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Abstract 

Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding 

environment and adapt accordingly to perform cellular functions such as adhesion, migration and 

differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their 

connection with the actomyosin network is crucial for mechanosensing as well as the generation and 

transmission of forces onto the substrate.  Despite having emerged as major regulators of cell adhesion 

and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we 

show that actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation, 

a tubulin post-translational modification, by promoting the recruitment of the alpha-tubulin acetyl 

transferase (αTAT1) to focal adhesions. Microtubule acetylation, in turn, promotes GEF-H1 mediated 

RhoA activation, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk 

between microtubules and actin in mechanotransduction, which contributes to mechanosensitive cell 

adhesion and migration. 

Main 

Cells sense the physical properties of their environment, translate them into biochemical signals and 

adapt their behaviour accordingly. This process known as mechanotransduction is crucial during 

development as well as in the adult during physiological and pathological conditions such as cell migration, 

wound healing and cancer1,2. Integrin-mediated focal adhesions (FAs) sense the matrix rigidity, control the 

generation of actomyosin-dependent forces and the transmission of these traction forces onto the 

substrate, as well as contribute to mechanosensitive cell responses such as migration3,4. In addition to the 

actin cytoskeleton, microtubules are also key regulators of 2D and 3D cell migration5-8. Several studies 

have demonstrated the role of the actomyosin cytoskeleton and FAs in mechanotransduction, however, 

very little is known about microtubules in this context. In this study, we used astrocytes, whose migration 

2 | P a g e  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.22.205203doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.205203
http://creativecommons.org/licenses/by-nc-nd/4.0/


is highly dependent on efficient microtubule dynamics, to address the role of microtubules in rigidity 

sensing and mechanosensitive migration9-11. 

 

One of the crucial factors affecting the functions of the microtubule network is post-translational 

modifications (PTMs) of tubulin such as acetylation, which occurs at the K40 residue of α-tubulin. The 

enzyme responsible for microtubule acetylation, αTAT1 (α-tubulin acetyltransferase 1, also called as MEC-

17), is present in the lumen of microtubules 12 and is highly specific to α-tubulin K40 (Fig. S1A). On the 

other hand, the enzymes involved in deacetylation at K40 are histone deacetylase family member 6 

(HDAC6) and sirtuin type 2 (Sirt2) (Fig. supplementary S1A), both of which target other substrates as well 

13. We have previously shown that microtubule acetylation promotes FA turnover and cell migration 11. 

Thus, we investigated whether the extracellular matrix rigidity affects microtubule acetylation. Astrocytes 

were plated sparsely on polyacrylamide hydrogels of different rigidities: 1.26 kPa, 2 kPa, 9 kPa and 48 kPa 

(Fig. 1A and supplementary S1A). Astrocytes on soft substrates exhibited lower levels of acetylated tubulin 

than cells on stiff substrates as evidenced by a lower ratio of acetylated tubulin to the total tubulin in case 

of the former (Fig. 1A and supplementary S1A). Subsequently, to determine whether microtubule 

acetylation may be triggered by a mechanism involving adhesion and spreading, we plated cells on 

adhesive micropatterns (area 2500 μm2) printed on 2 kPa and 40 kPa hydrogels. Similar to stiff substrates, 

cells on soft substrates adopted a crossbow shape and identical spread area, and yet, microtubule 

acetylation was increased on stiff substrates as compared to softer substrates (Fig. supplementary S1B), 

In contrast, tubulin detyrosination, another PTM, was not affected by increased substrate rigidity (Fig. 

supplementary S1C), and had no effect on astrocyte adhesion and migration 11, suggesting that rigidity 

sensing specifically affects microtubule acetylation. Thus, we focused on understanding the role of 

microtubule acetylation in response to matrix rigidity. 
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Cells sense the matrix rigidity and trigger a cascade of signalling pathways downstream of integrins. 

To determine the role of integrin signalling in controlling microtubule acetylation, we used a scratch 

induced migration assay to trigger integrin activation at the wound edge9. Addition of cyclic RGD (cRGD) 

peptide, to prevent the binding of integrins to the RGD motif of extracellular matrix proteins, reduced 

tubulin acetylation (Fig. 1B). Furthermore, depletion of β1 integrin using a siRNA (Fig. supplementary S1D) 

also resulted in a significant decrease in tubulin acetylation as compared to control cells (Fig. 1B). The 

enzymes responsible for microtubule acetylation and deacetylation are αTAT1 and HDAC6 respectively. 

Thus, we used previously characterized siRNAs targeting αTAT1 (Fig. supplementary S1A) to decrease 

acetylation and Tubacin11,14, a drug which increases microtubule acetylation by inhibiting HDAC6 (Fig. 

supplementary S1A), without modifying the acetylation of other HDAC6 substrates such as histones14,15. 

On depleting αTAT1, we observed that αTAT1 was responsible for integrin-mediated microtubule 

acetylation (Fig. 1C). These results suggest that β1 integrin signalling promotes microtubule acetylation on 

rigid substrates.  

 

Mechanosensing requires actomyosin contractility16,17. We treated cells plated on glass coverslips 

with the ROCK inhibitor, Y-27632, which strongly reduces actomyosin contractility18. Under this condition, 

tubulin acetylation is highly reduced (Fig. 1D and supplementary S1E), strongly suggesting that 

mechanosensing at FAs controls microtubule acetylation. 

 

The recruitment and/or activation of αTAT1 remains unknown19. Therefore, we carried out a 

quantitative mass spectrometry screen to identify interacting partners of αTAT1 using HEK cells. The mass 

spectrometry data (data available via ProteomeXchange with identifier PXD015871; check methods for 

details; Fig. supplementary S1F) revealed interesting potential interactors, amongst which the proteins 

enriched in the gene ontology for focal adhesions are depicted in red (Fig. supplementary S1F). One of the 
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significant interactors on the mass spectrometry screen was talin (Fig. 1E), a mechanosensitive partner of 

integrins. The interaction of αTAT1 with talin was further confirmed by co-immunoprecipitation in 

astrocytes (Fig. 1F). In addition, using TIRF microscopy, we observed that GFP-αTAT1 strongly localised at 

mCherry-vinculin-positive FAs (Fig. 1G)11. Since αTAT1 is also present within microtubules (Fig. 

supplementary S1G)11,12, we tested whether the recruitment of αTAT1 to FAs was dependent on 

microtubules. To address this, GFP-αTAT1 and mCherry-vinculin expressing astrocytes were treated with 

nocodazole after acquiring a short movie of GFP-αTAT1 localisation at FAs. Nocodazole-treated cells 

displayed larger adhesions as observed in other cell types (Fig. 1G, movie 1)20,21 and higher levels of αTAT1 

at FAs (Fig. 1G, movie 1). This was also verified using GST-αTAT1 pulldowns, wherein, the interaction of 

αTAT1 with talin increased in nocodazole or tubacin-treated astrocytes compared to control (Fig. 1H). 

Similarly, by TIRF microscopy as well as GST-αTAT1 pulldowns, we observe that with the loss of FAs upon 

Y-27632 treatment, αTAT1 interaction with talin is diminished in agreement with decreased tubulin 

acetylation, suggesting a tension-dependent recruitment of αTAT1 at focal adhesions (Fig. 1G and 1H, 

movie 2). Altogether, these results show that mechanosensing at focal adhesions triggers the recruitment 

of αTAT1 to promote microtubule acetylation. It also suggests that the recruitment of αTAT1 may be a 

consequence of mechanosensitive changes in talin conformation22.  

