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ABSTRACT 30 

Reverse ecology is the inference of ecological information from patterns of genomic variation. 31 

One rich, heretofore underutilized, source of ecologically-relevant genomic information is codon 32 

optimality or adaptation. Bias toward codons that match the tRNA pool is robustly associated 33 

with high gene expression in diverse organisms, suggesting that codon optimization could be 34 

used in a reverse ecology framework to identify highly expressed, ecologically relevant genes. 35 

To test this hypothesis, we examined the relationship between optimal codon usage in the classic 36 

galactose metabolism (GAL) pathway and known ecological niches for 329 species of budding 37 

yeasts, a diverse subphylum of fungi. We find that optimal codon usage in the GAL pathway is 38 

positively correlated with quantitative growth on galactose, suggesting that GAL codon 39 

optimization reflects increased capacity to grow on galactose. Optimal codon usage in the GAL 40 

pathway is also positively correlated with human-associated ecological niches in yeasts of the 41 

CUG-Ser1 clade and with dairy-associated ecological niches in the family Saccharomycetaceae. 42 

For example, optimal codon usage of GAL genes is greater than 85% of all genes in the major 43 

human pathogen Candida albicans (CUG-Ser1 clade) and greater than 75% of genes in the dairy 44 

yeast Kluyveromyces lactis (family Saccharomycetaceae). We further find a correlation between 45 

optimization in the thiamine biosynthesis and GAL pathways. As a result, optimal codon usage in 46 

thiamine biosynthesis genes is also associated with dairy ecological niches in 47 

Saccharomycetaceae, which may reflect competition with co-occurring microbes for 48 

extracellular thiamine. This work highlights the potential of codon optimization as a tool for 49 

gaining insights into the metabolic ecology of microbial eukaryotes. Doing so may be especially 50 

illuminating for studying fungal dark matter—species that have yet to be cultured in the lab or 51 

have only been identified by genomic material.   52 
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INTRODUCTION 53 

The immense diversity of life is due, in part, to adaptation to the wide variety of environmental 54 

niches available. By acting on the interface between genotype, phenotype, and environment, 55 

natural selection has given rise to numerous ecological adaptations [1–3]. The precise 56 

relationship between genotype, phenotype, and environment, however, is often elusive. For 57 

example, a connection was only recently made between environmental distribution of seeds of 58 

different sizes, phenotypic variation in the beaks of Darwin’s finches, and changes in the 59 

expression of the protein BMP4 [4–6].  60 

Genomic sequencing has accelerated the rate at which the underlying genomic mechanisms of 61 

well-established ecologically adapted phenotypes are elucidated [7,8]. While powerful, this type 62 

of ecological genomics requires extensive knowledge of the ecological niche in which species 63 

live. For many microbial species, however, detailed ecological information is unavailable due to 64 

both the scale of the ecosystems they live in and the dearth of information reported during 65 

collection [9]. One potentially powerful way to address this gap in knowledge is to use the 66 

extensive genomic resources available in microbes to conduct reverse ecology – directly 67 

inferring ecology from genotype [10,11].  68 

Reverse ecology has successfully linked environmental phenotype with genotype using multiple 69 

types of genomic features [11–13]. Optimal growth temperature was successfully inferred from 70 

genomic content, including tRNA, ribosome, and gene features, in 549 Bacteria and 170 Archaea 71 

[14].  In the red bread mold Neurospora crassa, analysis of highly divergent genomic regions in 72 

48 isolates uncovered “genomic islands” associated with adaptation in two different ecosystems 73 

[15]. Across the entire tree of life, metabolic capability (assessed using Kyoto Encyclopedia of 74 
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Genes and Genomes (KEGG) gene annotations) was used to examine the evolution of 75 

exogenously required metabolites likely found in the environment [16]. Metabolic network 76 

analysis has emerged as a common genomic feature for reverse ecology analysis [17,18]. There 77 

are, however, other promising genomic features that can be used in reverse ecology.  78 

One underutilized genomic feature with great potential for reverse ecology studies is codon 79 

usage, which has long been associated with gene expression [19–21]. Changes in gene 80 

expression have been shown to play an important role in ecological adaptation [22–24]. For 81 

example, in wild isolates of budding yeast Saccharomyces cerevisiae, changes in the expression 82 

of multiple genes were associated with phenotypic differences in copper resistance and 83 

pigmentation that may be associated with high copper environments [25]. Over evolutionary 84 

time, increased levels of gene expression result in a selective pressure for accurate and efficient 85 

translation [26–30] and increased mRNA stability [31,32]. Codons that match the tRNA pool—86 

called optimal codons—have a substantial impact on both translation [27,29,30] and mRNA 87 

stability [31]. Therefore, optimal codon usage is correlated with high gene expression in multiple 88 

lineages, especially in microbes [19,33–38].  Therefore, we hypothesize that ecological 89 

adaptations that are, at least partly, due to high expression levels of specific genes or pathways 90 

will be reflected in their codon usage values.  91 

Previous work in diverse microbes supports the hypothesis that codon optimization can be used 92 

to identify associations between codon usage (either globally or in specific genes) and ecology 93 

