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Abstract

Motivation: To better understand the molecular features of cancers, a comprehensive analysis using multi-

omics data has been conducted. Additionally, a pathway activity inference method has been developed

to facilitate the integrative effects of multiple genes. In this respect, we have recently proposed a novel

integrative pathway activity inference approach, iDRW, and demonstrated the effectiveness of the method

with respect to dichotomizing two survival groups. However, there were several limitations, such as a

lack of generality. In this study, we designed a directed gene-gene graph using pathway information by

assigning interactions between genes in multiple layers of networks.

Results: As a proof-of-concept study, it was evaluated using three genomic profiles of urologic cancer

patients. The proposed integrative approach achieved improved outcome prediction performances

compared with a single genomic profile alone and other existing pathway activity inference methods.

The integrative approach also identified common/cancer-specific candidate driver pathways as predictive

prognostic features in urologic cancers. Furthermore, it provides better biological insights into the prioritized

pathways and genes in an integrated view using a multi-layered gene-gene network. Our framework is not

specifically designed for urologic cancers and can be generally applicable for various datasets.

Availability: iDRW is implemented as the R software package. The source codes are available at

https://github.com/sykim122/iDRW.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To better understand the complex biological mechanism underlying cancer

progression and prognosis, a comprehensive analysis using multi-omics

data has attracted great attention to reveal the distinctive and shared

molecular features of cancers. Many multi-omics studies have been

conducted to discover novel biomarkers associated with cancers and

predict clinical outcomes precisely (Huang et al., 2017; Kim et al.,

2014; Lee et al., 2017; Shivakumar et al., 2017; Sohn et al., 2013; El-

Manzalawy et al., 2018; Kim et al., 2015b, 2012). For a comprehensive

analysis of multi-omics data, it is crucial to understand the complex

interplay between genes across different omics layers. To utilize the

interaction effect between genes across multi-omics data, network-based

integrative approaches have several advantages, such as utilizing the inter-

relationships among multi-omics data, better biological interpretation, and

improved outcome prediction power, as shown in many studies (Jeong

et al., 2015; Kim et al., 2015a; Lee et al., 2019; Vangimalla et al., 2016;

Wang et al., 2017; Kim et al., 2017).

To effectively combine different types of genomic features on the graph,

most network-based integrative methods have focused on incorporating

prior knowledge such as pathway or subtype information in many cancer

studies (Hung and Chiu, 2017; Liu et al., 2015; Dimitrakopoulos et al.,
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Fig. 1. Overview of an integrative directed random walk-based pathway activity inference on the multi-layered gene-gene graph (iDRW). The iDRW was applied for the integrative urologic

cancer analysis using three genomic profiles. The genes of each genomic profile are represented as nodes on each layer of the graph. A directed random walk with restart (RWR) is performed

on the multi-layered graph and the gene weights are iteratively updated based on the graph structure. Pathway activities are inferred using the subset of pathway member genes that are

significantly associated with the outcome (p < 0.05) by combining the normalized gene expression values, a statistical score of genes that represents the statistical significance, and the

updated gene weights by performing RWR on the multi-layered graph. For a systematic view, iDRW transforms the multiple genomic profiles into a single pathway profile. The pathway

profile is used as an input to train the prediction model. The framework was evaluated for survival and metastasis prediction performance and prioritization of the top-k pathways for cancer

prognosis and metastatic progression.

2018). Biological pathways contain interactions among molecules in a

cell, and enormous amounts of information on pathways and interactions

are readily available in many pathway databases. To identify biologically

meaningful molecular features and investigate interaction effects among

them, many pathway-based approaches have been proposed based on the

network structure (Hu et al., 2017; Stoney et al., 2018). In this respect,

pathway activity inference methods have been developed to produce

pathway-level features and corresponding activity scores for robust and

accurate prediction and better interpretation. The pathway activity score

can be simply computed with summary measures of gene sets, which

take the arithmetic mean or the median of the gene expression values

of the pathway member genes (Guo et al., 2005). Lee, et al. proposed

a precise disease classification model by inferring pathway activities

for each patient (Lee et al., 2008). The pathway activity is defined as

the summarized gene expression levels of its condition-responsive genes

(CORG), which are the subset of genes in the pathway for which the

combined expression shows optimal discriminative power for the disease

phenotype. Tomfohr, et al. proposed a pathway-level analysis of gene

expression (PLAGE), which derived activity scores from a vector of the

singular value decomposition of the given gene set (Tomfohr et al., 2005).