 

We then tested whether microtubule acetylation may be involved in mechanosensitive cell functions. 

First, we analysed the impact of substrate rigidity on the distribution of FAs by immunostaining of the FA-

associated protein, paxillin4,23. Astrocytes were sparsely plated on polyacrylamide hydrogels of different 

rigidities: 1.26 kPa, 2 kPa, 9 kPa and 48 kPa (Fig. 2A). Quantification of the density of FAs (Fig. 

supplementary S2A)  indicates that cells on soft substrates display FAs throughout the cell surface, 

whereas, FAs were predominantly seen at the periphery in cells adhering to stiffer substrates (Fig. 2A). 

Thus, changes in substrate rigidity alter FA distribution in astrocytes, allowing us to assess the impact of 
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microtubule acetylation in this phenomenon. Following αTAT1 depletion (Fig. supplementary S1A), FAs 

were distributed throughout the cell surface independently of the rigidity of the substrate, i.e., αTAT1-

depleted cells on 48 kPa had a similar distribution of FAs as control/siαTAT1 cells on 1.26 kPa substrates 

(Fig. 2B, 2D and supplementary S2B). To confirm that the changes in FA distribution act through tubulin 

acetylation, we treated cells plated on different rigidities with tubacin. Tubacin did not have an effect on 

the FA localisation in cells plated on 48 kPa substrates (Fig. 2C, 2D and supplementary S2B). In contrast to 

αTAT1 depletion, tubacin treatment in cells plated on 1.26 kPa substrates mimicked the phenotype (FAs 

at the cell periphery) observed in control/tubacin-treated cells plated on stiff matrices (Fig. 2C, 2D and 

supplementary S2B). Since cell spreading on different substrate rigidities can have an effect on the 

distribution of FAs, we therefore plated αTAT1-depleted cells on micropatterned hydrogels to observe 

FAs in cells of similar spread area. In line with our prior results, cells on soft substrates or αTAT1-depleted 

cells on stiffer substrates displayed FAs throughout the cell surface (Fig. supplementary S2C). Together 

with previous findings that microtubule acetylation controls membrane vesicle delivery at FAs and FA 

dynamics11,24, these results show that the rigidity-sensing dependent microtubule acetylation controls the 

mechanosensitive distribution of FAs (Fig. 2E). 

 

Next, we investigated the impact of αTAT1 depletion on the FA-associated cytoskeleton. In migrating 

astrocytes, the actin network comprises of longitudinal stress fibres connected to FAs at the front of the 

leader cells as well as interjunctional transverse arcs connecting neighbouring cells at adherens junctions 

(Fig. 3A)18,25. In αTAT1-depleted cells, the transverse arcs of actin were dramatically reduced and the 

longitudinal fibres did not extend to the front of migrating cells (Fig. 3A and supplementary S2D). 

Associated with these longitudinal fibres, FAs were located further back in the protrusion rather than at 

the front of leader cells (Fig. 3A)11. Myosin light chain phosphorylation (pMLC) in control cells is 

predominantly seen at the leading edge of migrating cells, however, in αTAT1-depleted cells, pMLC was 
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barely visible at the leading edge of cells and was only associated with the remaining actin fibres at the 

cell center, similar to myosin IIa distribution (Fig. 3A and 3B). Moreover, intermediate filaments (visualised 

using vimentin), which play a major role in regulating FAs and collective migration of astrocytes 25 and 

normally extend from the perinuclear region to the cell periphery close to FAs25,26, were noticeably absent 

from the front of αTAT1-depleted cells and frequently appeared fragmented (Fig. 3C). We then looked 

closely at the effect of αTAT1 on the cytoskeletal organisation at FAs by using platinum-replica 

transmission electron microscopy (EM) on unroofed migrating astrocytes located at the wound egde. As 

by light microscopy, EM images showed that FAs connected to actin bundles were distributed further 

within the protrusion in case of siαTAT1 cells as compared to a highly organised and parallel set of FAs at 

the leading edge of control cells (Fig. 3D-1, 3D-2 and 3D-3). From the high magnification views of FAs in 

the control cells, microtubules were often seen along actin cables reaching FAs (Fig. 3D-1i, marked with 

white arrows). Intermediate filaments were also clearly visible, intertwined with the actin filaments at FAs 

(Fig. 3D-1ii and iii, marked with yellow arrows). In siαTAT1 cells, the actin bundles near FAs were strikingly 

thinner than those in controls (Fig. 3D-1ii, 3D-2iv and Fig. 3D-3v). We consistently observed a lack of 

microtubules and intermediate filaments associated with FAs in αTAT1-depleted cells (Fig. 3D-2iv and 3D-

3v). All these results strongly support a role for αTAT1 in the cytoskeletal organisation at FAs. 

 

One major impact of mechanosensing is the adaptation of traction forces to the rigidity of the 

substrate27. We thus asked whether microtubule acetylation might affect traction forces by plating control 

or αTAT1-depleted astrocytes on crossbow-shaped micropatterned hydrogels. By traction force 

microscopy, we observed that αTAT1 depletion resulted in lower traction force production on 40 kPa 

substrates (Fig. 4A, 4B and supplementary S3A). In contrast, overexpression of GFP-αTAT1 increased 

traction energies and forces and also rescued the effect observed on αTAT1 knockdown (siαTAT1 + GFP-

αTAT1; Fig. 4A, 4B, supplementary S3B and S3D) when cells were plated on 40 kPa. In addition, tubacin-
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treated cells on softer 2 kPa hydrogels showed increased traction energies and forces, comparable to 

control cells on 40 kPa (Fig. 4A, 4C and supplementary S3C). Thus, the level of microtubule acetylation 

dictates traction forces exerted on the substrate through FAs. This further illustrates the essential role of 

the mechanosensitive regulation of microtubules in force transmission. 

 

The crucial role of microtubule acetylation in the controlling cytoskeletal organisation and traction 

forces led us to further investigate the molecular mechanisms involved in this process. We focused on 

RhoA, a small G protein of the Rho family, well-known for promoting stress fibre formation and 

actomyosin contractility, via its effector ROCK and MLC phosphorylation. Pulldown of GTP-bound active 

RhoA using GST-Rhotekin beads showed that αTAT1 depletion reduced RhoA activity (Fig. 4D), suggesting 

that microtubule acetylation may promote actomyosin contractility by activating RhoA. RhoA activation 

is mediated by Guanine nucleotide exchange factors (GEFs)28. Amongst these GEFs, GEF-H1 (also known 

as ARHGEF2) is a microtubule-bound RhoGEF which, when released from microtubules triggers the Rho-

ROCK signalling cascade and cell contractility29,30. Previously, substrate stiffness was suggested to 

correlate with GEF-H1 activity and actomyosin contractility31. In addition, GEF-H1 was recently shown to 

be controlled by the interaction of microtubules with integrin-mediated adhesions32, leading us to 

investigate whether integrin-mediated microtubule acetylation could affect the association of GEF-H1 

with microtubules.  In control astrocytes plated on rigid glass coverslips, GEF-H1 localised partially 

(approximately 42%) on microtubules but also as dots in the cytosol, which are known to depict the 

active/released GEF- H1 (Fig. 4E and 4F)33. In contrast, in αTAT1-depleted cells, GEF-H1 was found 

predominantly localised on microtubules (approximately 60%; Fig. 4E and 4F). Tubacin treatment of 

αTAT1-depleted cells led to GEF-H1 release into the cytosol rescuing the effect of αTAT1 depletion and 

confirming the role of microtubule acetylation in the GEF-H1 localisation (Fig. 4E and 4F). Altogether, these 

results show that microtubule acetylation promotes the release of GEF-H1 from microtubules into the 
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cytoplasm, and strongly suggest that rigidity-dependent microtubule acetylation contributes to 

mechanotransduction by enabling RhoA activation and actomyosin contractility. 