[12,39–43]. For example, an analysis of metagenomes collected from mine biofilms shows an 94 

enrichment of optimal codons in bacterial and archaeal genes associated with inorganic ion 95 

transport[39]. In fungi, codon optimization in host-induced and secreted proteins is associated 96 

with generalist fungal parasites [41]. Although these studies were highly successful in linking 97 
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particular ecological niches with highly enriched groups of genes, we still lack examples where 98 

reverse ecology has linked particular ecologies to specific pathways.  99 

The galactose (GAL) pathway (also known as the Leloir pathway) in the budding yeast 100 

subphylum Saccharomycotina is an iconic pathway that metabolizes galactose into glucose, 101 

which can then be used in core metabolism or as an intermediate [44,45]. The genes encoding the 102 

three enzymes of the GAL pathway—GAL1 (encoding a galactokinase), GAL10 (encoding a 103 

UDP-glucose-4-epimerase), and GAL7 (encoding a galactose-1-phosphate uridyl transferase)—104 

are frequently clustered in yeast genomes and are induced in response to the presence of 105 

galactose [46–48].  There has been extensive research into the biochemistry [44], regulation [49–106 

51], and evolutionary history [48,52] of this pathway. Ecological work on the GAL pathway has 107 

revealed that gene inactivation is associated with an ecological shift in Saccharomyces 108 

kudriavzevii, a close relative of the species to S. cerevisiae [53]. There is also a positive 109 

association between galactose metabolism ability and the flower/Ipomoea isolation environment 110 

and a negative association between galactose metabolism ability and tree or insect frass isolation 111 

environments [54]. While gene gain and loss in budding yeasts may play an important role in 112 

ecological adaptation, variation in gene expression is also a likely contributor [55–57]. The 113 

recent publication of 332 budding yeast genomes and the identification of translational selection 114 

on codon usage in a majority of these species provide a unique opportunity to test for differences 115 

in GAL gene expression—inferred from optimal codon usage—across ecological niches inferred 116 

from recorded isolation environments [54,58–60].  117 

In this study, we characterize the presence and codon optimization of the GAL pathway in 329 118 

budding yeast species and identify an association between optimization in the GAL pathway and 119 

two specific ecological niches. We identify a complete set of GAL genes in 210 species and 120 
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evidence of physical clustering of GAL1, GAL7, and GAL10 in 150 species. Consistent with our 121 

hypothesis that codon optimization is a signature of high gene expression, we find that growth 122 

rate on galactose-containing medium is positively and significantly correlated with GAL codon 123 

optimization. In the CUG-Ser1 major clade, which contains the opportunistic human pathogen 124 

Candida albicans, codon optimization in the GAL pathway is higher in species found in human-125 

associated ecological niches when compared to species associated with insect (and not human) 126 

ecological niches. In the family Saccharomycetaceae, another major clade in the 127 

Saccharomycotina subphylum, which contains the model species S. cerevisiae, we find that 128 

codon optimization in the GAL pathway is higher in species isolated from dairy-associated 129 

niches compared to those from alcohol-associated niches. For example, codon optimization 130 

among closely related Kluyveromyces species is nearly twice as high in species isolated from 131 

dairy niches as those found associated with marine or fly niches. We also used KEGG Orthology 132 

(KO) annotations to find metabolic pathways with codon optimization that correlated with GAL 133 

optimization. We identified multiple members of the thiamine biosynthesis pathway whose 134 

codon optimization is not only correlated with galactose metabolism, but associated with specific 135 

ecological niches. This study serves as a foundation for future high-throughput reverse ecology 136 

work that uses codon optimization to link metabolic pathways with ecological niches in 137 

microbes.  138 
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Figure 1: The GAL pathway and the distribution of galactose metabolism, GAL genes, and 140 

preferred codon usage across the Saccharomycotina. A) The three enzymes of the GAL 141 

pathway metabolize galactose into glucose-1-phosphate, which can then enter glycolysis after 142 

being converted into glucose-6-phosphate. B) Various features of galactose metabolism plotted 143 

on a phylogeny of the budding yeast subphylum Saccharomycotina; the 12 major clades of the 144 

subphylum are color-coded. The presence and codon optimization (measured by estAI) of the 145 

three GAL genes are represented in the inner three rings. We did not identify any GAL genes 146 

from species in the CUG-Ser2 clade or the family Saccharomycodaceae. High codon 147 

optimization (darker colors) in the GAL pathway is not restricted to any one major clade.  148 

Complete and clustered occurrences of the GAL pathway (filled-in blue squares and circles 149 

respectively) are found in every other major clade examined. The ability to metabolize galactose 150 

