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Abstract 16 

Immunoediting is a major force during cancer evolution that selects for clones 17 

with low immunogenicity (adaptation), or clones with mechanisms of immune 18 

evasion (escape). However, quantifying immunogenicity in the cancer genome 19 

and how the tumour-immune coevolutionary dynamics impact patient outcomes 20 

remain unexplored. Here we show that the ratio of nonsynonymous to 21 

synonymous mutations (dN/dS) in the immunopeptidome quantifies tumor 22 

immunogenicity and differentiates between adaptation and escape. We analysed 23 

8,543 primary tumors from TCGA and validated immune dN/dS as a measure of 24 

selection associated with immune infiltration in immune-adapted tumours. In a 25 

cohort of 308 metastatic patients that received immunotherapy, pre-treatment 26 

lesions in non-responders showed increased immune selection (dN/dS<1), 27 

whereas responders did not and instead harbour a higher proportion of genetic 28 

escape mechanisms. Ultimately, these findings highlight the potential of 29 

evolutionary genomic measures to predict clinical response to immunotherapy. 30 

 31 

 32 

 33 
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Introduction 34 

 35 

Cancer is an evolutionary process, where natural selection acts upon somatic 36 

mutations that alter phenotypes, and drives adaptation1,2. Recent advances in 37 

genomic technologies have enabled the characterisation of mutational 38 

landscapes in thousands of malignant3,4, and healthy somatic tissues5,6,7,8. These 39 

studies found that a) 2 to 5 driver mutations are sufficient to initiate a malignancy, 40 

b) driver mutations are also present in normal tissue5,6,7, c) 90-95%% of somatic 41 

point mutations are neutral7–9, and d) the signals of negative selection in somatic 42 

tissues are weaker compared to germline evolution7,10. However, the roles of 43 

negative, positive, and neutral evolution during carcinogenesis remains 44 

debated11, especially with regards to the extent of neutral evolution12–14 and 45 

negative selection7,8,15,16.  46 

 47 

The application of evolutionary theory allows us to infer cell growth dynamics, the 48 

number of driver alterations17,18 and their selective fitness coefficients19–22, as well 49 

as  the impact of deleterious mutations during cancer progression23,24. An 50 

evolutionary metric recently used to detect selection in cancer studies is the ratio 51 

of nonsynonymous to synonymous mutations, dN/dS7,8,25–27. The rationale is that 52 

within a genomic locus, nonsynonymous mutations that decrease cell fitness will 53 

show a paucity (negative selection, dN/dS < 1) while nonsynonymous mutations 54 

that increase cell fitness will be more frequent (positive selection, dN/dS >1) 55 

compared to synonymous neutral mutations. Mutations modulate fitness by 56 

altering the birth-death rate of a cell (driver and deleterious mutations) or by 57 

causing immune-mediated predation of the lineage (neoantigens or immunogenic 58 

mutations). We recently explored the evolutionary dynamics caused by negative 59 

selection operating in cancer, demonstrating that negative selection – and its 60 

release by immune escape – leads to a predictable neoantigen variant allele 61 

frequency (VAF) distribution28.  In theory, the shape of the neoantigen VAF 62 

distribution can measure selection, but technical limitations around neoantigen 63 

detectability in standard genome sequencing make the method impractical and 64 

under-powered.  Here we show how dN/dS-based measures offer a robust 65 
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means to quantify negative selection strength and detect competing selective 66 

forces acting in distinct regions of the cancer genome. 67 

 68 

The notion that the immune system influences cancer progression originated in 69 

the early 1900s29,30. It was only a century later, that studies in mice demonstrated 70 

that genetically inbred mice lacking lymphocytes, developed more spontaneous 71 

and chemically induced tumors than their wild-type counterparts30–32. These 72 

results engendered the concept of cancer immunoediting where tumor cells are 73 

subject to three phases: elimination, equilibrium, and escape29. Cancer 74 

immunoediting is an evolutionary process that shapes tumour immunogenicity by 75 

selecting for clones depleted of neoantigens (immune-adapted) or with an 76 

immune evasion phenotype (immune-escaped)33–35. Neoantigens are generated, 77 

among other mechanisms, by single nucleotide variants (SNVs) leading to 78 

aminoacidic changes in a peptide previously recognized as a self-antigen36. 79 

However, the extent of immunogenicity derived from SNVs in self-antigens 80 

remains unclear, particularly if anchor positions of the wild-type peptide are 81 

affected37.  In our previous work, we observed signals of immune-mediated 82 

negative selection in the immunopeptidome, defined as all natively MHC-bound 83 

genomic regions, associated to levels of immune infiltration. Nonetheless, a 84 

recent study claimed that after applying a more stringent normalization method 85 

these regions do not harbour signals of selection16. In this work, we corroborated 86 

our earlier findings and we further provide an alternative explanation for the lack 87 

of signal reported recently. 88 

 89 

The recent discovery of immune checkpoints (e.g. PD1 or CTLA4) as mechanism 90 

of immune evasion, led to the development of cancer therapies using immune 91 

checkpoint inhibitors (ICIs).  Despite the promising clinical results of ICIs, only 92 

30% of patients treated with these therapies show significant response. 93 

Therefore, considerable effort has been dedicated to understand the interaction 94 

between the immune system and cancer38–43, and to identify genetic 95 

determinants of immunotherapeutic response. To date, quantification of tumor 96 

mutation burden (TMB) is the primary genomic biomarker for enrolling patients 97 
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into ICI treatment. The underlying hypothesis for TMB as a biomarker is that a 98 

higher number of somatic mutations leads to a higher number of neoantigens, 99 

and therefore a higher likelihood of immune clearance after checkpoint inhibition. 100 

However, recent studies have shown that even mismatch repair proficient tumors 101 

display a pathological response44, emphasizing the need for quantifying the true 102 

immunogenicity of the cancer genome and their potential clinical response to 103 

immunotherapy. 104 

 105 

Here, we modelled cancer initiation and progression by adapting a stochastic 106 

branching process45 to simulate changes in dN/dS over time as a measure of 107 

selection and tumor immunogenicity during immunoediting. Using the insight 108 

gained from our model, we assessed dN/dS values in 8543 primary tumours, as 109 

well as 308 metastatic cancers treated with ICIs. We first corroborate that immune 110 

dN/dS correlates with levels of tumor infiltrating lymphocytes – a measure of the 111 

strength of immunoediting - in non-escaped tumors. Finally, by estimating 112 

immune dN/dS in pre-treated patients, we reported clinical response in immune-113 

escaped patients that had an absence of immune selection (immune dN/dS ~ 1). 114 

In contrast, tumors with low immune dN/dS, and therefore low levels of tumor 115 

immunogenicity, did not respond to the action of immune checkpoint inhibitors.  116 

 117 

Results 118 

A mathematical model of immunoediting 119 

We extended our previous modelling work to incorporate the acquisition of 120 

nonsynonymous and synonymous mutations in driver (positively selected) and 121 

passenger (neutral) loci24,46,47, as well as in regions exposed to the immune 122 

system and regions that confer immune-evasion properties (Fig 1). The 123 

interaction of different mutations and the observed evolutionary dynamics can be 124 

simplified into four phases: 1) A pre-neoplastic phase where cells do not have 125 

cancer driver mutations but may acquire passenger, immunogenic or escape 126 

mutations (Fig 1A), 2) a neoplastic phase that begins when a driver mutation 127 

avoids stochastic drift and initiate a clonal expansion (Fig 1B), 3) an elimination 128 

phase where cells acquiring somatic mutations recognized by the immune 129 
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system are eliminated (Fig 1C), and 4) a phase where expanding clones lead to 130 

a clinically-detectable tumor through either depletion of immunogenic mutations 131 