 

The involvement of microtubule acetylation in mechanotransduction and in the mechanosensitive 

regulation of FAs and acto-myosin contractility led us to investigate its influence on cell migration, which 

has often been described as a mechanosensitive cellular response2,34. To this end, we developed a 

collective migration assay on hydrogels, where microdropping a small amount of a chemical (sodium 

hydroxide) induced a circular wound in the cell monolayer (Fig. 5A, movie 3). Wild-type astrocytes 

migrated significantly slower on 2 kPa gels than on 48 kPa gels (Fig. 5B, movie 4), implying that astrocyte 

migration speed is affected by substrate rigidity. Most importantly, αTAT1 depletion abolished the 

increase of cell speed observed on stiff 48 kPa gels (Fig. 5C, movie 5), where the cell migration speed of 

αTAT1-depleted cells plated on 48 kPa was similar to that of control/αTAT1-depleted cells on 2 kPa 

substrates. Thus, we demonstrate that microtubule acetylation is required for mechanosensitive 

regulation of astrocyte collective migration. 

 

Our results show that microtubules are regulated in response to substrate rigidity sensing and in turn, 

play a key role in mechanotransduction by participating in mechanosensitive cellular responses (Fig. 5D). 

Downstream of integrin-mediated signalling, mechanosensing controls the recruitment of αTAT1 to FAs 

and induces microtubule acetylation. Microtubule acetylation tunes mechanosensitive distribution of FAs 

and force generation, thereby, contributing to cellular responses to substrate rigidity. We hypothesize 

that the actomyosin-sensitive association of αTAT1 with talin might be crucial in transmitting signals to 

the cytoskeleton, leading to microtubule acetylation upon integrin activation (or wounding). In agreement 

with our findings, formins, which control actin dynamics, have also been shown to facilitate microtubule 

acetylation35,36. How αTAT1 enters the lumen of microtubules still remains unclear although one can 
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speculate that αTAT1 accesses the lumen through microtubule lattice defects or through the open ends19. 

Growing microtubule ends are often seen in close proximity to FAs at the leading edge of migrating cells8. 

It is highly plausible that part of the pool of αTAT1, at FAs, enters the lumen through these microtubule 

open ends in the vicinity of adhesions. 

We show that microtubule acetylation reorganises the actomyosin network and promotes traction 

forces. Therefore, we propose a feedback mechanism involving a crosstalk between microtubules and 

actin wherein, actomyosin-dependent mechanosensing promotes microtubule acetylation which, in turn, 

facilitates the release of GEF-H1 from microtubules into the cytosol to increase RhoA activity, cell 

contractility and traction forces. It was recently shown that uncoupling microtubules from FAs results in 

a similar release of microtubule-bound GEF-H1 into the cytosol32, which then triggers myosin IIA assembly 

and increased cell contractility through RhoA. Suppression of RhoA activity in the absence of αTAT1 might 

be due to the sequestering of GEF-H1 by non-acetylated microtubules. Whether microtubule acetylation 

directly or indirectly induces the release of GEF-H1 remains unclear. One can speculate that changes in 

the conformation of the microtubule lattice due to intraluminal acetylation of tubulin may facilitate the 

release of GEF-H1 from microtubules. Alternatively, increased acetylation which makes microtubules 

more resilient37,38 may promote softening, bending or curving of microtubules, thereby, facilitates the 

release of GEF-H1 from microtubules. Interestingly, microtubule acetylation also affects the association 

of intermediate filaments with actin bundles at FAs. Since intermediate filaments have also been involved 

in the control of FA dynamics, actomyosin contractility as well as GEF-H1 activity25,33, the microtubule-

actin interplay described here may also involve intermediate filaments, whose role in 

mechanotransduction is still elusive. 

 

In response to substrate rigidity sensing, cells perform essential functions such as migration39. In the 

absence of αTAT1, cells plated on stiff substrates produce less traction forces and in turn, migrate slower. 
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This can be considered counter-intuitive for single cell migration where traction forces appear to correlate 

with migration speed, however, collective cell migration relies on the transmission of forces between the 

leaders and followers. Cell-cell junctions not only transmit forces between cells but help maintain the 

integrity of the monolayer18,40, which improves collective and directed cell migration. Alteration of 

microtubule acetylation did not induce any detachment of leader cells from followers and nor were there 

any effects in directionality or persistence during migration of αTAT1-depleted cells11. Therefore, we 

propose a model in which, on stiff substrates, increased microtubule acetylation would trigger higher 

traction forces in leader cells, which would transmit these pulling forces to followers and increase 

collective migration speed. 

 

In conclusion, our results depict a crosstalk between the actin and microtubule cytoskeletal networks 

(Fig. 5D), whereby microtubule acetylation, downstream of rigidity-dependent integrin-mediated 

signalling, alters actomyosin contractility as well as focal adhesion distribution and dynamics to promote 

mechanosensitive migration of astrocytes, thus closing a crucial feedback loop governing 

mechanotransduction at FAs (Fig. 5D). 

 

Methods 

Cell culture 

Primary astrocytes were obtained from E17 rat embryos10. Use of these animals is in compliance with 

ethical regulations and has been approved from the Prefecture de Police and Direction départementale 

des services vétérinaires de Paris. Astrocytes were grown in 1g/L glucose DMEM supplemented with 10% 

FBS (Invitrogen, Carlsbad, CA), 1% penicillin-streptomycin (Gibco) and 1% Amphotericin B (Gibco) at 5% 

CO2 and 37°C. 
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Cell nucleofection 

Astrocytes were transfected with Lonza glial transfection solution and electroporated with a Nucleofector 

machine (Lonza). Cells were then plated on appropriate supports previously coated with poly-L-Ornithine 

(Sigma). Experiments are carried out 3 or 4 days post-transfection and comparable protein silencing was 

observed. siRNAs were used at 1 nmol and DNA was used at 5 µg. siRNA sequences used were: Luciferase 

(control) UAAGGCUAUGAAGAGAUAC; αTAT1 rat (siαTAT1-1): 5’-ACCGACACGUUAUUUAUGU-3’ and 5’-

UUCGAAACCUGCAGGAACG-3’; αTAT1 rat (siαTAT1-2): 5’-UAAUGGAUGUACUCAUUCA-3’ and 5’-

UCAUGACUAUUGUAGAUGA-3’; β1 integrin (AUUGCCAGAUGGAGUAACA). Constructs used were: GFP-

αTAT1 and GST-αTAT1 (gift from Philippe Chavrier, Institut Curie and Guillaume Montagnac, Institut 

Gustave Roussy) and mCherry-vinculin. siαTAT1-1 and siαTAT1-2 are pools of two siRNAs each. For all 

experiments, siαTAT1-2 has been used due to better knockdown efficiency as seen in Fig. S1A and 

previously characterized in 11. 