(filled-in green triangle) was assessed either experimentally in this study or taken from the 151 

literature. In some instances where only literature data were available, there were conflicting or 152 

variable reports of galactose metabolism (5 species; empty green triangles). The majority of 153 

species in the Saccharomycotina have also been shown to have genome-wide selection on codon 154 

usage (denoted by the yellow stars)[59].  155 

 156 

METHODS 157 

Galactose (GAL) Pathway Characterization 158 

Genomic sequence and gene annotation data were obtained from the comparative analysis of 332 159 

budding yeast genomes [58] (Supplementary Table 1).  Mitochondrial sequences were filtered 160 

from these genomes using previously described methods[59]. Reference protein sequences for 161 

GAL gene annotation (approximately 40 proteins for each of the GAL genes) were obtained from 162 

GenBank and previous KEGG ortholog (KO) annotations [58,61]. A protein HMM profile was 163 

constructed for each GAL gene and used to conduct two HMMER searches (version 3.1b2; 164 

http://hmmer.org/), one on publicly available annotations and one on all possible open reading 165 

frames generated using ORFfinder (version 0.4.3; https://www.ncbi.nlm.nih.gov/orffinder/). The 166 

search on all possible open reading frames was done to ensure that inferences of GAL gene 167 

absences were not due to errors in publicly available gene annotations. The results of the two 168 

searches were compared using the Perl script fasta_uniqueseqs.pl (version 1.0; 169 
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https://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html_ncbi/html/fasta/uniqueseq.cgi). 170 

Discrepancies between the two searches, which most often occurred in cases where the publicly 171 

available annotation combined two nearby genes, were resolved manually. The genes GAL1 and 172 

GAL3 are known ohnologs (i.e., paralogs that arose from a whole genome duplication event) 173 

[62,63]. Thus, the identity of GAL1 and GAL3 genes was inferred for Saccharomyces species by 174 

phylogenetic analysis of the GAL1/3 gene tree constructed using the IQ-Tree webserver 175 

(http://iqtree.cibiv.univie.ac.at/; default parameters; Supplementary Figure 1)[64–66]. Other 176 

GAL1 homologs were included as there is a lack of evidence for functional divergence in other 177 

lineages [51]. All reference and annotated GAL genes are available in the supplementary 178 

FigShare repository. All instances where GAL1, GAL7, and GAL10 were found on the same 179 

contig were considered to represent GAL gene clusters.   180 

Codon Optimization in the GAL pathway 181 

To infer gene expression in the GAL pathway, we calculated the level of codon optimization in 182 

each GAL gene and compared it to the genome-wide distribution of codon optimization. Codon 183 

optimization of individual GAL genes was assessed by calculating the species-specific tRNA 184 

adaptation index (stAI) from previously calculated species-specific codon relative adaptiveness 185 

(wi) values [59,67]. Three species that previously failed to generate reliable wi values 186 

(Martiniozyma abiesophila, Nadsonia fulvescens var. elongata, and Botryozyma 187 

nematodophila)[59] were removed from all subsequent analyses. The stAI software does not take 188 

into account the CUG codon reassignment in the CUG-Ser1 and CUG-Ala clades. Previous 189 

analysis, however, suggests that this codon is rare [59] – the average frequency of the CUG 190 

codon in species where it has been reassigned is 0.005, 0.003, and 0.006 for GAL1, GAL10, and 191 

GAL7, respectively – and its influence on codon optimization calculations is not significant.  192 
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The stAI for each gene was calculated by taking the geometric mean of the wi values for all the 193 

codons, except the start codon. The genome-wide distribution of gene stAI values is normally 194 

distributed, but the mean varies between species [59]. To compare codon optimization between 195 

species, we normalized each gene’s stAI value using the empirical cumulative distribution 196 

function to get the percentage of all genes with stAI values lower than that of the gene of 197 

interest; we call this the estAI value. For example, an estAI value of 0.4 for a given gene would 198 

indicate that 40% of the genes in the genome have lower stAI values (i.e., are less optimized) 199 

than the gene of interest. The estAI optimization values therefore range from 0 to 1, with 1 being 200 

the most optimized gene in the genome. 201 

A total of 49 species’ genomes had multiple copies of at least one GAL gene. For those genomes, 202 

the gene with the highest estAI value was used. For example, we identified two copies of GAL10 203 

in Candida ponderosae located on different contigs with estAI values of 0.46 and 0.44. 204 

Therefore, we used the estAI value of 0.46 as the representative GAL10 value for this species. 205 

The average difference between the maximum and minimum estAI for multiple copies of GAL1, 206 

GAL7, and GAL10 are 0.0948, 0.0007, and 0.0125. There were 14 cases where all gene copies 207 

with the highest estAI values were not found on the same contig. In 18 cases, all duplicates with 208 

the highest estAI values were located on the same contig. The use of the GAL gene copy with the 209 

highest estAI is supported by evidence in S. cerevisiae that functionally derived gene duplicates 210 

have reduced codon optimization, which is likely linked to an evolutionary trajectory towards 211 

novel functions [68].  212 

 213 

 214 
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Galactose Growth Data 215 