Additionally, many other pathway activity inference approaches have

been proposed in different cancers or other complex diseases (Temate-

Tiagueu et al., 2016; Wang et al., 2019). Those pathway activity inference

methods simply take pathways as the set of genes and summarize the

gene expression levels; thus, the interaction effects between genes are

not considered. In this respect, several studies utilized gene interactions

based on network structure. A denoising algorithm based on relevance

network topology (DART) derived perturbation signatures that reflect gene

contributions in each pathway on the relevance network for improved

pathway activity inference (Jiao et al., 2011). Liu, et al. proposed a directed

random walk-based pathway activity inference method (DRW) to consider

the topological importance of the genes on the network that can be highly

associated with diseases (Liu et al., 2013). DRW has been extensively

studied with many variations, including DRW based on a gene-metabolite

graph and DRW for survival prediction (Liu et al., 2017, 2015).

However, most existing pathway activity inference methods targeted a

single genomic profile alone. In this respect, we have recently investigated

the effectiveness of the network-based integrative pathway activity

inference method for multi-omics data integration (iDRW) (Kim et al.,

2019, 2018). One of the limitations of previous studies on iDRW lies in the

lack of a comprehensive analysis of different levels of genomic data. The

integrated gene-gene network in iDRW was formally designed specifically

based on the data structure, resulting in a lack of generality. Due to the

complexity of the multi-omics network, multiple network scenarios should

be considered. Furthermore, it was validated in a classification model that

divides long-term and short-term survival groups, not survival prediction.

As there are no clear criteria for dichotomizing two survival groups, it

highly depends on the data.

To overcome those limitations, we propose a general framework for

integrative pathway activity inference on the multi-omics network and

investigate multiple network scenarios. To reflect the interaction effects

of genes, we designed a directed gene-gene graph in multiple layers

by assigning within-layer interactions and between-layer interactions

considering multiple scenarios. We inferred pathway activities by

performing a random walk with restart (RWR) on the multi-layered

network. As a result, iDRW transforms the multiple genomic profiles into

a single pathway profile on the graph. The inferred pathway profile is

validated with the outcome prediction models. We prioritized pathways,

visualized the multi-omics network and extensively analyzed the pathway

activity patterns.

As a proof-of-concept study, the proposed method is applied for the

integrative analysis of urologic cancer. Urologic cancers include prostate,

kidney and bladder cancer that share a common genetic architecture

across different types. Here, we considered two types of outcome

prediction models (overall survival days and regional lymph node or

distant metastasis) for bladder and kidney cancer. The proposed method

selects cooperative potential driver pathways associated with clinical

outcomes. We also provide extensive analyses of distinguishable and

shared molecular features across two different cancers. The overview of

the integrative urologic analysis using the proposed method is illustrated in

Figure 1. The main contributions of this study are summarized as follows.
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• We propose a general framework for integrative pathway activity

inference on the multi-omics network and investigate multiple

scenarios of the multi-layered gene-gene graph.

• We validated our framework with the integrative network-based

analysis of urologic cancers using three types of genomic profiles

considering two types of clinical outcomes.

• We performed a sophisticated pathway-based integrative analysis:

inferred pathway activity pattern analysis, pathways prioritization, and

multi-omics network visualization.

2 Methods

2.1 Pathway-based multi-layered gene-gene graph

Let the multi-layered gene-gene graph G = (V,E,X) be composed

of L layers. A gene-gene graph on the i-th layer is defined as Gi =

(Vi,Ei,Xi), where Vi is a set of nodes (genes), Ei is a set of directional

edges, and Xi ∈ R
|Vi|×φ is a feature matrix of the nodes at the i-th layer.

Then, G = {Gi}i=1,...,L.

Let v ∈ Vi, w ∈ Vj be a node of the graph on the i, j-th layer,

evw = (v, w) ∈ E be an edge between the node v and w, and

xv , xw ∈ R
φ feature vectors of the nodes v and w. In this study, Xi

is a genomic profile of a gene-by-sample matrix and x is the φ-sized

gene expression vector. E is composed of within- and between-layer

interactions. The within-layer interactions are derived from the pathway-

based gene-gene interactions. The set of pathways P are obtained from

pathway databases such as KEGG, Reactome, and WikiPathways, i.e.

P = P1 ∪ · · · ∪ PN for N pathways. Then, P = (M, I) where M are

molecules (genes) and I are molecular interactions of genes, defined in the

pathway database. For each layer, the nodes and edges of Gi were derived

from P:

Vi ⊆ M,Ei ⊆ I, i = 1, ..., L

We define between-layer interactions with two possibilities. We assign

bi-directional edges 1)between all pairwise combinations of v and w:

evw ∈ E, ∀v ∈ Vi, ∀w ∈ Vj if i 6= j

or 2) if there is a higher correlation between nodes v and w than a

threshold, i.e., if |corr(xv , xw)| ≥ θ, where |corr(xv , xw)| represents

the magnitude of the Pearson correlation coefficient between feature

vectors of node v and w (correlation of the gene expressions between

gene v and w) in two different layers, and θ is a threshold value of the

correlation. We set the threshold value θ to 0.5, as it is generally accepted

to have a low correlation when it is lower than 0.5 (Hinkle et al., 2003). The

adjacency matrix A of the multi-layered graph G is derived as Avw = 1

if evw ∈ E and 0 otherwise. We note that A is an asymmetric matrix

because G is a directed graph, i.e., A 6= AT.