(immune adapted) or through a mutation in the genome that triggers an immune 132 

escape mechanism (immune escaped) (Fig 1D). An activated escape mechanism 133 

hides the clone from the immune system so that neoantigens accrue without 134 

being depleted by negative selection raising the overall tumor immunogenicity 135 

(Fig S1A). It is possible for these phases to overlap each other. For example, an 136 

escape mutation occurring pre-driver acquisition and thus pre-clonal expansion 137 

leads to tumors "born" immune-escaped. 138 

 139 

 140 
Figure 1. Description of the stochastic branching process used to model immunoediting. A) An initial set of 141 
wild type cells (Pre-malignant cell) divide and accumulates mutations. B) A driver mutation increases the 142 
probability of cell division initiating a phase of increased proliferation of clones (Cancer cell). C) During the 143 
phase of immune attack, the immune system removes cells carrying immunogenic mutations and might 144 
eradicate the tumor completely or force the tumor to adapt or escape. D) Two possible scenarios emerge 145 
as the outcome of immunoediting, cancer cells survive not harbouring immunogenic mutations (Immune 146 
adapted) or due to the acquisition of an immune evasion mechanism (Immune escaped). E) These scenarios 147 
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can be differentiated by looking at the ratio of nonsynonymous to synonymous mutations (dN/dS) in immune 148 
exposed regions of the genome. We defined two hypotheses of immune recognition: F) Single cell immune 149 
attack where any single cell carrying a neoantigen is able to initiate an immune response and be eliminated 150 
at a rate of immune-mediated cell death of PIS, G) Clonal immune attack where a minimum percentage of 151 
immunogenic cells is needed to elicit an immune response, as recently observed in mice models48. 152 

 153 
We initiated our model in the pre-neoplastic phase with a pool of N cells having 154 

an equal probability of birth (b) and death (d): b=d=0.5 (Methods). For each 155 

successful cell division, a number of new mutations are sampled from a Poisson 156 

distribution with mean µ´L (mutation rate measured in mutations per base pair 157 

per cell division multiplied by the length of the coding genome, L). We introduced 158 

nonsynonymous and synonymous mutations at a constant relative rate of 3 to 1 159 

given the expected genome composition49, so we could calculate the ratio 160 

between these two types of mutations (dN/dS) in the evolved population of 161 

tumour cells. We assumed that passenger nonsynonymous and all synonymous 162 

mutations are neutral. Once a cell acquired a nonsynonymous mutation in a 163 

driver, the probability of cell division b increases by a fixed value obtained from a 164 

Gompertz function (Methods), driving the next stage of tumorigenesis. 165 

 166 

During immunoediting29,50, cells carrying an immunogenic mutations may elicit an 167 

immune response. We tested whether or not dN/dS values derived from the 168 

immunopeptidome, the portion of the genome constantly exposed to immune 169 

recognition (defined as 'Immune dN/dS'), quantifies overall tumor 170 

immunogenicity, and differentiates between adaptation and escape. We 171 

expected that when the immune predation was active and there were no escape 172 

mechanisms evolved, the immune dN/dS would be lower than 1 showing overall 173 

low tumor immunogenicity. Conversely, in the presence of escape mechanisms 174 

immune dN/dS would have values closer to 1, and therefore high 175 

immunogenicity. Additionally, we could also measure a ‘global dN/dS’ by using 176 

mutations in all loci of the genome, and a ‘driver dN/dS’ by considering only 177 

mutations in driver loci (Fig 1E). We then modelled two hypotheses of immune 178 

recognition (Fig S1B): (1) a classic model (model A) where a single cell carrying 179 

an immunogenic mutation is sufficient to elicit an immune response (Fig. 1F), and 180 

(2) a clonal model (model B), recently suggested48, where a percentage 181 
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𝑃𝑐𝑙𝑜𝑛𝑒𝑠𝑖𝑧𝑒 of the total cells carrying the same immunogenic mutation is needed 182 

for the immune system to attack (Fig. 1G). In model A, the immune system is 183 

constantly pruning immunogenic cells, whereas model B produces a "rise and 184 

fall" pattern where immunogenic cells are allowed to expand to a threshold size 185 

but are then eliminated, similar to mass extinction events. Cells bearing a 186 

neoantigen are killed at an immune-mediated cell death rate PIS, where PIS ∈187 

	[0,1]. This parameter models the stochastic probability of encounters between 188 

antigen presenting cells and cytotoxic T-cells. Model parameters are summarized 189 

in Supplementary Table 1. 190 

 191 

Evolutionary dynamics of dN/dS during immunoediting reveals genomic 192 

signals of tumor immunogenicity 193 

 194 

To first understand dN/dS dynamics during the pre-neoplastic phase, we 195 

simulated the acquisition of neutral mutations only (non-synonymous passenger 196 

and synonymous mutations) in an initial population of 32 cells for 30 generations 197 

(Fig S2). We compared three mutation rate regimes similar to those founds in 198 

some neoplasms: microsatellite stable (µMSS=10-8 mutations/bp/division), 199 

microsatellite unstable (µMSI=10-7), and POLE-like (POLE=10-6). On average, 200 

the population size remained constant over time for the three regimes and the 201 

number of mutations was higher for higher mutation rate regimes (Fig S2A-B). 202 

The average number of mutations per simulated population was 102, 103, and 104 203 

for each mutation rate regime respectively (Fig S2B). As expected under neutral 204 

dynamics, we observed that the average dN/dS did not deviate significantly from 205 

1 and the variance was lower at high mutation rates. (95%CI for 10-8: 0.54-2.31, 206 

MSI:0.79-1.30, POLE:0.91-1.06) (Fig S2C). 207 

 208 

To determine the influence of positive selection on dN/dS values over time during 209 

the increased proliferation phase, we simulated only passenger and driver 210 

events. We simulated 1000 datasets assuming 0.1%, 0.5% and 1% of driver sites 211 

(Fig S3). We focused our analysis on simulations where a clonal expansion 212 

occurred, as defined by a growing population of more than 1000 cells within 100 213 
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generations (Fig 2A). We calculated dN/dS over time for all mutations (global 214 

dN/dS) and for only driver mutations (driver dN/dS). We observed large 215 

fluctuations of the global dN/dS values among the first generations due to the low 216 

number of mutations (Fig S3D). Interestingly, the accumulation of neutral variants 217 

pushed global dN/dS values to 1. Driver dN/dS peaked at high values and 218 

subsequently decreased towards one due to the accumulation of low frequency 219 

neutral variants (Fig S3E). As we demonstrated in Williams et al21, mutation 220 

frequency and driver dN/dS are expected to be positively associated showing the 221 

highest values at the largest clone sizes (Fig 2B). Accordingly, and as observed 222 

recently in clonal hematopoiesis22, the allele frequency spectrum (Cancer Cell 223 

fraction or CCF) of synonymous and non-synonymous mutations (Fig. 2C) 224 

showed that the observed high driver dN/dS is a consequence of proportionally 225 