To test the hypothesis that high levels of GAL codon optimization are associated with strong 216 

growth in media where galactose is the sole carbon source, we measured galactose and glucose 217 

(as a control) growth for 258 species in the laboratory. Yeast strains corresponding to the species 218 

whose genomes were sequenced were obtained from the USDA Agricultural Research Service 219 

(ARS) NRRL Culture Collection in Peoria, Illinois, USA or from the Fungal Biodiversity Centre 220 

(CBS) Collection in the Netherlands. All strains were initially plated from freezer stocks on yeast 221 

extract peptone dextrose (YPD) plates and grown for single colonies. YPD plates were stored at 222 

4°C until the end of the experiment. To quantify growth on galactose and glucose, we set up 223 

three replicates on separate weeks using different colonies for each strain. Strains were 224 

inoculated into liquid YPD and grown for six days at room temperature. For each replicate, 225 

strains were randomized and arrayed into a 96-well plate. The plate was then used to inoculate 226 

strains into a minimal medium containing 1% D-galactose or 1% glucose, 5g/L ammonium 227 

sulfate, and 1.7g/L Yeast Nitrogen Base (w/o amino acids, ammonium sulfate, or carbon) and 228 

grown for seven days. After a week, we transferred all strains to a second 96-well plate 229 

containing fresh minimal medium containing galactose or glucose.  230 

To quantify the growth of each strain/species, we measured its optical density (OD units at 231 

600nm) following growth in a well of a BMG LABTECH FLUOstar Omega plate reader after a 232 

week at room temperature. We calculated two measures of growth, growth rate and endpoint, for 233 

each species and replicate. The growth rates were calculated in R (x64 3.5.2) using the grofit 234 

package (v 1.1.1.1) and end point, a proxy for saturation, was calculated by subtracting the T0 235 

time point from the final time point for each species. We visually assessed growth on galactose 236 

for all species using the growth curves we collected; a species was denoted as having the ability 237 
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to grow on galactose if it grew in at least 2 of 3 replicates tested. Growth data, both growth rate 238 

and endpoint, were set to zero for all species that did not meet this requirement. Quantitative 239 

growth on galactose was successfully measured for a total of 258 species. Growth on galactose 240 

was then computed relative to glucose to account for differences in the baseline growth rate of 241 

different species due to variables, such as cell size and budding type (unipolar versus bipolar).  242 

For the 71 species where new quantitative galactose growth data were unavailable, we used 243 

previously published species-specific binary growth data [54,58,60]. Uncertain growth is 244 

indicated where conflicting or variable growth was found in the literature (empty green triangles; 245 

Figure 1B). Quantitative galactose growth data (normalized to glucose) were compared to 246 

maximum gene codon optimization values using phylogenetically independent contrasts 247 

(PIC)[69]. Data from related species are not independent observations and therefore require a 248 

PIC analysis to ensure that covariation between traits is not the result of the relatedness of 249 

species [69]. The PIC analysis was conducted in R using the ade4 package [70]. The species 250 

Metschnikowia matae var. matae was removed from this analysis as it was a clear outlier on the 251 

residual plots for a complementary PGLS analysis (Supplementary Figure 2)[71,72]. Outliers in 252 

phylogenetically independent analyses occur when two closely related taxa have disparate trait 253 

values, which can be identified by examining the residual plots. In this case, the taxa 254 

Metschnikowia matae var. maris (yHMPu5000040795 / NRRL Y-63737 / CBS 13985) and 255 

Metschnikowia matae var. matae (yHMPu5000040940 / NRRL Y-63736 / CBS 13986) are very 256 

closely related, and yet the growth rate on galactose for Metschnikowia matae var. matae (1.390) 257 

is nearly double that of Metschnikowia matae var. maris (0.750) and the next most closely 258 

related species Metschnikowia lockheadii (0.567).   259 

 260 
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Ecological association analysis 261 

To test for associations between GAL pathway codon optimization and ecological niche, we 262 

obtained species-specific isolation data from multiple sources. We first tested 50 isolation 263 

environments from data collated from The Yeasts: A Taxonomic Study[58,60], as recorded by 264 

Opulente and coworkers [54,58]. We compared codon optimization in each of the GAL genes 265 

between species isolated from a given environment versus species not isolated from that 266 

environment (Supplementary Figure 3). From this analysis, we identified four general ecological 267 

niches with potentially differential codon optimization: dairy-, alcohol-, insect-, and human-268 

associated ecological niches. To validate and update the data from The Yeasts, we conducted an 269 

in-depth literature search for these four specific ecological niches for each of the 329 species of 270 

interest using all known anamorphs and synonyms per species (see Supplementary Table 2 for 271 

updated information for the ecological niches and associated references). Dairy ecological niches 272 

identified included milks, butters, cheeses, and yogurts. Alcohol ecological niches identified 273 

included spontaneous beer fermentation, alcohol starters, wine, ciders, kombuchas, and liquors. 274 