2.2 Directed random walks with restart on the multi-layered

graph

To infer pathway activities from multiple genomic profiles, we performed

random walk with restart (RWR) on the multi-layered directed gene-gene

graph G. The purpose of performing RWR is to update genes considering

their interaction effects within- and between-genomic layers and transform

them into a pathway-level activity matrix. It should be noted that this

step was performed using the entire dataset, and the transformed pathway

profile (pathway-by-sample matrix) was used as an input to the training

model. In the training phase, the samples were divided into training and

validation sets for cross-validation. A set of genes, so-called seeds, the

starting points of the random walk algorithm, was used to explore the

neighborhood and iteratively update the nodes of the graph. To start a

random walk on a graph, we initialized the seed genes by univariate

statistical analysis to assess the significant association between each gene

and the clinical outcome. For each node (gene) v, we obtained a statistic

score (zv) andp-value of the statistical significance of the model (pv) using

a feature vector xv . The method took three kinds of the outcome variables:

survival time, binary and multi-class outcomes. To measure the significant

associations of genes with survival time, univariate cox regression analysis

was performed for each gene, stratified by several confounding factors

including age, gender, and TNM stage, using a cox proportional hazards

regression model (Andersen and Gill, 1982). We assessed the Wald statistic

value as a statistic score and p-value corresponding to the ratio of each

gene’s regression coefficient to its standard error. For binary or multi-

class outcome, it performed a two-tailed t-test or an analysis of variance

(ANOVA) for each gene to test the significant differences between the

group means of each class. This process produced a t or F value as a

statistic score and a p-value for each gene. The initial weight vector W
(i)
0

for the i-th layer is formally defined as:

W
(i)
0 = − log (pv + ǫ), v ∈ Vi, ǫ = 2.2e−16 (1)

W
(i)
0 is normalized to scale the range between 0 and 1 and combined to

develop W0 = [W
(1)
0 · · ·W

(L)
0 ]. Then, W0 is l1-normalized to a unit

vector. A random walker starts on a source node s (seeds) and transits to a

randomly selected neighbor or returns to the source node s with a restart

probability r at each time step t. W(t) is iteratively updated with:

W(t+1) = (1− r)Â
T

W(t) + rW0 (2)

where A(t) is the weight vector in which the i-th element represents the

probability of being at node i at time step t, r is the restart probability,

and Â is a row-normalized matrix of the adjacency matrix A of the multi-

layered gene-gene graph G. We set the restart probability r to 0.3 as it

has been shown that the performance is not sensitive to the varying r (Liu

et al., 2013). After a number of iterations, it is guaranteed to converge to

a steady state W when |A(t+1) − A(t)| < 10−10, as previously shown

(Liu et al., 2017, 2013, 2015). The final weight vector of nodes in the

multi-layered graph G was obtained as W ∈ R
|V|.

2.3 Pathway activity inference

We inferred pathway activities with the set of statistically significant genes.

Let the i-th pathway Pi include ni number of genes that are significantly

associated with the outcome (p-value < 0.05), and vk be the k-th

significant gene, i.e., vk ∈ Pi, k = 1, · · · , ni. The pathway activity

PAi for the i-th pathway is defined as:

PAi =

∑ni

k=1 W(vk)× sgn(zk)× xk
√

∑ni

k=1(W(vk))2
(3)

where W(vk) is the final weight of node vk (gene) which was updated from

Equation (2); xk is the node feature vector (vector of gene expression

values from the original genomic data); zk is the statistic score derived

from the univariate statistical analysis (cox regression/t-test/ANOVA); and

sgn(zk) is the sign of the statistic score indicating a positive or negative

correlation between the gene expression values and clinical outcome. This

formula makes the pathway activity score low when it is combined with

negatively correlated genes with the risk of patients. For each pathway, the

pathway activity is computed across all samples, considered as a pathway

profile, i.e., PA ∈ R
N×φ. The high value of the pathway activity score

indicates that the corresponding pathway highly affects the risk of patients.

Finally, iDRW combines the feature matrices in L layers into a single

pathway profile based on the multi-layered graph as X1,...,L,A → PA

where Xi ∈ R
|Vi|×φ, A ∈ R

|V|×|V|, PA ∈ R
N×φ.
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3 Experiments

3.1 TCGA urologic cancer datasets

We obtained RNA-Seq gene expression, copy number variation, and DNA

methylation profiles of the TCGA bladder cancer (BLCA) and kidney

clear cell carcinoma (KIRC) dataset. Gene expression data were measured

using Illumina HiSeq 2000 RNA Sequencing, which is level 3 data from

the TCGA data coordination center. It consisted of 20,530 genes, which

are gene-level transcription estimates, as in the log-transformed RSEM

normalized count. The gene-level copy number variation (CNV) data

were estimated using the GISTIC2 method, which consisted of 24,776

genes. RNA-Seq gene expression and CNV data were downloaded from the

UCSC Xena platform (Goldman et al., 2019). DNA methylation data were

obtained as a gene-level feature by selecting the probe having a minimum

correlation with the expression data for each gene from the Broad Institute

GDAC Firehose (GDAC, 2016). In this study, the overlapping 16,904

genes and 400 patients were in BLCA data across three genomic profiles.