fewer synonymous mutations at higher CCF thresholds compared to 226 

nonsynonymous mutations.  227 
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 228 
Figure 2. Immunoediting leads to tumor adaptation or escape. A) We defined two outcomes for each 229 
simulation: expansion and extinction. Expansion: Clonally expanded populations (Blue) that reached an 230 
upper limit of number of cells in the first n generations. Extinction: Simulations that drifted to extinction among 231 
the first n generations (Orange). B) driver dN/dS relationship to the cancer cell fraction. As described in 232 
Williams et al21 we show in our model that driver dN/dS increases at increasing values of clonality. C) 233 
Relative proportion of nonsynonymous to synonymous mutations. The upward trend of dN/dS is due to a 234 
high proportion of synonymous mutations removed at increasing CCF cut-offs. D). Immune dN/dS 235 
relationship to cancer cell fraction for single cell (model A, Red) and for the clonal model (model B, Blue). A 236 
sharp decrease in dN/dS at increasing CCF cut-offs consistent with the theoretical predictions for strong 237 
negative selection21.  E) Immune dN/dS relationship to the probability of immune-mediated cell death at 238 
different levels of CCF. At low CCF, the dN/dS for model B is closer to one across all levels of immune death 239 
due to the presence of several undetected small frequency clones carrying neoantigens. At high CCF, both 240 
models show strong association between immune death and dN/dS. This results into cancer clones depleted 241 
of neoantigens, classified as immune-adapted and bearing an overall low tumor immunogenicity. F) Immune 242 
dN/dS at different CCF cut-offs when including escape mutations at 1% rate. At low CCF levels, immune 243 
dN/dS decreases when increasing CCF but escaped clones push the signal of immune dN/dS towards one 244 
at high CCF cut-offs for model B. G) Immune dN/dS relationship to the probability of immune-mediated cell 245 
death at different levels of CCF when escape mutations are included. For both models, increasing the 246 
probability of escape events pushes dN/dS values back to one for all CCF cut-offs, reflecting a relaxation of 247 
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immune-mediated negative selection. Ultimately, these tumors are growing with escape mechanisms that 248 
allow the accumulation of neoantigens that increase the overall tumor immunogenicity. 249 

 250 
During the elimination phase, in addition to driver and passenger mutations, we 251 

introduced immunogenic mutations (5% of immunogenic sites) and explored the 252 

dynamics under two mechanisms of immune recognition (Single cell versus 253 

clonal immune attack).  We first calculated immune dN/dS values at different 254 

cancer cell fraction (CCF) cutoffs. We observed that at increasing clone sizes the 255 

immune dN/dS, and therefore tumor immunogenicity, value was approaching 256 

zero for both models (Fig 2D). As in model B negative selection is absent for 257 

small clones (low CCF), immune dN/dS was closer to 1. Then, we calculated 258 

immune dN/dS at varying rates of immune-mediated cell death, PIS, for different 259 

clone sizes (Fig 2E). We first confirmed that when the immune system was 260 

inactive (PIS = 0), the immune dN/dS was one for all clones. At increasing levels 261 

of effective immune surveillance both models demonstrated depletion of 262 

immunogenic mutations, and therefore low levels of tumor immunogenicity. 263 

Immune dN/dS in model B was less affected by this parameter given that multiple 264 

immunogenic mutations can remain hidden at low frequency. Ultimately, these 265 

simulations showed how immune dN/dS reveals the action of immune-mediated 266 

negative selection and can be used as a proxy for tumor immunogenicity.  267 

 268 

We next explored immune dN/dS values during the evolution of immune escape. 269 

The activation of escape is modelled as a stochastic event occurring at a fixed 270 

rate that depends on the proportion of escape sites in the genome. We repeated 271 

simulations using an immune-mediated cell death of PIS = 1 at different rates of 272 

escape. We first found that when the proportion of escape sites was 1%, immune 273 

dN/dS captured the action of immune-mediated negative selection across the 274 

whole frequency spectrum (Fig 2F). In model B, immune escape pushed immune 275 

dN/dS values back to one, slightly increasing overall tumor immunogenicity. At 276 

higher rates of immune escape, we observed increased immune dN/dS 277 

demonstrating how tumor immunogenicity is restored for all clone sizes when 278 

escape events are more common (Fig 2G). Notably, when the escape rate was 279 

5%, all clone sizes in model B reached immune dN/dS values close to one, 280 
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highlighting high levels of tumor immunogenicity.  By acquiring escape 281 

mechanisms, negative selection in the immunopeptidome is relaxed, the 282 

accumulation of immunogenic mutations becomes neutral, and tumor 283 

immunogenicity is restored.  284 

 285 

The results of our modelling provide a theoretical framework of co-evolution of 286 

somatic cells and the immune system and a basis to quantify tumor 287 

immunogenicity based on immune dN/dS. Further, it illustrates the importance of 288 

choosing an appropriate region of the genome to analyse immune selection and 289 

how clone sizes explain different levels of tumor immunogenicity. Moreover, we 290 

speculate that when mixing patients that are immune-escaped with non-escaped, 291 

signals of immune-mediated negative selection are no longer representative of 292 

the overall tumor immunogenicity. 293 

 294 

High levels of lymphocyte infiltration are associated to strong immune-295 

mediated negative selection and low levels of tumor immunogenicity 296 

To measure global, driver, and immune dN/dS values using genomic data, we 297 

developed SOPRANO (Selection On PRotein ANOtated regions), a bioinformatic 298 

pipeline that measures the extent of selection in specific regions of the genome 299 

(github.com/luisgls/SOPRANO). It extends our previous work, where we 300 

calculated dN/dS corrected for mutational context using a 7-substitution type 301 

(SSB7) or a 192-substitution model (SSB192)8. Here, we have extended the 302 

method to account for any set of concatenated genomic regions allowing for 303 

patient- and region- specific dN/dS estimates. We applied SOPRANO to 8543 304 

tumour samples from 19 cancer types from The Cancer Genome Atlas (TCGA), 305 

using the SSB192 model (Fig 3, Supplementary Table 2). We compared the ratio 306 

of dN/dS values between regions inside and outside the immunopeptidome 307 

(ON/OFF dN/dS). We defined the immunopeptidome as all possible wild-type 9-308 

mer regions present in the genome of a patient that are predicted to bind to the 309 

MHC-I complex with an affinity of %rank < 0.5 as defined in netMHC4.0 (Fig S4). 310 

In our first analysis, we used our previously published set of regions that bind to 311 

HLA-A0201 and compared them to a recently published proto-HLA16 consisting 312 
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of multiple HLA alleles. We found that lung adenocarcinoma (LUAD) and 313 

melanoma (SKCM) showed a depletion of nonsynonymous mutations in HLA-314 

A0201 binding regions, and that LUAD, HSNC and LUSC showed a depletion of 315 

nonsynonymous mutations in proto-HLA regions (Fig 3A). We compared the 316 

immune dN/dS values (ON/OFF dN/dS) obtained using SOPRANO to the values 317 

of immune selection (normalized HLA-binding mutation ratio or HBMR), recently 318 

reported by Van Den Eynden et al16.  We observed a significant correlation 319 

between the ON/OFF dN/dS ratio and the reported normalized HBMR using the 320 

proto-HLA (R=0.77, P Value= 0.00054, Fig 3B) but not when comparing to the 321 

HLA-A0201 (R=0.37, P Value= 0.15, Fig S5). Expectedly, the correlation for the 322 