Insect-associated ecological niches included insect guts, insect bodies, and insect frass. Human-275 

associated ecological niches were characterized as any isolation from a human, regardless of 276 

pathogenicity. Additionally, we did not take into account studies where species identification 277 

lacked genetic data and relied solely on phenotypic and assimilation data, because these 278 

identifications have been shown to be potentially unreliable [73–75]. For example, the only 279 

evidence that the species Candida castellii is associated with dairy niches comes from a single 280 

identification in a fermented milk product using only metabolic chacterization [76]. Therefore, 281 

C. castellii was not considered associated with dairy niches.  282 

 283 
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To test for significant differences in GAL optimization between ecological niches, we first 284 

filtered the species set to retain only those that contain all three GAL genes (210 species) and that 285 

were previously shown to exhibit genome-wide selection on codon usage (266 species; s-value 286 

>=0.5)[59]; thus, the total number of species tested was 170. We then compared levels of GAL 287 

codon optimization between ecological niches using the Wilcoxon rank sum test in R [77].  288 

Evolutionary rate analysis 289 

To examine variation in the evolutionary rates among GAL genes, we used the maximum 290 

likelihood software PAML (version 4.9)[78,79]. Specifically, we examined the rates of 291 

synonymous changes in the Kluyveromyces species using the free-ratios model that allows for a 292 

different rate of evolution along each branch. The species tree was used as the backbone tree, and 293 

nucleotide sequences were aligned using the codon aware software TranslatorX 294 

(http://translatorx.co.uk/)[80].  295 

Identification of additional metabolic pathways whose codon usage correlates with GAL 296 

optimization 297 

To identify additional pathways that exhibit the same codon optimization trends between 298 

ecological niches as the GAL pathway, we tested whether the optimization of KEGG orthologs 299 

(KOs) was correlated with that of the GAL genes. KO annotations were previously generated for 300 

all species [58]. We started with the 266 genomes with evidence of translational selection on 301 

codon usage and identified 2,573 KOs present in 100 or more of those species. We then 302 

conducted a PIC analysis between the optimization of the GAL genes and each of the KOs across 303 

the species. P-values were adjusted to account for the total number of KOs tested using a 304 

Bonferroni correction (Supplementary Table 3). Based on the results of the PIC analysis, we 305 
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further investigated the correlation between the thiamine biosynthesis pathway and the GAL 306 

pathway. To ensure we were not missing any members of the thiamine biosynthesis pathway, we 307 

annotated the entire pathway using the same method used for annotation of the GAL genes. We 308 

then re-ran the PIC analysis with the curated thiamine gene set.   309 

RESULTS & DISCUSSION 310 

Variable GAL pathway and codon optimization across the Saccharomycotina 311 

To examine variation in GAL codon optimization across the subphylum, we first examined 312 

whether GAL genes were present in each of the 329 genomes. Across the Saccharomycotina, we 313 

annotated 742 GAL genes (265, 256, and 221 annotations for GAL1, GAL10, and GAL7, 314 

respectively) in a total of 233 species (Supplementary Table 1 and FigShare Repository). The 315 

complete GAL enzymatic pathway (i.e., GAL1, GAL10, and GAL7) was identified in 210 species, 316 

of which 149 had evidence of GAL gene clustering. We cannot, however, rule out clustering of 317 

the GAL genes in the remaining 61 species as some of the annotations were at the ends of the 318 

contigs.  319 

There were some discrepancies between galactose growth data and GAL gene presence data. 320 

Three species where galactose growth was experimentally observed lacked all three GAL genes: 321 

Ogataea methanolica, Wickerhamomyces sp. YB-2243, and Candida heveicola. The growth rates 322 

for these species are 0.129, 0.339, and 0.211 for O. methanolica, Wickerhamomyces sp., and C. 323 

heveicola. The low growth rates (7th and 3rd lowest overall) of O. methanolica and C. heveicola 324 

suggest these species may be utilizing trace amounts of other nutrients present in the medium. 325 

Finally, there were 26 species with a complete GAL gene cluster where no growth on galactose 326 

has been reported. This may represent a loss of pathway induction in these species or an inability 327 
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to induce growth in the specific experimental conditions tested, as observed previously in the 328 

genus Lachancea [81].  Inactivation of the GAL pathway has also occurred multiple times in 329 

budding yeasts [48,53], and some of these taxa could be in the early stages of pathway 330 

inactivation.  331 

Codon optimization in the GAL pathway, measured by estAI, varied greatly across the 332 

Saccharomycotina (Figure 1B.) The estAI values ranged from 0.02 (or greater than only 2% of 333 

the genes in the genome) in GAL7 from Lachancea fantastica nom. nud. to 0.99 (or greater than 334 