Likewise, 17,125 genes and 313 patients were in KIRC data.

Although there are 6 types of urologic cancer datasets in TCGA, we

excluded the testicular cancer (TGCT), kidney chromophobe (KICH),

dataset due to the extremely small number of cases, which were 134 and

65, respectively. The kidney papillary cell carcinoma (KIRP) and prostate

cancer (PRAD) dataset had a sufficient number of samples; however,

those cancers were excluded due to the excessive rate of censoring, which

was 85.1% and 98.2%. Excessive censoring rate leads to the risk of bias

to the prediction model and severely harms the model performance and

interpretation of the results (Zhu et al., 2017).

3.2 Data preprocessing

There were 811 and 756 missing values in the DNA methylation data

for BLCA and KIRC, respectively. We imputed them with a median of the

corresponding patient’s data. We excluded patients whose clinical outcome

variables were not recorded or inaccurate such as the negative values of

survival days.

For each cancer dataset, overall survival (OS), event status, age, gender,

and TNM stage were used as clinical variables. The event status is a binary

variable with the event occurred (1) and right-censored (0). There were 223

censored and 173 uncensored samples in BLCA (censoring rate: 56.3%),

and 209 censored and 102 uncensored samples in KIRC (censoring rate:

67.2%). The clinical variables were dichotomized as ages into 0 (< 65

years) or 1 (≥ 65 years), T stages into 0 (T0-2) or 1 (T3-4), N stages

into N0 or N1-3 (N+), and M stages into M0 or M1. We filled some of

the unknown pathologic stages based on the American joint committee

on cancer (AJCC) staging system. In addition, the missing N or M stages

were filled according to the number of lymph nodes that were positive

or metastatic sites. For example, if the number of lymph nodes positive

was greater than 0, they were categorized as N+. If the metastatic site was

recorded as ‘lymph node only’, they were regarded as M0. Metastatic site

features were recorded only in the BLCA dataset.

We considered OS and three types of metastasis prediction models; the

model to predict the risk of patients with any metastasis (any T/ N+/M1);

patients with regional lymph node metastasis without distant metastasis

(any T/N+/M0); patients with distant metastasis without regional lymph

node metastasis (any T/N0/M1). Due to the number of samples for each

class, we evaluated our model with any or regional metastasis in BLCA,

and any or distant metastasis prediction model in the KIRC dataset. The

total number of samples for each clinical feature are shown in Table 1.

3.3 Multi-layered network construction

We investigated the integrative effect of the iDRW method with a

comparison of the single-layered graph, which corresponds to the DRW

Table 1. Summary statistics of clinical features in the TCGA bladder cancer

(BLCA) and kidney clear cell carcinoma (KIRC) data

Data type BLCA KIRC

Number of samples 400 313

Age < 65 years 147 (36.8%) 193 (61.7%)

≥ 65 years 253 (63.2%) 120 (38.3%)

Gender Male 295 (73.8%) 201 (64.2%)

Female 105 (26.2%) 112 (35.8%)

Stage T T0-2 148 (37.6%) 196 (62.6%)

T3-4 246 (62.4%) 117 (37.4%)

Stage N N0 261 (67.4%) 244 (87.8%)

N+ 126 (32.6%) 34 (12.2%)

Stage M M0 340 (86.1%) 258 (82.7%)

M1 55 (13.9%) 54 (17.3%)

Overall survival (OS) Survival days 810.5±833.8 1310.3±1062.7

Uncensored 173 (43.7%) 102 (32.8%)

Censored 223 (56.3%) 209 (67.2%)

Any metastasis Positive (any T/N+/M1) 51 26

Negative (any T/N0/M0) 260 216

Regional metastasis Positive (any T/N+/M0) 70 -

Negative (any T/N0/M0) 260 -

Distant metastasis Positive (any T/N0/M1) - 28

Negative (any T/N0/M0) - 216

method, for each genomic profile, denoted as GE, GC, and GM. To

investigate the prognostic effect of combining each genomic profile, we

experimented with all possible combinations between each layer, denoted

as GEC, GEM, GCM, and GECM. For example, GEC = {GE,GC} is a

two-layered gene-gene graph combining the gene expression and CNV

profile. We experimented with four scenarios of constructing GECM: the

one that assigns within-layer edges based on pathway-based gene-gene

interactions to 1)all genomic profiles or 2)the gene expression profile only to

demonstrate the effect of combining them with the copy number variation

(CNV) or DNA methylation profile. For each of the former scenarios, we

assigned between-layer edges from a)all pairwise combinations of genes

or b)a pair of genes with a correlation coefficient of the expression value

greater than 0.5.