HLA-A0201 was lower given the HBMR value was calculated using multiple 323 

HLAs- binding regions and therefore every patient not carrying the proto-HLA 324 

allele will contribute with only neutrally accumulating mutations. In consequence, 325 

it is important to note that the smaller the fraction of the assessed region that is 326 

truly under immune selection, the more neutral the dN/dS value would appear. 327 

 328 
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 329 
Figure 3. Immune dN/dS and immune activity across multiple tumor types. A) Immune dN/dS (ON/OFF dN/dS 330 
ratio) in multiple tumor types using either a curated HLA-A0201 target region or a proto-HLA consisting of 331 
the most common HLA haplotypes in the population obtained from Van Den Eynden et al16. Numbers 332 
represent the mutations ON target for each dataset. B) Comparison of immune dN/dS values using 333 
SOPRANO SSB-192 and normalized HBMR values reported in Van Den Eynden et al.16 C) Linear regression 334 
models for immune dN/dS and HBMR values versus median CD 8 T cell infiltration levels. In the analysis 335 
with no MSI-rich tumors, in addition to colorectal (CRC), we removed Stomach and Uterine cancer (STAD 336 
and UCEC). D)  Linear mixed model using dN/dS values as the dependent variables and all immune metrics 337 
as independent variables. Model selection using AIC revealed that ON/OFF dN/dS is strongly associated to 338 
the levels of CD8 T cells. No immune value was associated to the global dN/dS (OFF). 339 

 340 
To determine whether immune-mediated negative selection was associated with 341 

levels of immune activity, we compared immune dN/dS to the levels of immune 342 

infiltration previously reported in TCGA data51 (Fig 3C). Median CD8 T cells 343 

significantly correlated to the SOPRANO-derived immune dN/dS values in HLA-344 

A0201 regions (p=0.0046) but not to the HBMR values (proto-HLA) calculated in 345 
16 (p=0.22), even though the trend was negative for both. As expected, the 346 

correlation was also not observed in the simulated dataset. Interestingly, when 347 

tumour types where microsatellite instability (MSI) and mismatch-repair 348 

deficiency was common, such as colorectal (CRC), stomach (STAD) and uterine 349 

cancer (UCEC), were excluded from the analysis, the correlation between proto-350 
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HLA HBMR and the median CD8 T cells was significant (P=0.028), indicating that 351 

negative selection acts differently in these different tumour subgroups. This 352 

makes sense as hypermutant MSI tumours have a large frequency of escape 353 

events, such as upregulation of immune checkpoint mechanisms, loss of 354 

heterozygosity in the HLA region or mutations in genes associated to the antigen 355 

presenting machinery28,33,52. This last correlation was also strongly significant for 356 

cytolytic activity (P-value = 6e-04, Fig S6).  357 

 358 

We applied a linear mixed model to determine the contribution to the global dN/dS 359 

(OFF), the immunopeptidome-specific (ON) and the immune-dN/dS (ON/OFF) 360 

using reported immune variables (Fig 3D). We performed a stepwise model 361 

selection, and the initial (Fig S7) and best performing model for predicting 362 

Immune dN/dS (R-square adj= 0.89, AIC= -83, p-value = 0.01) had CD8 T cells 363 

as the most significant explanatory variable. Importantly, none of the variables 364 

could explain global dN/dS values and seven out of the ten variables tested was 365 

significantly associated to the immunopeptidome-specific ON value.  Moreover, 366 

we found that there was no significant correlation between CD8 T cells and 367 

immune dN/dS in patients that have a truncating mutation in a gene associated 368 

to the antigen presenting machinery or genes defined as escape genes 369 

previously34.  370 

 371 

In summary, these results highlight the importance of considering multiple 372 

confounding factors when drawing conclusions about the absence of negative 373 

selection at the cohort level using dN/dS. These results further suggest that high 374 

mutation burden tumors show signals of relaxed immune-selection confounding 375 

the calculation and interpretation of dN/dS probably due to the presence of 376 

acquired escape mechanisms, as our theoretical model predicts. 377 

 378 

Immune-escaped tumors show relaxed immune-mediated negative 379 

selection and high tumor immunogenicity 380 

Following our immunoediting model, we hypothesized that escape events mask 381 

the signal of immune mediated negative selection and restore tumor 382 
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immunogenicity. We ran SOPRANO using a patient specific immunopeptidome 383 

(private HLA alleles) in colorectal (CRC), stomach (STAD) and uterine cancers 384 

(UCEC). While tumor mutation burden was expectedly higher for MSI and POLE 385 

tumors (Fig S8), ON-target immunopeptidome dN/dS values for MSI and POLE 386 

subtypes were also higher than for MSS tumors (Fig S9), consistent with high-387 

mutation rate tumours being very frequently immune-escaped28. 388 

 389 

We then classified different escape mechanisms for these tumors based on 390 

previous work28. We found that immune-escaped (Escape+) tumors have 391 

significantly more somatic mutations compared to non-escaped (immune 392 

adapted) tumors (MSS p=0.0085 and MSI p=0.00026, Fig 4A). We then reasoned 393 

that a larger number of mutations in MSS escape+ tumors would push immune 394 

dN/dS towards 1, given an extended time of neutral mutations accumulating in 395 

the genome after immune escape has occurred. Indeed, we found a significant 396 

positive correlation between tumor mutation burden and immune dN/dS for MSS 397 

escape+ tumors but not for immune adapted tumors (Escape-, p=1e-04, Fig 4B), 398 

suggesting that immune selection was still active in patients without an escape 399 

mechanism. We observed the same results when restricting our analysis to only 400 

clonal mutations (P Value = 0.003, Fig S10), confirming our previous suggestion 401 

that immune-escape tends to occur early in the genesis of these malignancies28.  402 
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 403 
Figure 4. Patient specific analysis of colorectal (CRC), stomach (STAD) and uterine cancer (UCEC) using 404 
immune dN/dS. A) Tumor mutation burden (TMB) for different subtypes of cancers, including Microsatellite 405 
Stable (MSS), Microsatellite Instable (MSI) and POLE mutants, classified as immune-adapted (-) or immune-406 
escaped (+) based on the presence of escape mechanisms (obtained from Lakatos et al28). B) Relationship 407 
between Immune dN/dS values to TMB, following the same classification for patients as in A. C) Comparison 408 
between immune dN/dS values for immune-escaped and immune-adapted MSS tumors using all or only 409 
clonal mutations. D) Relationship between immune dN/dS values and the reported CD 8 T cell infiltration 410 
following the same classification for patients as in A and B. 411 

