bioRxiv (2020). 

 

42. Kong, Andy T., Felipe V. Leprevost, Dmitry M. Avtonomov, Dattatreya 
Mellacheruvu, and Alexey I. Nesvizhskii. "MSFragger: ultrafast and 
comprehensive peptide identification in mass spectrometry– based 
proteomics." Nature methods 14, no. 5 (2017): 513-520. 

 

43. da Veiga Leprevost, Felipe, Sarah E. Haynes, Dmitry M. Avtonomov, Hui-
Yin Chang, Avinash K. Shanmugam, Dattatreya Mellacheruvu, Andy T. 
Kong, and Alexey I. Nesvizhskii. "Philosopher: a versatile toolkit for 
shotgun proteomics data analysis." Nature methods 17, no. 9 (2020): 
869-870. 

 

44. Yang, Mi, Francesca Petralia, Zhi Li, Hongyang Li, Weiping Ma, Xiaoyu 
Song, Sunkyu Kim et al. "Community Assessment of the Predictability of 
Cancer Protein and Phosphoprotein Levels from Genomics and 
Transcriptomics." Cell Systems 11, no. 2 (2020): 186-195. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

	

	

Main	Figure	Legends		

Figure 1. Missing rates and missing patterns in various proteomics data sets from 
CPTAC ovarian studies [2,7]. (a) Distribution of protein level missing rates in a 4plex-
iTRAQ global-proteomics data set of 112 tumor samples [2] and a 10plex-TMT global 
proteomics data set of 120 tumor samples [7]. X-axis represents the percentage of 
iTRAQ/TMT multiplexes in which individual proteins were not identified/quantified (b) 
Distribution of phospho-site level missing rates in a 4plex-iTRAQ phospho-proteomics data 
set of 92 samples and a 10plex-TMT phospho-proteomics data set of 120 samples. X-axis 
represents the percentage of iTRAQ/TMT multiplexes in which individual phosphosites were 
not identified/quantified. (c) Percentage of multiplex-level and non-multiplex-level missing 
data in iTRAQ global- and phospho-proteomics data sets. (d) Scatter plot of protein-level 
missing rates v.s. mean protein abundances based on observed data in the iTRAQ global-
proteomics data set. (e) Scatter plot of phospho-site level missing rates v.s. mean phospho-
site abundances based on observed data in the iTRAQ phospho-proteomics data set. 

Figure 2. Proteomics Data Imputation Challenge competition design and performance 
results of participants (a): Design of data simulation in challenge phase. (b): Cor and 
NRMSD evaluations of 17 submitted imputation algorithms. Different colors and shapes 
represent different imputation strategy categories. The dotted lines illustrate the 
performance level of KNN imputation. Three leading algorithms with better performance 
than KNN imputation have their names labeled. (c) Performance rank of all algorithms 
summarized for each strategy category (*algorithms using multiple strategies were listed 
multiple times in all relevant categories).  

Figure 3. DreamAI algorithm and its performance. (a) Bagging procedure in DreamAI. 
Firstly, different set of pseudo missing are introduced to original observed data to generate 
a collection of bagging data sets. Then imputation is performed for each bagging set using 
the consensus imputation method. The final imputed matrix is the average of all bagging 
sets at the missing spots of the original data. (b) Consensus imputation method in DreamAI: 
average of 6 algorithms including 3 baseline methods and 3 winning algorithms from the 
Challenge. (c) Imputation performance (Scaled-Cor) of all individual imputation method with 
and without bagging strategy. Average Scaled-Cor are reported for different protein groups 
based on different protein closeness, average abundance, or pseudo missing performance 
evaluations. (d) Performance (Scaled-Cor and NRMSD) comparison between DreamAI and 
all individual methods. The dashed line in the NRMSD panel represents the background 
NRMSD between PNNL-data and JHU-data based on data points observed in both data 
sets. The white numbers labeled on the bars represent the ranks of the performance of 
each method.  

Figure 4. Scaled-Cor (left) and NRMSD-δ (right) of DreamAI and KNN for different 
protein groups (x-axis) based on the CPTAC/TCGA ovarian data. The protein groups 
are derived based on (a) protein closeness; (b) pseudo missing performance; and (c) 
average protein abundances. For one protein, the protein closeness score refers to the 
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average correlation between this protein and its 50 closest neighbors; the pseudo missing 
performances were calculated as the NRMSD between the imputed values of the pseudo 
missing data points introduced during the bagging procedure and their “true” abundances; 
and the average protein abundances were derived based on observed protein abundance 
measurements in the PNNL-data. More details of definitions of these protein groups were 
provided in Supplement A7.    

Figure 5. For a set of CPTAC CCRCC tumors, proteomics data with DreamAI 
imputation shows improved concordance with their corresponding transcriptome 
data. All “correlation” labels refer to the Spearman correlation in this figure. (a) Scatter plot 
of protein-level missing rates vs. mean protein abundances based on observed values in 
the global proteomics data of 103 CCRCC tumor samples [35]. (b) Scatter plot of protein-
RNA association (Spearman correlation) between RNA and proteomics data with DreamAI 
imputation (y-axis) vs. the association based on non-imputed data (x-axis). (c) Scatter plot 
of significance (- log 10 p-value) for Spearman correlation between RNA and proteomics 
data with DreamAI imputation (y-axis) vs. that for the data without imputation (x-axis). (d) 
Number of genes showing significant protein-RNA Spearman correlation based on 
proteomics data with DreamAI imputation (pink) or without imputation (blue) at different p-
value cutoffs.  
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