To assign pathway-based gene-gene interactions to within-layer edges for

each layer, we constructed a pathway-based directed gene-gene graph

using the KEGG pathway database (Kanehisa and Goto, 2000). We parsed

KGML (KEGG XML) files of 327 KEGG pathways into graph models

using the R package, KEGGgraph (Zhang and Wiemann, 2009). For each

pathway, we included all the nodes and edges where the node type is a gene.

The genes in the pathway were annotated as the respective HUGO gene

symbols . We merged 327 human pathways into a pathway-based gene-

gene graph . In total, 7,390 nodes and 58,426 edges were obtained. For

each cancer dataset, we had three types of genomic profiles: RNA-Seq gene

expression, CNV, and DNA methylation profile, which were considered as

three layers. For each layer, the overlapping genes between genes from the

genomic profile and pathway-based gene-gene graph were present: |VE|

= 6,827 (BLCA & KIRC), |VC| = 7,077 (BLCA & KIRC), |VM| = 5,805

(BLCA) and 5,894 (KIRC). Each genomic profile was normalized for the

mean to be 0 and standard deviation to be 1 across all the samples.

To demonstrate the effectiveness of the DRW-based integrative approach,

we additionally compared iDRW with three state-of-the-art pathway

activity inference methods for each genomic profile: CORG (Lee et al.,

2008), PLAGE (Tomfohr et al., 2005), and DART (Jiao et al., 2011).

CORG and PLAGE were implemented with the R package GSVA, with

default settings (Hanzelmann et al., 2013). As each of those pathway

activity inference methods has been previously developed based on a single

genomic profile, we assessed pathway activities across samples from GE,

GC, and GM, respectively.
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3.4 Pathway feature selection and outcome prediction

The iDRW computes the pathway profile based on the multi-layered gene-

gene graph from multiple genomic profiles. The pathway profile is used

as an input to the prediction model. We experimented with our proposed

method on two types of outcome prediction models: Lasso-Cox regression

model to predict OS survival time and the RFE-RFC model to predict

metastasis (binary outcome). The prediction performances of pathway

profiles obtained from other pathway activity inference methods were

evaluated as described for iDRW to achieve a fair comparison.

3.4.1 Lasso-Cox regression model

The Cox proportional hazard model estimates the hazard of each pathway

feature at a specific survival time, considering the event status. The

regression coefficients represent the degree of correlation of pathway

features to the corresponding hazard. We fit a generalized linear model by a

maximum likelihood estimation with the l1 penalty (Lasso), implemented

in the R glmnet package (Simon et al., 2011). We performed 5-fold cross-

validation in the training set to find the optimal parameter s by choosing the

minimum over a grid of λ = 10Π, where Π is the sequence decreasing by

0.1 from 10 to -2. The pathway features with non-zero coefficients were

selected. We then estimated the hazard of pathways across samples in

the test set using the risk scores of the selected pathway features, obtained

from training the Lasso-Cox model. In our experiments, the Cox regression

model was trained to predict OS adjusted by age, gender, and TNM stage

as covariates.

3.4.2 RFE-RFC model

A recursive feature elimination (RFE) is a backward selection algorithm

based on the predictors’ importance ranking, and it is a classical and

effective method for gene selection (Guyon et al., 2002). The algorithm

sequentially eliminates less important features based on their ranks.

For each iteration, it fits the random forest classification (RFC) model

to predict binary outcomes and assesses the importance ranking for

predictors. We denote the model as RFE-RFC. As in the Lasso-Cox

model, we performed 5-fold cross-validation as a resampling method

for important feature selection to reduce the overfitting issue. We fitted

the random forest model in the training set, selected the optimal set

of pathway features and evaluated the model with the area under the

precision-recall curve (AUPRC) in the validation set. The details of the

model evaluation are described in the ‘Performance evaluation’ section

below. The optimal number of features that should be assessed is also

found by the experiments with a varying number of features N =

[1, 2, · · · , 9, 10, 15, · · · , 95, 100]. We refitted the random forest model

with the optimal features and assessed the prediction performance with

AUPRC on the test set. In our experiments, we trained the RFE-RFC

model to predict regional lymph node or distant metastasis, adjusted by

age and gender as covariates.

3.5 Performance evaluation

We randomly split the samples into 70% training and 30% test sets and

repeated the process 100 times. To validate each prediction model, we

performed 5-fold cross-validation on the training set, which trains the

model using four folds (56%) and validates with the remaining one-fold

(14%). In the training phase, we fit the optimal model by tuning the hyper-

parameters by cross-validation and selected the set of pathway features.

The fitted model was then evaluated in the test set. As a result, we assessed

the performances and the set of selected features after 100 iterations of the

entire process for each model in each dataset. The pathways were ranked

by their frequencies of being selected for each iteration. Finally, the top-k

pathways with more than half frequencies were prioritized.