 412 
Our theoretical model predicted that immune dN/dS will remain lower than one 413 

when at large clone sizes in non-escaped patients. We expected that clonal 414 

mutations may still hold the signature of negative selection (active before escape) 415 

while subclonal mutations would be freely accumulating in immune-escaped 416 

tumors. Consequently, when we compared immune dN/dS between immune-417 

adapted (escape-) and immune-escaped (escape+) MSS tumors, we observed 418 

that immune-escaped tumors had immune dN/dS values significantly closer to 1 419 

compared to immune-adapted tumors when using all mutations, but not when 420 

using clonal mutations (0.88 versus 0.7, Wilcoxon signed rank test=0.0009, Fig 421 
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4C). In the case of immune-adapted tumors, the Immune dN/dS when using all 422 

or clonal mutations remained similar (0.68 versus 0.70 immune dN/dS) while 423 

immune-escaped tumors had a significantly higher immune dN/dS when using all 424 

mutations (0.88 versus 0.66 immune dN/dS, P Value=0.007) (Fig S11). 425 

 426 

To validate that the strength of immune-mediated negative selection depends on 427 

immune activity, we compared the patient specific immune dN/dS to the CD8 T 428 

cell infiltration (Fig 4D). We found a significant association between immune 429 

activity and CD8 T cells in immune-adapted MSS tumors (P Value = 0.018), 430 

reaffirming that native HLA binding regions hold information on the strength of 431 

immune selection elicited by CD 8 T cells. Interestingly, MSI tumors without an 432 

annotated escape mechanism did not follow this pattern suggesting that these 433 

tumors may have an unknown escape mechanism. These results highlight the 434 

importance of understanding the evolutionary dynamics of tumors under 435 

immunoediting and provide a theoretical explanation of why tumors with high 436 

mutation burden are better candidates for immunotherapy. Such tumors have an 437 

overall higher tumor immunogenicity that can be quantified using dN/dS in the 438 

immunopeptidome. 439 

 440 

Immune-escaped tumors have better response to immunotherapy than 441 

immune-adapted tumors 442 

To finally address the clinical importance of escape mutations and immune dN/dS 443 

as a surrogate of tumor immunogenicity, we analysed 308 metastatic cases 444 

subjected to immunotherapy with checkpoint inhibitors mainly with Ipilimumab, 445 

Nivolumab, Ipi+Nivo, and Pembrolizumab from the Hartwig Medical Foundation 446 

cohort4 (Fig 5A). The specimens were sequenced before treatment was started. 447 

Following RECIST guidelines patients were classified into complete and partial 448 

response and into progressive or stable disease (Methods). There were 78 449 

responders recorded (Partial or complete response) and 229 non-responders 450 

(Progressive or Stable disease). Due to the unavailability of patient specific HLA, 451 

we calculated immune dN/dS using HLA-A0201 and observed a lower immune 452 

dN/dS for non-responders compared to responders, suggesting that patients with 453 
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no response to immunotherapy were already adapted to the action of immune 454 

response (Fig 5B). Next, we assembled a list of escape genes associated to the 455 

immune response and further classified patients into immune-escaped and non-456 

escaped (Methods). Given that only genomic data was available for this cohort, 457 

we could only classify patients into genetic escape and not into other immune 458 

evasion events, such as overexpression of immune checkpoint inhibitors. We 459 

found that the proportion of responders with a genetic escape mechanism was 460 

significantly higher compared to non-responders (Chi-square P value = 0.001, 461 

Fig 5C), indicating that escape mechanisms were independently associated to 462 

the clinical response during immune checkpoint therapy. 463 
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 464 
Figure 5. Patient specific analysis of colorectal (CRC), stomach (STAD) and uterine cancer (UCEC) using 465 
immune dN/dS. A) Tumor mutation burden (TMB) for different subtypes of cancers, including Microsatellite 466 
Stable (MSS), Microsatellite Instable (MSI) and POLE mutants, classified as immune-adapted (-) or immune-467 
escaped (+) based on the presence of escape mechanisms (obtained from Lakatos et al28). B) Relationship 468 
between Immune dN/dS values to TMB, following the same classification for patients as in A. C) Comparison 469 
between immune dN/dS values for immune-escaped and immune-adapted MSS tumors using all or only 470 
clonal mutations. D) Relationship between immune dN/dS values and the reported CD 8 T cell infiltration 471 
following the same classification for patients as in A and B. 472 

 473 
Given that tumor mutation burden (TMB) is the current FDA-approved prognostic 474 

marker of immunotherapy, we compared TMB between responders and non-475 
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responders. As expected, we found that responders had a significantly higher 476 

TMB than non-responders before the treatment (Fig S12A, P-value = 9.8*e-6, U 477 

Mann Whitney). In parallel, we looked at TMB between escape and non-escaped 478 

patients and found that escaped patients had also a significantly higher TMB 479 

compared to non-escaped (Fig S12B, P-Value < 2.2e-16, U Mann Whitney).  We 480 

also explored if TMB was different within escaped and non-escaped groups 481 

separated by response. We found that TMB was significantly higher for 482 

responders among the non-escaped group (P Value=0.0054, U Mann Whitney) 483 

but not different among escaped patients (P value=0.14, U Mann Whitney) (Fig 484 

5D). The fact that, among non-escaped patients, responders had higher TMB, 485 

suggest that a group of responders had an escape mechanism that was not 486 

considered in our classification. This is expected given that we did not consider 487 

all possible escape mechanisms such loss of HLA heterozigosity33, epigenetic 488 

escape such as transcriptional silencing by changes in methylation34, or extrinsic 489 

factors such as the accumulation of dysfunctional T cells53, all mechanisms of 490 

immune evasion recently described in the literature. 491 

 492 

Finally, we calculated dN/dS for driver, global, escape, and immune regions in 493 

these four groups (Fig 5E). We found that the driver dN/dS was positive for non-494 

escaped tumors as expectedly, but surprisingly neutral for immune-escaped 495 

tumors. The escape dN/dS showed signals of positive selection for escaped 496 

patients and given that no nonsynonymous escape mutations were present in 497 

non-escaped patients, the escape dN/dS was zero. The global dN/dS was 498 

consistently close to one for all groups. Importantly, among escaped patients, 499 

while the TMB was not different between responders and non-responders (Fig 500 

5D), the immune dN/dS of non-responders was lower than one and lower than 501 

the immune dN/dS of responders. Ultimately, this validates immune-adaptation 502 

in non-responders showing less neoantigens and therefore low levels of tumour 503 

immunogenicity for immunotherapies to have an effect.  504 

 505 

Overall, our results highlight the importance of properly stratifying patients based 506 

on escape mechanisms and immune dN/dS for a correct interpretation of the 507 
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evolutionary dynamics of tumors. In the future, these genomic based 508 

classification in combination with current standard practices, could be used as 509 

prognostic biomarkers for checkpoint inhibitor immunotherapies54.  510 

 511 

Discussion 512 

The remarkable clinical response demonstrated by immune checkpoint inhibitors 513 

(ICIs) has led to a growing interest in understanding the interactions between 514 

cancer and immune cells33,35,55–57. Although immunoediting is widely recognized 515 

as an evolutionary process that selects for clones with low immunogenicity or 516 

clones with an escape mechanism, its dynamics in the context of carcinogenesis 517 

and response to treatment are poorly understood. During immunoediting, growing 518 

cells are subjected to immune-mediated negative selection, shaping the 519 

landscape of mutations observed in cancer. However, negative selection in 520 

cancer has been a controversial topic15,16,58. While some studies have shown 521 

evidence of an association between immune activity and selective 522 

pressures8,34,51,55,59, others have claimed that there is a lack of evidence to prove 523 

this relationship16. Given that several studies have applied dN/dS as a metric of 524 

selection in cancer and in normal tissue7,8,60–63, we aimed to prove the use of 525 

dN/dS in the immunopeptidome as a proxy of tumor immunogenicity and as a 526 

potential biomarker of immunotherapeutic response. In brief, we show that 527 

immune dN/dS quantifies the extent of negative selection exerted by the immune 528 

system and how levels of tumor immunogenicity measured by immune dN/dS can 529 

be used as a genomic biomarker for response to immunotherapy. 530 

 531 

We first show the evolutionary dynamics of tumorigenesis under two radically 532 

different outcomes of immunoediting, immune-adaptation and immune-escape. 533 

Such distinction is a key feature of cancer evolution and has profound clinical 534 