Cell treatment 

Cells were plated on appropriate supports and allowed to grow for 2-3 days after nucleofection. 2 mM 

Tubacin (Sigma) or 2 mM Niltubacin (negative control for Tubacin; Enzo Life Sciences) were added prior 

to wounding cells. Similarly, RGD peptide (Enzo Life Sciences) and RGE Control peptide (Enzo Life Sciences) 

were added prior to wounding. ROCK inhibitor, Y-27632, was added 6 h after wounding and 2 h before 

fixation. For TIRF experiments, 10 μM nocodazole or Y-27632 were added after 10 min of acquisition. For 

pull-downs, 10 μM nocodazole or Y-27632 were added 1 h before cell lysis.  

Preparation of homogenously coated polyacrylamide hydrogels 

Protocol to prepare polyacrylamide hydrogels was adapted from 34,41,42. Coverslips were plasma cleaned 

for 3 min and silanised for 10 min using a solution of 1% (v/v) 3-(trimethoxysilyl)propyl methacrylate and 

1% (v/v) acetic acid in ethanol. Coverslips were then washed twice with absolute ethanol and dried. A 

solution of polyacrylamide (proportions of acrylamide and bisacrylamide in the solution define the rigidity 
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of the hydrogel) was prepared. 2.5 µl 10% APS and 0.25 µl TEMED was added and mixed well with the 

solution. A 50 µl drop of the solution was added over each coverslip (20x20 mm) and immediately, an 

18x18 mm coverslip was placed gently over the solution. The solution was allowed to polymerise for 1 h 

at room temperature. HEPES was added over the coverslips to detach the top glass. The polymerised gel 

was then activated under UV for 5 min using Sulpho-SANPAH and washed with HEPES twice. The hydrogels 

were then coated with 100 µg/ml of rat tail collagen I overnight at 4oC. The excess collagen was washed 

once with PBS and approximately 5 x 104 cells/ml were plated on hydrogels. 

Micropatterning 

Coverslips were plasma-cleaned for 45 s and incubated with 0.1 mg/ml poly-l-lysine/polyethylene glycol 

(PLL-PEG) diluted in 10 mM HEPES for 30 min at room temperature. Excess of PLL-PEG was allowed to 

slide down by gravity, and the coverslips were dried and stored at 4oC overnight before printing. 

Micropatterns were printed on previously prepared PLL-PEG coverslips for 3 min with specifically designed 

chrome masks and coated with 50:50 v/v fibronectin/fibrinogen mixture (20 μg/ml each) diluted in fresh 

NaHCO3, pH 8.3, 100 mM, for 30 min at room temperature. Micropatterned coverslips were washed thrice 

in NaHCO3 and used immediately for transfer on hydrogels. Plated cells (approximately 6 x 104 cells/ml) 

were allowed to adhere for 16 h before imaging/fixation. Crossbow patterns have an area of ∼2500 µm2. 

Traction force experiments on micropatterned substrates 

After printing and coating micropatterned coverslips, gel mixtures were prepared as follows: 40.4 kPa –  

100 µl 40% acrylamide, 120 µl 2% bisacrylamide, 280 µl water (final concentration of 8% acrylamide and 

0.48% bisacrylamide in water); 2.61 kPa – 50 µl 40% acrylamide, 25 µl 2% bisacrylamide, 425 µl water 

(final concentration of 8% acrylamide and 0.048% bisacrylamide in water). 5 µl of fluorescent microbeads 

(FluoSpheres; Molecular Probes) were incubated with 0.1 mg/ml PLL-PEG on a rotator for 1 h at 4°C prior 

to mixing with the gel mixture. The PLL-PEG coated beads were washed and centrifuged thrice at 1000 

rpm for 10 min with 10 mM HEPES. These beads were then mixed with 165 µl of the gel mixture. After 
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adding 1 µl APS and 1 µl TEMED, the solution was added as a 25 µl drop on a silanised 20x20 mm coverslip. 

The protein-coated micropatterned coverslip was then gently placed on the gel mixture. The solution was 

allowed to polymerize for 25 min at room temperature. After detaching the micropatterned glass from 

the polymerized gel, 6 x 104 cells/ml were plated on the gels and allowed to adhere and spread for 16 h 

before TFM experiments. Stacks of single micropatterned cells were acquired before and after trypsin 

treatment. Acquisitions were performed with a Nikon Eclipse Ti-E epifluorescence inverted microscope, 

with a 40× 1.49 NA air objective equipped with a pco.edge sCMOS camera and Metamorph software. Cells 

were maintained at 5% CO2 and 37°C in normal astrocyte medium during acquisition.  

Migration assays 

For in vitro wound healing assays, cells were plated on appropriate supports (dishes, plates, coverslips or 

glass-bottom MatTek). Cells were allowed to grow to confluence and fresh medium was added the day 

prior to the experiment. The cell monolayer was scratched with a p200 pipette tip to induce migration 

and imaged immediately/8 h post wounding. 

For migration on soft substrates, cells were plated on hydrogels of different rigidities in 6-well glass 

bottom plates (MatTek) and allowed to grow for 72 h after transfection before creating a chemical wound. 

0.05 M NaOH was gently dropped on the cells using a microinjector. The dead cells and debris were 

washed off gently using PBS. Fresh medium was added to the cells. Cells were placed on the microscope 

for live imaging. 

Acquisition was started 30 min after wounding. Movies were acquired with a Zeiss Axiovert 200M or a 

Nikon Eclipse Ti-E epifluorescence inverted microscope with cells maintained at 5% CO2 and 37°C. All 

images were acquired with dry objective 10X 0.45 NA and an EMCCD camera/pco.edge sCMOS camera 

and Metamorph software. Images were acquired every 15 min for 24 h. Nuclei of leader cells were 

manually tracked with Fiji software (Manual Tracking plugin). 

14 | P a g e  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.22.205203doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.205203
http://creativecommons.org/licenses/by-nc-nd/4.0/


Immunostaining 

Cells were fixed with cold methanol for 3 min at -20°C, or 4% warm PFA, or 4% PFA + 0.2% glutaraldehyde 

+ 0.25% Triton X-100 for 10 min at 37oC. After fixation with PFA, glutaraldehyde and triton, free aldehyde 

groups were quenched with a solution of 1 mg/ml sodium borohydride (Sigma-Aldrich) freshly added to 

cytoskeletal buffer (10 mM MOPS, 150 mM NaCl, 5 mM EGTA, 5 mM MgCl2, 5 mM glucose, pH 6.1) for 10 

min on ice. Cells were permeabilised for 5 min with 0.1% Triton in case of PFA fixation. Coverslips were 

blocked for 1 h with 5% BSA in PBS. The same solution was used for primary and secondary antibody 

incubation for 1 h. Nuclei were stained with DAPI and coverslips were mounted with Prolong Gold. 

Antibody anti-acetylated tubulin (clone 6-11B-1, mouse monoclonal, Sigma Aldrich), anti-Poly-Glu tubulin 

(1:1000, AbC0101, ValBiotech), anti-α-tubulin (MCA77G, rat; Biorad), anti-paxillin (610051, mouse 

monoclonal, lot 5246880; BD; and ab32084, rabbit monoclonal, clone Y133 and lot GR215998-1; Abcam), 

anti-talin (T3287, mouse monoclonal, clone 8D4, lot 035M4805V; Sigma-Aldrich), anti-GEF-H1 (ab155785, 

Abcam), anti-Phalloidin (176759, lot GR278180-3; Abcam), anti-vimentin (V6630, mouse monoclonal lot 

10M4831; Sigma-Aldrich), anti-pMLC (3675S, S19, mouse, Cell signalling), anti-myosin IIA (non-muscle, 

M8064, rabbit polyclonal, Sigma-Aldrich). Secondary antibodies were Alexa Fluor 488 donkey anti–rabbit 

(711-545-152), Rhodamine (TRITC) donkey anti–rabbit (711-025-152), Alexa Fluor 647 donkey anti–rabbit 

(711-695-152), Alexa Fluor 488 donkey anti–mouse (715-545-151), Rhodamine (TRITC) donkey anti–

mouse (715-025-151), Alexa Fluor 647 donkey anti-rat (711-605-152), and Alexa Fluor 488 donkey anti–

rat (712-545-153); all from Jackson ImmunoResearch. Epifluorescence images were acquired with a Leica 

DM6000 microscope equipped with 40X 1.25 NA or 63X 1.4 NA objectives and recorded on a CCD camera 

with a Leica software.  