The Cox regression model that predicts OS was evaluated with a

concordance index (C-index). The C-index measures the probability that

the observation who is predicted to have a higher risk, has a shorter time-

to-event than the other, for a random pair of samples (Harrell et al., 1996).

The performance of metastasis prediction models was measured with

precision-recall (PR) curves. There are three types of binary classification

problems: regional lymph node metastasis, distant metastasis, and

any metastasis prediction. Precision is the ratio of correctly predicted

positive observations of the total predicted positive observations. Recall

(Sensitivity) is the ratio of correctly predicted positive observations of all

observations in an actual class. PR curves represent the plot of the precision

and recall for different thresholds, and the prediction performance is

measured with the integral area under the PR curves (AUPRC). Note that

we denote the area under the PR curves as AUPRC rather than AUC, as

AUC usually refers to the area under the ROC curves. When there is a skew

in the class distribution, PR curves provide more accurate performance and

better measurements than receiver operating characteristic (ROC) curves

(Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015). To address

the class imbalance problem, we assigned class weights to the prediction

model based on the class distribution, which provides a larger weight on

the minority class such that the classifier learns equally from the classes.

If the size of the majority class is Nm, and minority class is Nn, we

assign the weight of Nm

Nn
to the minority class. The weight value Nm

Nn

for each prediction model is 3.7 (regional metastasis in BLCA), 5.06

(any metastasis in BLCA), 7.6 (distant metastasis in KIRC), and 8 (any

metastasis in KIRC). The classification performances were measured with

PR curves. Finally, the median of 100 C-indices or AUPRCs was used as

a final performance.

4 Results

4.1 iDRW contributes to an improved outcome prediction

performance

When constructing the multi-layered graph on multiple genomic

profiles, we considered four different scenarios (Details are described

in ‘Experiments’). We compared the performances of iDRW (ECM)

between four scenarios for each prediction model in two cancers, and

the difference between the maximum and minimum performance was

less than 0.01 (C-index and AUPRC) in any prediction model for both

cancers (Supplementary Table S1). This result showed that the overall

performance was not sensitive to the underlying graph structure. Thus,

the iDRW experiments on the multi-layered graph was derived from the

scenario (1-a). We evaluated the predictive power of iDRW-based pathway

activities for BLCA and KIRC, respectively. We compared the four types

of other pathway activity inference models (CORG, PLAGE, DART,

and DRW) in each single genomic profile with iDRW for all possible

combinations of multiple genomic profiles. Then, we predicted four types

of outcomes using the inferred pathway profile as an input: OS, regional

lymph node metastasis for distant metastasis-free samples, any metastasis

for BLCA; OS, distant metastasis for regional metastasis-free samples,

and any metastasis for KIRC.

The prediction results in Figure 2 showed that pathway activities inferred

by DRW mostly performed better than other methods on a single genomic

profile when predicting OS in both cancer patient samples. As DART and

DRW-based approaches incorporated the significance test results of genes

and interaction effects on the graph, they performed better than CORG and

PLAGE in all prediction models. The performance improvement of DRW

over DART demonstrated that DRW better inferred pathway activities,

effectively reflecting the interactions on the graph. When we compared

the performances of the DRW-based pathway profile on each genomic

profile, we found that the gene expression profile contributed the best to

the prediction performances, especially in BLCA, and the methylation

profile showed comparable performances in KIRC. We observed that the
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Fig. 2. Overall survival (OS) prediction performance comparison between four types of

pathway activity inference methods on single genomic profile and iDRW on multiple

genomic profiles in bladder cancer (BLCA) and kidney clear cell carcinoma (KIRC). The

performance was measured with the median C-index after 100 iterations of the entire process

of training and validating models.

Fig. 3. Metastasis prediction performance comparison between four types of pathway

activity inference methods on a single genomic profile and iDRW on multiple genomic

profiles in bladder cancer (BLCA) and kidney clear cell carcinoma (KIRC). Performance

was measured with the area under the precision-recall curves (AUPRC) after 100 iterations

of the entire process of training and validating the model.

overall prediction performances on the CNV profile were lower than the

other profiles, especially in KIRC, but improvement was observed when

we combined it with others using iDRW.

Likewise, the metastasis prediction results showed the effectiveness of

DRW-based approaches including iDRW on multiple genomic profiles in

both cancer datasets. In general, the tendency of performance differences

between iDRW and other approaches was similar to the survival prediction

results. However, we observed that the contribution to the methylation

profile was relatively prominent in kidney cancer metastasis prediction.