implications. Immune-adapted tumors can only emerge in tissues where the 535 

immune system can exert a selective pressure, suggesting that tissues with a 536 

high capacity of immune recognition (immune-competent) are more likely to 537 

generate clones with a depletion of immunogenic mutations if the probability of 538 

escape is low (i.e. a low mutation rate). A lower number of neoantigens could 539 
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allow tumors to grow in both low and high immunogenic tissues, potentially 540 

making them more aggressive when colonizing new niches. Supporting our 541 

hypothesis, a recent study of longitudinal recurrence of metastasis reported a 542 

more aggressive phenotype in metastatic deposits that had higher levels of 543 

immune-selection55. However, whether tumor cells growing in immune-544 

competent tissues are more likely to colonize new niches and how long it takes 545 

those tumor cells to readapt or to find a novel escape mechanism, as has been 546 

previously observed in mice models31,64, remains a challenging question. 547 

 548 

Our immunoediting model predicts that immune-adapted tumours have an overall 549 

low tumor immunogenicity and will be less likely to respond to ICIs regardless of 550 

tumor mutation burden status (TMB). TMB has been regarded as a measure of 551 

tumor immunogenicity and is the current FDA-approved prognostic biomarker 552 

used to enrol patients for ICI treatment. However, TMB does not capture the full 553 

evolutionary history of the tumor and several patients do not respond despite their 554 

TMB status. In addition, a recent study has shown that mismatch repair-proficient 555 

colorectal cancers can also achieve clinical response44. Motivated by this, we 556 

propose that immune dN/dS can be used, in addition to TMB and escape 557 

mechanisms, to stratify patients into adapted and escaped. As evidence of this, 558 

we demonstrate that in a metastatic cohort, non-responders have an immune 559 

dN/dS lower than one prior to immunotherapy and are thus immune-adapted, 560 

whereas responders have immune dN/dS values of one, and are more likely to 561 

be immune-escaped. 562 

 563 

In conclusion, our study reflects the importance of understanding the evolutionary 564 

dynamics of immunoediting during tumor evolution and how immune selection 565 

edits the genome of tumor cells. Differentiating between immune adapted and 566 

immune escaped tumors is a key factor when predicting which patients will benefit 567 

from immunotherapies. In the future, we believe that immune dN/dS can be used 568 

as read-out of tumor immunogenicity, that, in combination with other prognostic 569 

measurements, can be used to predict response to immunotherapy. 570 

 571 
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 727 

Methods 728 

1.0 Evolutionary model of tumorigenesis under immunoediting 729 

1.1 Computational model 730 

We have developed a discrete-time non-spatial stochastic branching process of 731 

somatic evolution. It models the acquisition of somatic mutations and their 732 

associated effect on the phenotype of single cells.  The model can be initialized 733 

with any number of wild-type single cells and a set of initial parameters described 734 

in supplementary table 1A. 735 

 736 

1.2 Cell division process 737 
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The model simulates cellular proliferation starting from 𝑥2 identical initial cells 738 

available at time 𝑡2 = 0, that divide synchronously; each time-step therefore is 739 

represented in units of tumour doublings or generations, as in earlier works47.  740 

 741 

At every time-step every single cell (SC) in the model undergoes a stochastic 742 

process with a probability that depends on a parameter 𝑝6. The outcomes of this 743 

process are either zero, one, or two single cells in the model: 744 

 745 

𝑆𝐶	
9:→ 𝑆𝐶 + 𝑆𝐶 746 

𝑆𝐶	
9=→ 𝑆𝐶 + 𝐷 747 

𝑆𝐶	
9?→ 𝐷 + 𝐷 748 

 749 

where 𝑝2 + 𝑝@ + 𝑝A = 1 and D denotes “dead” cells. We consider death as any 750 

process that removes the cell from the dividing population, such as apoptosis, 751 

senescence, quiescence, or differentiation. To simplify the possible outcomes of 752 

the model, we consider 𝑝@ 	= 	0. Thus, our branching process consists only of no 753 

division (no offspring) or a successful cell division (two daughter cells), that is 754 

𝑝2 	+	𝑝A 	= 	1. Given that 𝑝2 	= 	1	 −	𝑝A, we can define the probability of survival 755 

𝑝A = ∆ as the parameter of fitness for each single cell. In the case of a neutral 756 

branching process and at the initial state of the simulation (time 𝑡2) the probability 757 

of cell division is equal to the probability of cell death/differentiation for each single 758 

cell (∆= 0.5). 759 

 760 

We can translate this parameter ∆ into a birth death process with 	𝑏/𝑑 =	𝜔 using: 761 

 762 

𝜔	 = 	2 ∗ 	𝑝2	 + 	1	 ∗ 𝑝1	 + 	0 ∗ 𝑝0 763 

𝜔	 = 	2 ∗ ∆	 764 

[2] 765 

𝜔	 = 	𝑏/𝑑 766 

𝑏/𝑑		 = 	2	 ∗ 	∆ 767 

 768 

when ∆= 0.5 the birth death ratio 𝑏/𝑑		 = 	1. 769 
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 770 

The population grow exponentially when the probability of division (D) is 1.  The 771 

probability of survival D used as a phenotype allow us to define a driver clone. A 772 

driver clone is a set of cells from the same evolutionary lineage which have the 773 

same D across them. This implies that they all have a shared set of mutations 774 

(very few or all) and the same survival probability. We also define an 775 

immunogenic clone, defined by the presence of an ancestral cell that acquired at 776 

least one immunogenic mutation. 777 

 778 

1.3 Cell genotypes and phenotypes. 779 

 780 

The genotype of each single cell is implemented as a vector storing the following 781 

information: 782 

 783 

• Number of nonsynonymous mutations in driver, immune, escape, and 784 

passenger regions of the coding genome. 785 

• Number of synonymous mutations in driver, immune and passenger 786 

regions of the coding genome. 787 

 788 

At every successful cell division, each cell inherits the genotype from the parental 789 

cell, which is further modified by acquiring a new set of mutations. The number 790 

of new mutations is given by a Poisson distribution with mean 𝑢 ∗ 𝐿 with 𝐿 = 50 ∗791 

10N , 𝑢 is the mutation rate per bp per cell division, and 𝐿 is the length of the 792 

coding genome. 793 

 794 

The phenotype of each single cell is implemented as a vector storing the following 795 

information: 796 

 797 

• Fitness (probability of successful cell division) and strategy (passenger, 798 

driver, immunogenic or escape), 799 

 800 
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These phenotypes are the outcome of mutations present in the genotype vector. 801 

To estimate the target size and thus the vector of probabilities for passenger, 802 

driver, immunogenic, and escape mutations we used prior information and also 803 

explored different values. All tested values are described in supplementary table 804 

1B. 805 

 806 

1.4 Cycle conditions 807 

Our model requires the input of several parameters described in supplementary 808 

Table 1. We performed several simulations to account for the different phases 809 

described in figure 1. The parameters for the simulations are described in 810 

supplementary table 1B. 811 

 812 

Mutation rate 813 

Specifically, for MSS cases, we used a mutation rate per pb per cell division of 814 

10-8. This value is a composite between the polymerase error and the DNA 815 

proofreading correction efficiency. For MSI and POLE cases we increased this 816 

value in one and two orders of magnitude respectively.   817 

 818 

Initially, we estimated the probability of hitting a driver mutation (1%) based on 819 

the number of driver genes identified in a recent study using a pancancer dataset 820 