99% of the genes in the genome) in GAL1 from Kazachstania bromeliacearum. To determine if 335 

there is an association between codon optimization and the ability to grow on galactose, we 336 

compared optimization in the GAL pathway between species that are able and unable to grow on 337 

galactose. We found that species without evidence for growth on galactose had significantly 338 

lower (p < 0.05) codon optimization in GAL1 and GAL7 (Supplementary Figure 4). This 339 

correlation is consistent with a relaxation of selective pressures in non-functional pathways [82–340 

84] and previous work has identified multiple parallel inactivation events of the GAL pathway in 341 

budding yeasts [53]. The GAL pathway may have alternative roles in cell function that are not 342 

associated with growth on galactose and may have not experienced the same selective pressures. 343 

For example, in Candida albicans, GAL10 has been shown to be involved in cell integrity [85]. 344 

Finally, the GAL pathway may have an alternative induction system in these species. For 345 

example, the fission yeast Schizosaccharomyces pombe (not a member of the Saccharomycotina) 346 

has a complete GAL cluster but is unable to grow on galactose. Mutants of S. pombe, however, 347 

have been isolated that constitutively express the GAL genes and can grow on galactose [86].  348 

 349 
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GAL codon optimization is correlated with growth rate on galactose 350 

Strong translational selection on codon usage is correlated with highly expressed genes in 351 

diverse organisms [34,35,37,87–91]. Therefore, we hypothesized that high levels of codon 352 

optimization in the GAL pathway reflect high levels of GAL gene expression and ultimately high 353 

growth rates on galactose. To test this hypothesis, we measured growth rate on galactose relative 354 

to glucose. We found a significant positive correlation between growth rate on galactose-355 

containing medium and codon optimization in the GAL pathway of genomes that have 356 

experienced translational selection on codon usage (N species = 94, linear regression of PIC 357 

values; p-values of 0.005, 0.012, and 3.207e-9 for GAL1, GAL10, and GAL7, respectively; Figure 358 

2). Codon optimization of GAL7 showed the strongest correlation with growth rate (Figure 2C), 359 

which may reflect the gene’s function; GAL7 encodes for the enzyme that metabolizes galactose-360 

1-phosphate, a toxic intermediate [92,93] whose accumulation has been shown to reduce growth 361 

rate in S. cerevisiae [93]. Furthermore, the correlation between GAL7 optimization and growth 362 

rate on galactose remained strong when analyzed independently in both the Saccharomycetaceae 363 

(29 species) and in the CUG-Ser1 clade (47 species; Supplementary Figure 5), the two largest 364 

clades sampled. The GAL1 and GAL10 genes were both significantly positively associated with 365 

growth rate in galactose in the Saccharomycetaceae, but not in the CUG-Ser1 clade 366 

(Supplementary Figure 5). This contrast may reflect the different regulatory mechanisms 367 

involved in galactose assimilation in the two major clades—tight control via a regulatory switch 368 

in the Saccharomycetaceae versus leaky expression in CUG-Ser1 [49,50]. We also tested the 369 

correlation between growth rate on galactose containing medium and the PGM1 and PGM2 370 

genes that encode phosphoglucomutases which converts\ glucose-1-phosphate (Figure 1) to 371 

glucose-6-phosphate. There was no correlation between optimization in PGM1 or 2 and growth 372 
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on galactose containing medium (Supplementary Figure 6). Collectively, our findings support 373 

the hypothesis that codon optimization is the result of selection on codon usage in species with 374 

high GAL gene expression.  375 

 376 

Figure 2: Codon optimization in the 

GAL pathway is positively and 

significantly correlated with growth 

rate on galactose. Phylogenetically 

independent contrasts (PIC) analyses of 

galactose growth (Y axis) versus GAL 

gene optimal codon usage (X axis). 

There is a significant and positive 

correlation between the PIC values for 

codon optimization and galactose growth 

in GAL1 (A), GAL10 (B), and GAL7 (C). 

The best fit and strongest correlation is 

between growth on galactose and 

optimization in GAL7 (C). The analyses 

included 94 species with a growth rate 

on galactose greater than 0, a complete 

GAL cluster, and evidence of genome-

wide translational selection on codon 

usage. One species, Metschnikowia 

matae var. matae, was removed as an 

obvious outlier based on residual 

analysis.  
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GAL codon optimization is associated with specific ecological niches 377 

We further hypothesized that adaptation to specific ecological niches is associated with increased 378 

expression of the GAL pathway. Based on preliminary tests across 50 previously characterized 379 

ecological niches [54,60] for 114 species, we conducted an extensive literature search for the 380 

four ecological niches of interest—dairy, alcohol, human, insect—to maximize the number of 381 

species with ecological information. We uncovered two examples of niche-specific codon 382 

optimization (Figure 3): in the CUG-Ser1 clade, we found that GAL gene optimization was 383 

significantly higher in species that have been isolated from human-associated ecological niches 384 

versus those that have been isolated from insect-associated niches; and in the 385 