These results were noticeable in regional lymph node metastasis prediction

in BLCA, and in distant or any metastasis prediction in KIRC. The

baseline in PR curves of metastasis prediction models corresponded to

the proportion of the majority class to the total number of samples, i.e.

the junk classifier which predicted with all negatives, denoted as a gray

Table 2. Performance summary for each prediction model in bladder cancer

(BLCA) and kidney clear cell carcinoma (KIRC)

BLCA KIRC

OS
Regional Any

OS
Any Distant

metastasis metastasis metastasis metastasis

C-index∗ AUPRC AUPRC C-index∗ AUPRC AUPRC

CORG(E) 0.6473 0.8531 0.8553 0.7841 0.9445 0.8911

PLAGE(E) 0.6651 0.8555 0.8903 0.7930 0.9509 0.8684

DART(E) 0.7012 0.8993 0.9122 0.8048 0.9515 0.8802

DRW(E) 0.7400 0.9291 0.9315 0.8199 0.9615 0.9372

DRW(C) 0.7213 0.8887 0.9315 0.7918 0.9292 0.9180

DRW(M) 0.7208 0.9007 0.9167 0.8141 0.9707 0.9610

iDRW(CM) 0.7430 0.9207 0.9401 0.8253 0.9650 0.9658

iDRW(EC) 0.7414 0.9278 0.9309 0.8254 0.9703 0.9442

iDRW(EM) 0.7488 0.9140 0.9344 0.8251 0.9689 0.9531

iDRW(ECM) 0.7564 0.9285 0.9422 0.8294 0.9712 0.9556

Baseline† 0.7879 0.8360 0.8926 0.8852

Note that the best prediction performance is emphasized in bold.
∗C-index: the median C-index after 100 iterations of the entire process of training and
validating the model.
†Baseline: the performance when predicting with all negatives, which corresponds to
the proportion of the majority class to the total number of samples.

horizontal line in Figure 3. In general, the different combinations of

integration on three genomic profiles did not significantly differentiate

the performances in either cancer. The performances of iDRW on multiple

genomic profiles were improved compared to the single genomic profile-

based approaches, although it was marginal. These results show that iDRW

effectively integrates complementary information, utilizing the interaction

effects on the multi-layered network. The prediction performances for each

prediction model in both cancer datasets are summarized in Table 2.

4.2 iDRW jointly prioritizes potential driver pathways and

genes on multi-omics data

The pathway activities inferred by iDRW were evaluated with prediction

models in BLCA and KIRC. Important pathway features were selected

for each iteration of training and validating the model. The selected

pathways with a frequency of being selected greater than 50 among

100 iterations were prioritized. The complete lists of prioritized features

by each prediction model are provided in Supplementary Table S2

(BLCA) and S3 (KIRC). The total number of pathway member genes

and significantly associated genes with the outcome from the univariate

statistical analysis are shown.

Supplementary Table S4 shows the list of iDRW-prioritized pathways

for each prediction model in both cancer datasets. To demonstrate the

effectiveness of iDRW when prioritizing pathways, we showed pathways

only when we integrated multiple genomic profiles on the graph, not

in single omics-based approaches. The best-performing combinations of

iDRW models are shown. The results showed that iDRW identified 15

significantly associated pathways with bladder cancer prognosis. The

pathways are categorized into the main- and sub-class derived from the

KEGG pathway database, as shown in Supplementary Table S4. Forty-

two pathways were found to be related to regional or any metastasis

in BLCA. Most of the dominant pathways were related to metabolism

or organismal systems such as the digestive system. Interestingly, 11

human disease pathways were identified in bladder cancer metastasis,

and 7 out of 11 pathways were related to infectious diseases, such as

bacterial, parasitic, and viral diseases. Additionally, 4 immune system-

related pathways and others including neurodegenerative disease and

microRNAs in cancer pathways were found in bladder cancer metastasis.

There were a relatively small number of pathways in KIRC compared with

BLCA. iDRW identified 6 pathways related to kidney cancer prognosis.

There were 12 distant metastasis-associated pathways in KIRC, and 9 out

of 12 pathways were related to metabolism. The one bacterial infectious
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type of genomic profiles; gene expression profile (yellow ellipse), CNV profile (blue round

rectangle), methylation profile (red diamond).

disease pathway (pertussis) was identified in any metastasis for KIRC.

In addition to the iDRW-prioritized pathways, we obtained the pathways

that were important both in single- and multi-omics profiles, which

appeared more than three (count>3) among seven DRW-based models:

DRW on GE, GC, and GM; iDRW on GEC, GEM, GCM, and GECM, as

shown in Supplementary Table S5 (The frequently appeared pathways

were emphasized as bold). There were 10 and 4 commonly identified

pathways to both single- and multi-omics based models in BLCA and

KIRC, respectively. They include 5 pathways related to bladder cancer

prognosis. Five pathways were found to be associated with bladder cancer

metastasis, mostly regional metastasis. We found 4 metabolism pathways

related to kidney cancer prognosis or distant metastasis, such as glycan

biosynthesis and metabolism, and lipid metabolism.