TIRF microscopy 

Acquisitions were performed with a Nikon Eclipse Ti-E epifluorescence inverted microscope, with a 60× 

1.49 NA oil objective equipped with a pco.edge sCMOS camera with Metamorph software. Cells were 
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maintained at 5% CO2 and 37°C in normal astrocyte medium. After acquiring a 15 min movie of GFP-αTAT1 

and mCherry-vinculin, nocodazole or Y27 were added and images were acquired every 2 min for 1 h. 

Transmission electron microscopy 

Adherent astrocytes plated on glass coverslips were scratched to induce migration. 4 h after scratch, cells 

were disrupted by sonication as described previously 43. Coverslips were unroofed by scanning the 

coverslip with rapid sonicator pulses in KHMgE buffer (70 mM KCl, 30 mM HEPES, 5 mM MgCl2, 3 mM 

EGTA, pH 7.2). Paraformaldehyde 2%/glutaraldehyde 2%-fixed cells were further sequentially treated with 

0.5% OsO4, 1% tannic acid and 1% uranyl acetate prior to graded ethanol dehydration and 

Hexamethyldisilazane substitution (HMDS, Sigma-Aldrich). Dried samples were then rotary-shadowed 

with 2 nm of platinum and 5-8 nm of carbon using an ACE600 high vacuum metal coater (Leica 

Microsystems). Platinum replicas were floated off the glass by 5% hydrofluoric acid, washed several times 

by floatation on distilled water, and picked up on 200 mesh formvar/carbon-coated EM grids. The grids 

were mounted in a eucentric side-entry goniometer stage of a transmission electron microscope operated 

at 80 kV (Philips, model CM120) and images were recorded with a Morada digital camera (Olympus). 

Images were processed in Adobe Photoshop to adjust brightness and contrast and presented in inverted 

contrast.  

Image analysis 

Normalised mean intensity levels of acetylated and detyrosinated tubulin for immunofluorescence images 

were calculated as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑜𝑜 𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎 𝑅𝑅𝑜𝑜 𝑑𝑑𝑎𝑎𝑅𝑅𝑎𝑎𝑜𝑜 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅𝑡𝑡 𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎 =  
𝐴𝐴𝑎𝑎𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎/𝑑𝑑𝑎𝑎𝑅𝑅𝑎𝑎𝑜𝑜 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅𝑡𝑡 𝑅𝑅𝑡𝑡𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅𝑎𝑎

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅𝑡𝑡 𝑅𝑅𝑡𝑡𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅𝑎𝑎
   

FA density was calculated as follows: 

𝐹𝐹𝐴𝐴 𝑑𝑑𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅𝑎𝑎 =  
𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡𝑎𝑎𝑜𝑜 𝑅𝑅𝑜𝑜 𝐹𝐹𝐴𝐴𝑖𝑖 𝑅𝑅𝑡𝑡 𝑅𝑅ℎ𝑎𝑎 𝑜𝑜𝑎𝑎𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡

𝐴𝐴𝑜𝑜𝑎𝑎𝑅𝑅 𝑅𝑅𝑜𝑜 𝑅𝑅ℎ𝑎𝑎 𝑜𝑜𝑎𝑎𝑟𝑟𝑅𝑅𝑅𝑅𝑡𝑡
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Different regions of cells (entire cell, cell periphery-8 μm, 8 μm-16 μm, 16 μm-cell center) were analysed 

as depicted in Fig. S2A. 

For migration assays, nuclei of cells were manually tracked to determine the speed directionality and 

persistence of migration using the following formulae:  

Mean velocity (𝑙𝑙), persistance (𝑝𝑝) and directionality (𝑑𝑑) of cell migration are calculated as follows: for a 

given (𝑥𝑥, 𝑎𝑎) coordinate of leading cell nucleus, 

𝑙𝑙 =
∑𝜗𝜗
𝑡𝑡

 

𝑝𝑝 =
�[(𝑥𝑥24 − 𝑥𝑥0)2 + (𝑎𝑎24 − 𝑎𝑎0)2]

∑�[(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1)2 + (𝑎𝑎𝑛𝑛 − 𝑎𝑎𝑛𝑛−1)2]
 

𝑑𝑑 =  
|(𝑥𝑥0 − 𝑥𝑥24)|

∑ϑ�[(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1)2 + (𝑎𝑎𝑛𝑛 − 𝑎𝑎𝑛𝑛−1)2]
 

where 𝑡𝑡 is the number of time points acquired and 𝜗𝜗 is cell velocity. 

Analysis of TFM on micropatterns was performed with a custom-designed macro in Fiji based on work by 

44. The topmost planes of beads before and after trypsinisation were selected and aligned using a 

normalized cross-correlation algorithm (Align Slices in Stack plugin). The displacement field was computed 

from bead movements using particle image velocimetry (PIV). Parameters for the PIV were three 

interrogation windows of 128, 64, and 32 pixels with a correlation of 0.60. Traction forces were calculated 

from the displacement field using Fourier transform traction cytometry and a Young’s modulus of 40 kPa 

or 2 kPa, a regularization factor of 10−9, and a Poisson ratio of 0.5. 

For the localisation of GEF-H1 on microtubules, the percentage GEF-H1 on microtubules was calculated 

as follows: 
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𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟𝑎𝑎 𝑅𝑅𝑡𝑡𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅𝑎𝑎 𝑅𝑅𝑜𝑜 𝐺𝐺𝐺𝐺𝐹𝐹𝐺𝐺1 𝑎𝑎𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 𝑅𝑅𝑡𝑡 𝑀𝑀𝑇𝑇

=
𝐼𝐼𝑡𝑡𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅𝑎𝑎 𝑅𝑅𝑜𝑜 𝐺𝐺𝐺𝐺𝐹𝐹𝐺𝐺1 𝑅𝑅𝑡𝑡 𝑁𝑁𝑅𝑅𝑎𝑎𝑜𝑜𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑖𝑖

𝐼𝐼𝑡𝑡𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅𝑎𝑎 𝑅𝑅𝑜𝑜 𝐺𝐺𝐺𝐺𝐹𝐹𝐺𝐺1 𝑅𝑅𝑡𝑡𝑅𝑅𝑖𝑖𝑅𝑅𝑑𝑑𝑎𝑎 𝑁𝑁𝑅𝑅𝑎𝑎𝑜𝑜𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑖𝑖
 × 100   

Mass spectrometry 

Proteins on beads were washed twice with 100 μL of 25 mM NH4HCO3 and we performed on-beads 

digestion with 0.2 μg of trypsine/LysC (Promega) for 1 h in 100 µL of 25 mM NH4HCO3. Sample were then 

loaded onto a homemade C18 StageTips for desalting. Peptides were eluted using 40/60 MeCN/H2O + 