(~200 out of 20000 genes)7.  We used 5% of the coding genome as immunogenic 821 

based on our recent analysis of immunogenic mutations28 and based on the 822 

length of all possible 9-mers defined as strong binders by NetMHCpan. The 823 

proportion of escape sites in the coding genome is unknown, thus we simulated 824 

different proportions ranging from 0.01% to 5%. In addition, we defined 825 

nonsynonymous mutations as: a) passenger mutations that do not have any 826 

effect on the phenotype, b) driver mutations increasing the probability of survival, 827 

c) immunogenic mutations that may elicit an immune response, d) escape 828 

mutations allowing the cell to hide from an immune attack. We assume that all 829 

synonymous mutations accumulate neutrally in the genome and define three 830 

types of synonymous a) synonymous mutations in neutral regions, b) in driver 831 

regions, and c) in the immunopeptidome. To simulate the dependency of the 832 
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nonsynonymous to synonymous mutation ratio, dN/dS values, for global, driver 833 

and immune regions, we fixed the probability of synonymous mutations as 1/3 of 834 

the probability of the nonsynonymous mutations in the same locus. All these 835 

probabilities sum to one. 836 

 837 

Then, each time a cell divides, each daughter cell inherits the parental genotype 838 

and an additional set of nonsynonymous and synonymous mutations based on 839 

the probability vector defined.  Our model assumes infinite-sites and no -back 840 

mutation as used in previous studies65. Our model records the number of 841 

mutations for each mutation type, the probability vector for each of those 842 

mutations, the probability of survival and the probability of immune attack over 843 

time. We also store the parental relationship and we assign a new clone id only 844 

when the new genotype includes nonsynonymous driver different from the 845 

parental phenotype.  846 

 847 

We stopped the simulation after 100 generations, consistent with the maximum 848 

number of cell divisions allowed by telomere shrinking, or when the population 849 

size reached a specific carrying capacity (2000 cells).  850 

 851 

1.4 Mutation effects 852 

Phenotype 1 - Proliferation dynamics 853 

We have developed a flexible framework to account for different models of fitness 854 

effects of driver mutations. We chose a model based on that to date we have 855 

mostly seen tumors having between 2-10 drivers, therefore at equilibrium we 856 

expect to reach an average of 5 clones each carrying a driver event or 1 clone 857 

carrying 5 driver events. Thus, we modelled the fitness increase by a driver event 858 

as a Gompertz function where driver events give different selective advantages 859 

based on the order of acquisition given by: 860 

 861 

𝑆(𝑑) 	= 		0.5	 ∗ 	𝑒QR∗STUV 862 

 863 
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where b defines the displacement scale parameter of the Gompertz function, c 864 

defines the scale parameter on the fitness effect for each driver, and d is the 865 

number of driver events. We sample b from a normal distribution with mean 5 and 866 

c has a fixed value of 1.  867 

 868 

Finally, at each time point each cell has a probability of survival defined by: 869 

 870 

    D	= 	0.5	 + 	𝑆(𝑑) 871 

 872 

We must emphasize that the choice on these functions is perhaps one of the 873 

most important open questions in the field of cancer evolution. The fitness effects 874 

of combinations of multiple drivers (epistasis), the proportion of mutated sites 875 

leading to an increase/decrease of a selective advantage, and whether there is 876 

an upper boundary for the fitness increase remain largely unsolved and it was 877 

not the scope of this work. Here, we aimed to explore the effects of the immune 878 

system, the selective pressures and the emergence of escape mutations on a 879 

single unifying framework of tumor evolution. 880 

 881 

Phenotype 2 - Immunoediting:  882 

To model the effect of the immune system during somatic evolution we assume 883 

two possible scenarios.  884 

 885 

In the first, we allow cells to accumulate immunogenic mutations based on the 886 

size of the immunogenic genome and the mutation rate. Each immunogenic 887 

mutation will be detected by the immune system at an immune-mediated cell 888 

death rate of PIS that will remove the immunogenic cell. This rate can be seen as 889 

the healthiness of the immune system or the capacity of T-cell recognition based 890 

on the diversity of the TCR repertoire (with 0 for immunosuppressed to 1 for 891 

immunocompetent, alternatively this can be seen as low recognition or high 892 

recognition potential by TCRs). By simplifying this value to an external probability 893 

independent of the genome, it allows us to model the effect of the 894 

microenvironment. 895 
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 896 

In the second, we define a function that at every generation calculates how many 897 

cells in a given clone are immunogenic (at least one neoantigen) and if this 898 

number is greater than a selected cut-off value (50 cells in our model), we kill all 899 

cells from that clone given a certain probability (defined previously as PIS). An 900 

immunogenic cell carries at least one immunogenic mutation and have not 901 

acquired an escape mutation. When a cell acquires an escape mutation, the 902 

immune system will no longer attack this cell.  903 

 904 

1.5 dN/dS computation  905 

To estimate the dN/dS ratio we fixed the initial probabilities of occurrence of 906 

nonsynonymous mutations to be three times higher than the occurrence of 907 

synonymous mutations, as naturally observed in the coding portion of the human 908 

genome.  909 

 910 

In general, in the first cellular divisions the number of synonymous mutations is 911 

close to 0 for many cells making the calculation of dN/dS implausible (infinite). 912 

We calculated the dN/dS for all mutations (global dN/dS), driver mutations (driver 913 

dN/dS) and immunogenic mutations (immune dN/dS) by adding up the observed 914 

counts in the alive cells at a given time t. 915 

 916 

𝑔𝑙𝑜𝑏𝑎𝑙	
𝑑𝑁
𝑑𝑆

= 	
∑𝑛𝑠_𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟	 + ∑𝑛𝑠_𝑑𝑟𝑖𝑣𝑒𝑟 		+	∑ 𝑛𝑠_𝑖𝑚𝑚𝑢𝑛𝑜𝑔𝑒𝑛𝑖𝑐 	+ 	∑ 𝑛𝑠_𝑒𝑠𝑐𝑎𝑝𝑒
3	 ∗ (∑ 𝑠_𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 	+ ∑ 𝑠_𝑑𝑟𝑖𝑣𝑒𝑟 	+ 	∑ 𝑠_𝑖𝑚𝑚𝑢𝑛𝑜𝑔𝑒𝑛𝑖𝑐	 + 	∑ 𝑠_𝑒𝑠𝑐𝑎𝑝𝑒)

 917 

 918 

𝑑𝑟𝑖𝑣𝑒𝑟	
𝑑𝑁
𝑑𝑆

= 	
∑𝑛𝑠_𝑑𝑟𝑖𝑣𝑒𝑟

3	 ∗	∑ 𝑠_𝑑𝑟𝑖𝑣𝑒𝑟
 919 

 920 

		𝐼𝑚𝑚𝑢𝑛𝑒	
𝑑𝑁
𝑑𝑆

= 	
	∑ 𝑛𝑠_𝑖𝑚𝑚𝑢𝑛𝑜𝑔𝑒𝑛𝑖𝑐	
3	 ∗ 	∑ 𝑠_𝑖𝑚𝑚𝑢𝑛𝑜𝑔𝑒𝑛𝑖𝑐

 921 

 922 

1.6 Frequency dN/dS 923 

To estimate the dN/dS ratio using a specific mutation frequency cut off we 924 

simulated sequencing by giving a mutation ID to each new mutation acquired 925 

during the stochastic branching process. We determine the cell-specific mutation 926 

by implementing an algorithm that walks along the lineage of a cell and 927 
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concatenate all inherited mutations. We build a matrix of all alive cells and 928 

mutations at the last time point. We then were able to filter out variants present 929 

in less than any predefined threshold.  For the driver section we used 0.01%, 1%, 930 