In summary, the most dominant pathways were related to metabolism both

in iDRW-prioritized and commonly identified pathways. The metabolism,

infectious disease, and digestive or endocrine system-related pathways

were specifically found using iDRW. We observed that the commonly

important pathways were mostly associated with metabolism, cell growth

and death, and human diseases (not infectious disease). Especially in

human disease pathways, infectious disease pathways were found only

in iDRW-prioritized pathways, and there were mostly related to regional

metastasis in BLCA, e.g., toxoplasmosis pathway (KEGG: map05145),

malaria (KEGG: map05144), leishmaniasis (KEGG: map05140). We

found that both the iDRW-prioritized and commonly identified pathways

were associated with cancer survival or metastasis. The evidences were

shown in Supplementary Discussion.

4.3 iDRW facilitates integrative gene-gene network

analysis

We visualized the top-10 pathways prioritized by iDRW on the multi-

layered network GECM for the OS prediction model in BLCA. The

genes that were significantly associated with bladder cancer prognosis

within pathways from three genomic profiles were jointly analyzed on the

network. The graph was formally constructed by assigning between-layer

edges from all pairwise combinations of genes in different layers, but 20-25

edges that were randomly chosen between each pair of different layers are

shown for visualization. The size of nodes represents the log-transformed

p-value of significant genes, i.e., the larger the node size, the higher is the

significance level of the gene. We differentiated each node into different

colors and shapes according to the type of genomic profile.

As shown in Figure 4, there was an exclusively large number of significant

genes related to alcoholism (N=67), necroptosis (N=54), and neuroactive

ligand-receptor interaction pathways (N=77); the last one was ranked

12th by frequency. The results showed that these three pathways and

genes greatly contributed to bladder cancer prognosis. The 36 histone

genes, which were mostly included in the largest cluster HIST1, were

found in the alcoholism or necroptosis pathway, the biggest pathways

among the top-10 pathways. Overall, the most significant genes on

average were from the methylation profile; ARSB (methylation), ALOX15

(methylation), CPT1B (gene expression), ITGB7 (gene expression),

ABCA (methylation), and MAPK3 (methylation). The phototransduction,

necroptosis, and intestinal immune network for IgA production pathways

were prioritized specifically by iDRW. There were 5 commonly identified

pathways both in single- and multi-omics profiles: ubiquitin-mediated

proteolysis pathway, fatty acid metabolism pathway, ABC transporters

pathway, glycosaminoglycan degradation pathway, and phenylalanine,

tyrosine, and tryptophan biosynthesis pathway.

5 Discussion

In this study, we proposed the multi-layered network-based pathway

activity inference method on multi-omics data (iDRW) and experimentally

validated the method with two types of clinical outcome prediction models

for urologic cancer integrative analysis. The main advantages of our

framework are summarized as follows. First, it is generally applicable

to any type of data that integrates multi-omics data on the pathway-

based network while other competitive methods targeted a single genomic

profile. Second, as it is not sensitive to the underlying graph structure,

the researchers can customize multi-layered network. Finally, it facilitates

the integrative network-based pathway-level analysis: pathway activity

pattern analysis, outcome-related pathways prioritization, and integrated

network visualization. The experimental results showed that the method

not only contributes to an improved outcome prediction performance

but also provides better biological insights into the pathways and genes

prioritized by the model from a comprehensive perspective.

The marginal performance improvements in iDRW may have been affected

by the incomplete mapping of genes within pathways. In our experiments,

approximately 30% of genes in genomic profiles were mapped on average

in the pathway-based gene-gene graph using the KEGG pathway database.

This issue can be resolved through complete mapping by merging with

another existing pathway database, such as Reactome, BioPAX, and

WikiPathways. In addition, the performance improvement of iDRW in

metastasis prediction was insignificant, even though we alleviated the

class imbalance problem in the metastasis prediction model by giving

class weights when training the model. As iDRW contributed to an

improved OS prediction power, we expect a more improved classification

performance, given the balanced class distribution. We identified that

iDRW showed the complementary effect when integrating multi-omics

data with large variances, as shown in Supplementary Figure S2. These

results demonstrated that iDRW robustly combines heterogeneous data,

reducing the noise.

Furthermore, we visualized and analyzed the multi-layered gene-gene

network for the integrative urologic cancer analysis. Since cancer is a

complex disease caused by genetic and/or epigenetic changes at different

molecular levels such as the DNA sequence, expression, methylation, copy

number variation, metabolite, and proteome, the effective multi-omics

data integration framework is essential to understand the complex nature

of cancer biology. Based on the prioritized pathways, genes and gene-

gene network provided by our framework, we might be able to provide

a holistic understanding of the pathophysiological mechanisms in cancer

development and progression. It is possible to identify novel biomarkers for

cancer diagnosis and prognosis, provide risk prediction of cancer patients,

and discover efficient targeted anti-cancer agents. Future works are still

needed that include pan-cancer analysis and integration with other omics

data such as proteomics and metabolomics.
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