0.1% formic acid and vacuum concentrated to dryness. Online chromatography was performed with an 

RSLCnano system (Ultimate 3000, Thermo Scientific) coupled to an Orbitrap Fusion Tribrid mass 

spectrometer (Thermo Scientific). Peptides were trapped on a C18 column (75 μm inner diameter × 2 cm; 

nanoViper Acclaim PepMapTM 100, Thermo Scientific) with buffer A (2/98 MeCN/H2O in 0.1% formic acid) 

at a flow rate of 4.0 µL/min over 4 min. Separation was performed on a 50 cm x 75 μm C18 column 

(nanoViper Acclaim PepMapTM RSLC, 2 μm, 100Å, Thermo Scientific) regulated to a temperature of 55°C 

with a linear gradient of 5% to 25% buffer B (100% MeCN in 0.1% formic acid) at a flow rate of 300 nL/min 

over 100 min. Full-scan MS was acquired in the Orbitrap analyzer with a resolution set to 120,000 and 

ions from each full scan were HCD fragmented and analyzed in the linear ion trap. 

For identification, the data was searched against the Homo sapiens (UP000005640) SwissProt database 

using SequestHF through proteome discoverer (version 2.2). Enzyme specificity was set to trypsin and a 

maximum of two missed cleavage site were allowed. Oxidized methionine, N-terminal acetylation, and 

carbamidomethyl cysteine were set as variable modifications. Maximum allowed mass deviation was set 

to 10 ppm for monoisotopic precursor ions and 0.6 Da for MS/MS peaks. The resulting files were further 

processed using myProMS 45 v3.6 (work in progress). FDR calculation used Percolator and was set to 1% 

at the peptide level for the whole study. The label free quantification was performed by peptide Extracted 

Ion Chromatograms (XICs) computed with MassChroQ version 2.2 46. For protein quantification, XICs from 
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proteotypic peptides shared between compared conditions (TopN matching) with no missed cleavages 

were used. Median and scale normalization was applied on the total signal to correct the XICs for each 

biological replicate. To estimate the significance of the change in protein abundance, a linear model 

(adjusted on peptides and biological replicates) was performed and p-values were adjusted with a 

Benjamini–Hochberg FDR procedure with a control threshold set to 0.05. Up-regulated proteins with at 

least 3 proteotypic peptides (fold change > 1.5 and p-value < 0.05) and the unique proteins identified only 

in the GFP-αTAT1 were used for gene ontology (GO) enrichment analysis by using GO::TermFinder tools 

(10.1093/bioinformatics/bth456) through myProMS. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 

the PRIDE 47,48 partner repository with the dataset identifier PXD015871 (username: 

reviewer89842@ebi.ac.uk; password: EC4DSdRf; project name: Potential interactors of alpha-tubulin 

acetyltransferase 1 (αTAT1/MEC17). 

Immunoprecipitations  

Astrocytes were transiently transfected with pEGFP-c1 or GFP-αTAT1 using the calcium phosphate 

method. Cell lysates were prepared by scraping cells in lysis buffer 50 mM Tris pH 7.5, triton 20%, NP40 

10%, 2 M NaCl with Complete protease inhibitor tablet (Roche, Indianapolis, IN) and centrifuged for 30 

min at 13,000 rpm 4°C to pellet cell debris. Soluble detergent extracts were incubated with GST-GFP 

nanobody for 2 hr at 4°C prior to washing three times with wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 

1 mM EDTA, 2.5 mM MgCl2). The resin was then mixed with Laemmli buffer and used for western blot and 

mass spectrometry analysis. HEK293 cells were used for mass spectrometry analysis in order to have 

enough amount of protein from cells expressing αTAT1. 

Rho activation assay 

Rho activation assay was performed using a RhoA Pull-down Activation Assay Biochem Kit from 

Cytoskeleton Inc (BK036-S). In short, cells were lysed in ice-cold Cell Lysis Buffer plus 1x protease inhibitor 
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cocktail. Cells were centrifuged at 10,000 g at 4°C for 10 min to pellet cell membranes and insoluble 

material. Part of the supernatant was stored as input for western blot. The remaining supernatant was 

divided equally into two parts (300-800 μg protein/tube). 1/15th the volume of Loading Buffer was added 

to each tube (final conc. 15 mM). Then, 1/100th the volume of GTPγS was added to one of the tubes and 

used as positive control (final conc. 0.2 mM). All tubes were incubated at room temperature for 15 min. 

The reaction was stopped by adding 1/10th the volume of STOP Buffer to all tubes (final conc. 60 mM). 

Rhotekin-RBD (50 μg) beads were resuspended and added to the tubes. Tubes were rotated at 4oC for 1 

h and centrifuged at 5000 g at 4oC for 3 min. Beads were washed with 500 μl each of Wash Buffer. 10-20 

ul of Laemmli sample buffer was added to each tube and the bead samples were boiled for 2 min. 

Western blot 

Cells lysates were obtained with Laemmli buffer composed of 60 mM Tris-HCl pH6.8, 10% glycerol, 2% 

SDS and 50 mM DTT with the addition of anti-protease (cOmplete cocktail, Roche 11 873 588 001). 

Samples were boiled 5 min at 95°C before loading on polyacrylamide gels. Transfer occurred at 100V for 

1 h on nitrocellulose membranes. Membranes were blotted with TBST (0.2% Tween) and 5% milk and 

incubated 1 h with the primary antibody and 1 h with HRP-conjugated secondary antibody. Bands were 

revealed with ECL chemoluminescent substrate (Biorad). 

Primary antibodies used: Antibody anti-acetylated tubulin (clone 6-11B-1, Sigma), α-tubulin (Biorad 

MCA77G), anti-β1 integrin (ab52971, Abcam), anti-GAPDH (MAB374, lot 2689153 Millipore), anti-talin 

(T3286 clone 8D4, lot 035M4805V, Sigma), anti-vinculin (lot 036M4797V, V9131, Sigma). Secondary HRP 

antibodies were all purchased from Jackson ImmunoResearch. 
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Main figure legends 

Figure 1: Integrin-mediated signalling and substrate rigidity regulate microtubule acetylation. A. 

Inverted-contrast epifluorescence images of astrocytes plated on polyacrylamide gels of different 

rigidities (1.26 kPa, 48 kPa), stained with acetylated tubulin and α-tubulin. Graph shows the ratio of the 

intensities of acetylated tubulin over total tubulin intensity of each cell; n > 67 cells, N = 4 independent 

experiments; one-way ANOVA followed by Tukey’s multiple comparison’s test. B. Astrocytes were treated 

with RGD control or RGD peptides (upper panels) prior to wounding or transfected with siCtl or siβ1 

integrin (lower panels), allowed to migrate for 8 h. Images show migrating astrocytes stained with 

acetylated tubulin, α-tubulin and DAPI. Graph shows the ratio of the intensities of acetylated tubulin over 

total tubulin of each cell; n ≥ 100 cells, N = 3 independent experiments; one-way ANOVA followed by 

Tukey’s multiple comparison’s test. C. Inverted-contrast epifluorescence images of astrocytes, treated 

with DMSO (Ctl) or ROCK inhibitor Y-27632 for 2 h, and stained with acetylated tubulin and α-tubulin. 