2%, 3%, 4%, 5%, 10%, 25%, and 50% as frequency cut-offs. For the immune 931 

section we used 0.1%, 1%, 5%, 10% and 50% as frequency cut-offs. To estimate 932 

dN and dS we assigned each inherited mutation a unique id. Given that each 933 

mutation has two labels, a first label defined as 1) nonsynonymous and 934 

synonymous, and a second label defined as a 2) passenger, driver and 935 

immunogenic. This allowed us to calculate a global, driver, and immune dN/dS 936 

accordingly. Then, each simulation consisted of N number of cells with a specific 937 

number of nonsynonymous and synonymous driver, immunogenic, and 938 

passenger mutations.  939 

 940 

1.7 dN/dS confidence Intervals for frequency or cancer cell fraction cut-offs 941 

When performing the analysis using frequency cut-offs, we pulled simulations 942 

together similar to what is done in cohort studies when all nonsynonymous and 943 

synonymous mutations are pulled together. To estimate the confidence interval 944 

for this analysis, we used the rateratio.test function from R package rateratio. 945 

This function calculates the p-value and the confidence interval for the rate of two 946 

Poisson ratios. It uses the uniformly most powerful ratio test available for R66. 947 

 948 

2.0 TCGA Data 949 

We first obtained somatic calls of TCGA data from GDC. This dataset consisted 950 

of 10202 samples across 33 tumors types.  We then selected 19 tumor types 951 

tumor types that had been analysed in Rooney et al51 in order to compare our 952 

results of immune dN/dS to the immune cell scores. Rooney et al provided the 953 

per patient values of several normalized scores for immune cells. We calculated 954 

the median value for each score within each tumor type. The final list analysed 955 

consisted of 8543 samples across 19 tumor types.  TCGA data was then re-956 

annotated using ensembl-VEP release 89. COAD (Colon adenocarcinoma) and 957 

READ (Rectum Adenocarcinoma) were merged into CRC. 958 

 959 
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HLA-binding Mutation Ratios (HBMR) and simulated HBMRs were obtained from 960 

the supplementary material in Van Den Eynden et al16 available for 19 tumor 961 

types. Hartwig somatic calls and metadata were obtained from Hartwig Medical 962 

Foundation under license agreement DR-075.  963 

 964 

2.1 Selection On PRotein ANotated regiOns, SOPRANO 965 

SOPRANO was developed on top of the method developed in Zapata et al 2018 966 

to calculate selection in VEP annotated files and is freely available in 967 

github.com/luisgls/SOPRANO. It estimates dN/dS values in a target region (ON-968 

target) and in the rest of the proteome (OFF-target) using a trinucleotide context 969 

correction (SSB192) or a 7-nucleotide context (SSB7). It allows the option to 970 

include or exclude cancer driver genes, as well as, randomizing the target region 971 

to calculate a background distribution of a matching size region. Given that it uses 972 

a set of Ensembl transcript identifiers and their respective FASTA file it allows 973 

calculation of dN/dS in any genome irrespective of the version.  We ran 974 

SOPRANO on 33 tumor types and deposited the results for each tumor type in 975 

Synapse (syn22149238). 976 

 977 

2.2 Immunopeptidome and patient specific HLA 978 

We downloaded a set of protein coding transcripts with HGNC symbol from 979 

Ensembl Biomart. We obtained all transcript lengths and run bedtools 980 

makewindows to get all possible overlapping 9-mers. We then obtained the 981 

FASTA sequence for each of all 9-mer and run netMHCpan4 using a list of HLA-982 

alleles. This list of HLA-alleles was restricted to those that have more than 1% 983 

population frequency in a list of 1277 samples from the 1000K cohort. We 984 

selected all possible strong binders which had a mean and a median expression 985 

above 1FPKM. We obtained expression values for different tissues from the 986 

human protein atlas (downloaded on 05/10/2018). 987 

 988 

3.0 Analysis of Metastatic cohort pre-immunotherapy from Hartwig Medical 989 

Foundation 990 

 991 
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We obtained the somatic mutation data from the Hartwig Medical Foundation 992 

cohort (HMF) under license agreement DR-075. The data we used for this 993 

manuscript consisted on 308 metastatic patients that underwent immunotherapy 994 

post-biopsy and that had recorded clinical response in "first response" column 995 

from the metadata. Mutation types that were not classified as synonymous, 996 

missense, start_lost, stop gained, stop lost or frameshift mutation were excluded. 997 

We removed indels and reannotated SNVs following our pipeline to obtain high 998 

confidence calls for a predefined set of ensemble transcripts (~20000 genes). We 999 

then rerun ensemble VEP using version 90 for Grch37 and parse the file using 1000 

VATools V1.0.0.   We uploaded the final annotated file used for the rest of the 1001 

manuscript for each of the 308 patients to Synapse.  1002 

 1003 

It is important to note that the raw clinical data was supplied by HMF and final 1004 

consistency checks are still to be performed. The response evaluations were not 1005 

performed as part of a clinical trial and the timing of the evaluations was variable. 1006 

We classified patients into responders and non-responders based on the first 1007 

response recorded after treatment was initiated. The group of responders 1008 

consisted of those that were labelled complete response (CR, 1 case), or partial 1009 

response (PR, 78 cases). Those that were labelled stable diseases (SD, 98 1010 

cases) or progressive disease (PD, 131 cases) were classified as non-1011 

responders. To keep consistency with other studies, there were 79 cases with no 1012 

data, two cases classified as clinical progression, four cases classified as ND, 1013 

and 3 cases classified as Non-CR/Non-PD which were not included in the 1014 

analysis. The timing from biopsy to response was not included. There were no 1015 

other further classifications performed. 1016 

 1017 

Escape genes were selected based on the list of Antigen Processing and 1018 

Presentation Machinery (hsa04612) download from KEGG. In addition, we 1019 

included escape genes used in Rosenthal et al34. We then classified responders 1020 

and non-responders into "escaped" if there was a missense or a truncating 1021 

mutation in one of these escape genes and into "adapted" otherwise. 1022 

 1023 
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All statistical tests were performed using R statistical language. Statistical tests 1024 

were performed using Wilcoxon rank-sum test for two distributions or Kruskal-1025 

Willis test when more than two distributions were present using the R package 1026 

ggstatsplot. 1027 

 1028 

We ran SSB192 (github.com/luisgls/SSB-dNdS) with default parameters to 1029 

determine gene and global dN/dS values and SOPRANO 1030 

(github.com/luisgls/SOPRANO) using the bed file provided in the package for 1031 

HLA-A0201 using 192-base pair correction. We calculated dN/dS for driver genes 1032 

using the list of 196 genes provided in Martincorena et al7. We calculated SSB-1033 

dNdS and immune dN/dS in the four group categories. For the TCGA patient 1034 

specific SOPRANO analysis we used the 4-digit code HLA type for each gene 1035 

(HLA-A, HLA-B, and HLA-C). We concatenated all regions predicted to bind to 1036 

netMHCpan4.0 as strong binders in those genes that have a median expression 1037 

of more than 1FPKM calculated across the 33 TCGA cancer types.   1038 
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