Saccharomycetaceae, we found GAL gene optimization was significantly higher in species 386 

isolated only from dairy-associated niches compared to species isolated only from alcohol-387 

associated niches. 388 

CUG-Ser1 clade: Among CUG-Ser1 species that exhibit high genome-wide evidence of 389 

translational selection on codon usage (s-value ≥ 0.5), we found that GAL gene optimization was 390 

significantly higher (p<0.05) in species from human-associated ecological niches or human- and 391 

insect-associated niches versus those that have been isolated from insect-associated niches only 392 

(57 species; Figure 3A). Only two species were found in human-associated niches and not insect-393 

associated niches, Debaryomyces subglobosus and Cephaloascus fragrans; thus, we combined 394 

the human-associated species with the human- and insect-associated species into one group for 395 

subsequent analyses. Recent work has shown that many opportunistically pathogenic budding 396 

yeasts are likely to be associated with both environmental and human niches [94]. The 13 CUG-397 

Ser1 species isolated from humans with genome-wide evidence of selection on codon usage had 398 

a mean optimization of 0.74, 0.76, and 0.69 for GAL1, GAL10, and GAL7, respectively.  399 
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We also found that GAL1, GAL10, and GAL7 optimization was significantly higher (Wilcoxon 400 

rank sum test p-values of 0.035, 0.014 and 0.003, respectively) in species from human-associated 401 

ecological niches than insect-associated niches only, irrespective of genome-wide evidence of 402 

translational selection (88 species). For example, the major human pathogen Candida albicans 403 

does not have genome-wide evidence for high levels of translational selection but has a very high 404 

GAL10 codon optimization (estAI = 0.86). While C. albicans may not have evidence of genome-405 

wide selection on codon optimization, a previous analysis suggests that at least 17% of genes in 406 

the C. albicans genome have likely experienced selection on codon usage [59].  407 

Other opportunistic human pathogenic species with very high GAL10 codon optimization (estAI 408 

> 0.8) include Candida dubliniensis [95], Meyerozyma caribbica [96], Candida tropicalis [97], 409 

Meyerozyma guilliermondii [98], and Clavispora lusitaniae [99]. The optimization of GAL10 in 410 

human pathogenic species is consistent with findings that GAL10 expression is upregulated 411 

during C. albicans growth in the mammalian intestinal track [100]. Furthermore, GAL10 in C. 412 

albicans is required for cell-wall integrity, resistance to oxidative stress, and other virulence-413 

related traits, even in the absence of galactose [85]. This suggests that GAL10 may play an 414 

additional role, outside of galactose metabolism, in the CUG-Ser1 clade.  415 

Interestingly, the highest GAL10 optimization (average estAI = 0.93) in the CUG-Ser1 clade is 416 

found in Spathaspora species. While many Spathaspora species have been isolated from insects, 417 

four of the five species studied here (Sp. girioi, Sp. hagerdaliae, Sp. gorwiae, and Sp. 418 

arborariae) have been isolated only from rotting wood [101,102]. This observation is 419 

particularly interesting given the hypothesis that some features of saprophytic fungi, such as 420 

Aspergillus fumigatus and Cryptococcus spp., enable or predispose them to colonize human hosts 421 
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[103,104]. Moreover, some pathogenic budding yeasts, including C. albicans and C. tropicalis, 422 

have recently been associated with soil [94].  423 

 424 

Figure 3 – Codon optimization in the GAL pathway is correlated with specific ecological 425 

niches in two different major clades of budding yeasts. P-values less than 0.01 are indicated 426 

with ** and less than 0.05 with *. A) In the CUG-Ser1 clade, species associated with a human 427 

niche or human and insect niches (13 species) have significantly higher codon usage 428 

optimization values in all GAL genes (p-values of 0.022, 0.028, and 0.006 for GAL1, GAL10, and 429 

GAL7, respectively) when compared to species that are associated with insect niches but not 430 

human niches (44 species). Only 11 species were not associated with either human or insect 431 

niches. B) In the Saccharomycetaceae, species associated with only dairy niches (5 species) have 432 

significantly higher codon usage optimization values in all of the GAL genes (p-values of 0.010, 433 

0.002, and 0.014 for GAL1, GAL10, and GAL7, respectively) versus species associated with only 434 

alcohol niches (14 species). A total of 9 species are associated with both dairy and alcohol 435 

niches.  436 
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Saccharomycetaceae: Among Saccharomycetaceae species, we found that GAL optimization is 437 

significantly higher (p<0.05) in those that have been isolated only from dairy-associated niches 438 

compared to species isolated only from alcohol-associated niches (19 species; Figure 3B.) Only 439 

one species isolated from either dairy or alcohol, namely the alcohol-associated Lachancea 440 

thermotolerans, did not have evidence of genome-wide translational selection on codon usage. 441 

The four species isolated only from dairy-associated niches (Kluyveromyces lactis, 442 

Naumovozyma dairenensis, Vanderwaltozyma polyspora, and Kazachstania turicensis) have 443 

mean codon optimization values of 0.90, 0.88, and 0.84 for GAL1, GAL10, and GAL7, 444 

respectively. The ten species that are only from alcohol-associated niches (Supplementary table 445 