Graph shows the ratio of the intensities of acetylated tubulin over total tubulin intensity of each cell; n ≥ 

80 cells, N = 3 independent experiments; Student’s t-test. D. Inverted-contrast epifluorescence images of 

migrating astrocytes transfected with siCtl or siαTAT1 and treated with or without Tubacin prior to 

wounding. Representative images from N > 3 independent experiments are shown. E. Table shows the 

mass spectrometry data obtained on Talin-1 following the analysis of αTAT1 interactors. F. 

Immunoprecipitations using anti-GFP nanobodies were performed with lysates from astrocytes 

transfected with GFP-Ctl or GFP-αTAT1. Samples were analysed by immunoblotting using talin and GFP 

antibodies. Representative blot from N = 3 independent experiments is shown. G. TIRF images of GFP-

αTAT1 and epifluorescence images of mCherry-vinculin expressing astrocytes before and after nocodazole 

or Y27 treatment. Insets represent regions of the cell where αTAT1 and vinculin colocalise. Representative 

images from N = 3 independent experiments. H. Pulldowns using GST-αTAT1 resin were performed with 

lysates from astrocytes treated with tubacin, nocodazole or Y27632, and analysed by red Ponceau staining 
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and immunoblotting using talin. Representative blots from N = 3 independent experiments are shown. 

Scale bar (A-D): 10 μm, (G): 20 μm; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  

 

Figure 2: Microtubule acetylation tunes mechanosensitivity of focal adhesions (FAs). A. Inverted 

epifluorescence images of astrocytes plated on polyacrylamide gels of different rigidities (1.26 kPa and 48 

kPa), stained with α-tubulin and talin. Images shown correspond to the same cells depicted in Fig. 1A. 

Talin images were segmented by adjusting the threshold to detect FAs. Histogram shows the mean ± SEM 

of FA density (number of FAs/μm2) in different regions of the cells plated on substrate of indicated 

rigidities; n = 40 for 1.26 kPa, 51 for 2 kPa, 94 for 9 kPa, 77 for 48 kPa, N = 3 independent experiments; 

two-way ANOVA followed by Tukey’s multiple comparison’s test. B. Inverted epifluorescence images of 

astrocytes transfected with siCtl and siαTAT1, plated on different substrate rigidities and stained with 

paxillin. C. Inverted epifluorescence images of astrocytes treated with with Niltubacin and tubacin, plated 

on different substrate rigidities and stained with paxillin. D. Histogram shows the mean ± SEM of FA 

density (number of FAs/μm2) in the central region (16μm-cell center) of cells depicted in B and C; n = 60 

for 1.26 kPa siCtl, 36 for 1.26 kPa siαTAT1, 54 for 48 kPa siLuc and 47 for 48 kPa siαTAT1; n = 59 for 1.26 

kPa Niltubacin, 55 for 1.26 kPa tubacin, 46 for 48 kPa Niltubacin and 37 for 48 kPa tubacin; N = 3 

independent experiments; one-way ANOVA followed by Tukey’s multiple comparison’s test. E. Schematic 

showing the effects of microtubule acetylation on the distribution of FAs in cells plated on polyacrylamide 

gels of different rigidities. Scale bar (A-C): 10 μm; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 3: Microtubule acetylation reorganises the actomyosin and intermediate filament networks. A-C 

Inverted epifluorescence images of astrocytes transfected with siCtl or siαTAT1 and stained with (A) 

phalloidin, pMLC and paxillin; (B) myosin IIa, acetylated tubulin and α-tubulin; and (C) vimentin and α-
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tubulin. Images are representative of N = 3 independent experiments. Scale bar (A-C): 20 μm. D. 

Ultrastructural organization of focal adhesion-associated cytoskeleton in siCtl or siαTAT1 depleted cells. 

(1) Platinum replica electron microscopy (PREM) survey view of the cytoplasmic surface of the leading 

edge in siCtl unroofed cells. Boxed regions correspond to focal adhesions. Extracellular space is pseudo-

coloured in purple. (i, ii) High magnification views corresponding to the boxed regions in panel 1. White 

arrows indicate microtubules and yellow arrowheads denote intermediate filaments. (iii) Zoom-in region 

corresponding to the boxed region in marked in region ii. Scale bar: 1 µm. White arrows indicate 

microtubules and yellow arrowheads denote intermediate filaments. Scale bar: 2 µm and 1 µm. (2, 3) 

PREM survey view of the cytoplasmic surface of the leading edge in αTAT1-depleted cells. Extracellular 

space is pseudo-coloured in purple. Scale bars: 10 µm, 1 µm (inset). (iv, v) High magnification views 

corresponding to the boxed regions in panel 2 and 3 respectively. Scale bar: 1 µm. 

 

Figure 4: Microtubule acetylation promotes traction force generation and alters GEF-H1 localisation. A. 

Stress-field maps of astrocytes transfected with siCtl, siαTAT1, siαTAT1 + GFP-αTAT1, treated with 

Niltubacin or Tubacin, and plated on crossbow-shaped micropatterned polyacrylamide gels of 40 kPa or 2 

kPa. B, C. Corresponding stored energies (in Joules, J) of cells in each of the above mentioned conditions. 

Values represent mean ± SEM stored energies of cells within the range of 0 to 5 x 10-13 J; n ≥ 142 cells for 

siCtl and siαTAT1, n ≥ 71 cells for siCtl + GFP-αTAT1 and siαTAT1 + GFP-αTAT1, n ≥ 137 cells for Niltubacin 

and tubacin, N = 3 independent experiments; One-way ANOVA followed by Tukey’s multiple comparison’s 

test (graph B) or Student’s t-test (graph C). D. GST-Rhotekin pulldowns were performed using siCtl or 

siαTAT1-transfected astrocytes. Red Ponceau and anti-RhoA western blot analysis of lysates. 

Representative blot from N = 3 independent experiments is shown. E. Inverted epifluorescence images of 

migrating astrocytes transfected with siCtl, siαTAT1 and siαTAT1 treated with tubacin, stained with 

acetylated tubulin, α-tubulin, GEF-H1. Graph represents mean ± SEM of the percentage of GEF-H1 
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colocalised with microtubules; n ≥ 73 cells; N = 3 independent experiments; One-way ANOVA followed by 

Tukey’s multiple comparison’s test or Student’s t-test. Scale bar (A): 10 μm, (E) 20 μm; **p<0.01, 

***p<0.001, ns – not significant. 

 

Figure 5: Microtubule acetylation is required for mechanosensitive migration. A. Phase contrast images 

showing a chemical wound migration assay. B. Phase contrast images showing astrocyte migration 24 h 

after wounding in chemical wound assays performed on 2 kPa, 9 kPa and 48 kPa substrates. Pink dotted 

lines represent initial wound edge and orange dotted lines represent the final wound edge. Graph 

represents the migration speed (in μm/min) of cells at the wound edge; n ≥ 115 cells, N = 3 independent 

experiments; one-way ANOVA followed by Tukey’s multiple comparison’s test. C. Phase contrast images 

showing the migration siCtl or siαTAT1-transfected astrocytes 8h after wounding in chemical wound 

assays performed on 2 kPa and 48 kPa substrates. Pink dotted lines represents initial wound edge and 

orange dotted lines represent final wound edge. Graph represents the migration speed (in μm/min) of 

cells at the wound edge; n ≥ 92 cells, N = 3 independent experiments; one-way ANOVA followed by Tukey’s 

multiple comparison’s test. Scale bar (B, C): 100 μm; ****p<0.0001, ns – not significant, *p<0.05, 

***p<0.001.  C. Proposed working model. Actomyosin-dependent matrix rigidity sensing through integrin 

and talin promotes αTAT1 interaction with talin, and microtubule (MT) acetylation. MT acetylation 

facilitates the release of GEF-H1 from MTs, which activates RhoA, triggers the Rho/ROCK signalling and 

increases actomyosin contractility, traction forces at focal adhesions and collective cell migration. 
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Supplementary figure legends 

Figure S1: A. Schematic and western blots showing the tools used to manipulate the levels of microtubule 

acetylation in this study. 2 distinct sets of siRNAs targeting αTAT1 (siαTAT1-1 and siαTAT1-2) reduce 

microtubule acetylation and Tubacin, an inhibitor of HDAC6 (deacetylase), increases microtubule 

acetylation in astrocytes plates on hydrogels or glass. Representative blots from N = 3 independent 

experiments are shown. In the main figures, only results obtained with siαTAT1-2, which induces the 

strongest decrease in acetyl tubulin, are shown. Although less pronounced, siαTAT1-1 produced similar 

effects as siαTAT1-2, in experiments corresponding to Fig. 1D, 2B, 3A, 3B and 4E. B. Epifluorescence 

images of astrocytes transfected with indicated siRNAs and plated on crossbow-shaped micropatterned 

hydrogels of different rigidities, stained for acetylated tubulin and α-tubulin. C. Epifluorescence images 

showing detyrosinated tubulin and α-tubulin staining of astrocytes sparsely plated on hydrogels of 

different rigidities. Graph shows the intensity ratio of detyrosinated tubulin over total tubulin in each 

condition; N = 2 independent experiments; ns – not significant. D. Western blot showing the levels of β1 

integrin, acetylated tubulin and GAPDH in astrocytes transfected with control siCtl or siβ1 integrin. E. 

Western blot showing the levels of acetylated tubulin and GAPDH in DMSO Ctl or Y-27632 treated (2 h) 

astrocytes, 6h after wound healing of the monolayer. F. Volcano plot analysis identifying interactors of 

αTAT1 in HEK cells. Binding partners were obtained by using quantitative label-free mass spectrometry 
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analysis performed from four replicates. Shown are the fold changes (GFP-αTAT1/GFP-Ctl) of the 

quantified proteins with thresholds of 3 or more peptides, minimum absolute fold change of 1.5 (green 

lines) and maximum adjusted p-value of 0.05 (red line). Enriched protein interactors related to 

GO:0005925 focal adhesion (Ratio = 1.98 and p = 7.89 x 10-5) are shown (red). External plots show proteins 

with peptides identified only in one sample type (left in GFP-Ctl and right in GFP- αTAT1). The ratio of talin 

is indicated in the table. G. Epifluorescence images showing GFP-αTAT1 localisation on microtubules in 

astrocytes (as previously described in 11). Scale bar (B, C, G): 10 μm. 

 

Figure S2: A. Schematic representation of the different cell regions used to quantify FA density (Fig. 2). B. 

Histograms show mean ± SEM of FA density (number of FAs/μm2) in different regions of astrocytes 

transfected with siCtl or siαTAT1 or treated with Niltubacin or Tubacin, and plated on 1.26kPa or 48 kPa 

substrates; N = 3 independent experiments. C. Inverted epifluorescence images of siCtl or siαTAT1-

transfected astrocytes plated on crossbow-shaped micropatterned polyacrylamide gels of 40 kPa or 2 kPa, 

stained with paxillin and tubulin. Representative images from N = 3 independent experiments are shown. 

Scale bar: 10 μm D. Graph shows the percentage of siCtl or siαTAT1-transfected astrocytes with transverse 

interjunctional actin arcs; n ≥ 159 cells, N = 3 independent experiments; Student’s t-test; ****p<0.0001.  

 

Figure S3: A, B, C. Traction forces in siCtl, siαTAT1, siCtl + GFP-αTAT1 or siαTAT1 + GFP-αTAT1 transfected 

cells, and Niltubacin or Tubacin treated cells are shown. Graphs represent forces (in N); n ≥ 142 cells for 

siCtl and siαTAT1, n ≥ 71 cells for siCtl + GFP-αTAT1 and siαTAT1 + GFP-αTAT1, n ≥ 137 cells for Niltubacin 

and tubacin, N = 3 independent experiments; Student’s t-test; ***p<0.001, ns – not significant. D. GFP-
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αTAT1 expression in cells transfected with siCtl + GFP-αTAT1 or siαTAT1 + GFP-αTAT1 is shown. Scale bar: 

10 μm. 

 

Movie 1: GFP-αTAT1 localisation at FAs upon nocodazole treatment. Cells were transfected with GFP-

αTAT1 and mCherry-vinculin. First, images were acquired every 2 min for 15 min. Then, 1 μM nocodazole 

was added and images were acquired every 2 min for 1 h. Acquisitions were performed with a Nikon 

Eclipse Ti-E epifluorescence inverted microscope, equipped with a pco.edge sCMOS camera, Metamorph 

software and using a 60× 1.49 NA oil objective. Cells were maintained at 5% CO2 and 37°C in normal 

astrocyte medium during acquisition. Scale bar: 20 μm. 

 

Movie 2: GFP-αTAT1 localisation at FAs upon Y-27632 treatment. Cells were transfected with GFP-αTAT1 

and mCherry-vinculin. First, images were acquired every 2 min for 15 min. Then, 10 μM Y-27632 was 

added and images were acquired every 2 min for 1 h. Acquisitions were performed with a Nikon Eclipse 

Ti-E epifluorescence inverted microscope, equipped with a pco.edge sCMOS camera, Metamorph 

software and using a 60× 1.49 NA oil objective. Cells were maintained at 5% CO2 and 37°C in normal 

astrocyte medium during acquisition. Scale bar: 20 μm. 

 

Movie 3: Chemical wound setup. Cells were plated on polyacrylamide hydrogels of different rigidities and 

grown into a monolayer for 1-2 days. A chemical wound was induced using a microinjector needle, with 

0.05 M NaOH. Once the chemical is microdropped on the surface of the monolayer, a circular wound is 

created. Dead cells and debris are washed out and cells are allowed to migrate for 12 h. Video was 
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acquired using a 10X objective on a Leica DMI 6000B microscope equipped with the Leica software. Cells 

were maintained at 5% CO2 and 37°C in normal astrocyte medium during acquisition. 

 

Movie 4: Astrocytes migrate faster on stiff substrates. Wild-type cells were plated on polyacrylamide 

hydrogels of different rigidities and grown into a monolayer for 1-2 days. After creating a chemical wound, 

cells were allowed to migrate towards the wound. Images were acquired every 15 min for 12 h using a 

Zeiss Axiovert 200M, dry objective 10X 0.45 NA and a pco.edge sCMOS camera. Cells were maintained at 

5% CO2 and 37°C in normal astrocyte medium during acquisition. Scale bar: 25 μm. 

 

Movie 5: αTAT1 regulates mechanosensitive cell migration. Cells transfected with siCtl, siαTAT1 were 

plated on polyacrylamide hydrogels of different rigidities and grown into a monolayer for 2-3 days. After 

creating a chemical wound, cells were allowed to migrate towards the wound. Images were acquired 

every 15 min for 12 h using a Zeiss Axiovert 200M, dry objective 10X 0.45 NA and a pco.edge sCMOS 

camera. Cells were maintained at 5% CO2 and 37°C in normal astrocyte medium during acquisition. Scale 

bar: 25 μm. 
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