2) have mean codon optimization values of 0.73, 0.61, and 0.59 for GAL1, GAL10, and GAL7, 446 

respectively. In many dairy environments, there are large microbial communities that often 447 

consist of lactic acid bacteria that convert lactose into glucose and galactose, which can 448 

subsequently be used in the GAL pathway [105,106]. The natural presence of galactose in dairy-449 

associated environments is the likely driver of GAL codon optimization.  450 

Species found in both dairy- and alcohol-associated niches have a range of optimization values 451 

that generally encompasses the values observed for species from dairy- or alcohol-only niches. It 452 

is likely that this group (associated with both dairy and alcohol niches) contains species or 453 

populations that are better adapted to one niche than the other. It is not possible, however, based 454 

on current literature to disentangle these two categories. For example, the species Kluyveromyces 455 

marxianus has been isolated from chica beer [107], cider [108], kombucha [109], and mezcal 456 

liquor [110]. However, K. marxianus is a well-known “dairy-yeast” frequently found in both 457 

natural [111,112] and industrial dairy products [113]. Codon optimization of the GAL enzymatic 458 

pathway is also very high in K. marxianus with an average estAI of 0.92. We hypothesize that 459 
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the high GAL codon optimization in K. marxianus is a result of its association with dairy and 460 

with the ability of K. marxianus to metabolize lactose into glucose and galactose [44]. There are 461 

two species that are associated with both dairy and alcohol niches whose GAL codon 462 

optimization values are higher than the maximum value observed in alcohol-only species—463 

Naumovozyma castellii and Kazachstania unispora. Based on this we hypothesize that these 464 

species are well adapted to dairy-associated environments.  465 

Differential GAL pathway optimization in Kluyveromyces 466 

The genus Kluyveromyces provides an example of how codon optimization varies between 467 

closely related species that differ in their ecological niches (Figure 4). Two of the four species in 468 

this clade have not been isolated from either dairy or alcohol; Kluyveromyces aestuarii has been 469 

isolated from marine mud and seawater while Kluyveromyces dobzhanskii has been isolated from 470 

flies, plants, and mushrooms [60]. Of the four species represented here, only K. dobzhanskii is 471 

not known to metabolize lactose into glucose and galactose [60]. While all four species are 472 

capable of growing on galactose, GAL gene codon optimization is much higher in the two 473 

species with dairy-associated ecological niches, Kluyveromyces lactis and Kluyveromyces 474 

marxianus (Figure 4A.). Codon optimization for GAL genes is greater than 75% of the genome 475 

(estAI > 0.75) for K. lactis and K. marxianus. In K. marxianus, the optimization of GAL1 and 476 

GAL10 (estAI 0.93 and 0.94) is nearly that of the average ribosomal gene (estAI 0.99; Figure 477 

4B). Ribosomal genes, which are among the most highly expressed genes in the genome, are 478 

known to be highly optimized in a broad range of species [114]. In contrast, optimization values 479 

for GAL genes in K. aestuarii and K. dobzhanskii are nearer to the mean (mean estAI values of 480 

0.63 and 0.46, respectively; Figure 4B).   481 
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 482 

Figure 4 – Closely related 

Kluyveromyces species exhibit 

differential codon optimization in 

the GAL pathway associated with 

isolation from dairy environments. 

All four Kluyveromyces species 

were shown experimentally to 

metabolize galactose. A) Species 

phylogeny of four closely related 

Kluyveromyces species. K. 

marxianus and K. lactis are both 

associated with dairy niches and 

have high codon optimization values 

in their GAL pathway genes. In 

contrast, K. aestuarii is associated 

with marine mud, and K. 

dobzhanskii is associated with flies. 

B) The genome-wide distribution of 

codon optimization (stAI) values for 

the four Kluyveromyces species 

included in this study. The 50th and 

75th percentiles are shown with 

white dashed lines. In the two 

species associated with dairy niches, 

the codon optimization for all three 

GAL genes falls in the top 25th 

percentile. In the two species not 

associated with dairy, the GAL genes 

fall below the top 25th percentile. 

The gene VPS4 (encoding a protein 

involved in vacuolar protein sorting) is a non-metabolic gene with intermediate codon 

optimization value across budding yeasts. Genes encoding ribosomal proteins are well 

established to rank among the most highly optimized genes within a genome. C) The unrooted 

trees show the estimated rate of synonymous substitutions in the GAL1 and VPS4 genes along 

these lineages. The long branch in K. aestuarii for the GAL1 tree suggests a relaxation of 

selection on synonymous sites in this lineage. 

 483 

We hypothesized that the low GAL optimization in K. aestuarii and K. dobzhanskii was due to a 484 

relaxation in translational selection on the GAL pathway. To test this hypothesis, we estimated 485 
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the rate of synonymous site evolution using PAML in the GAL genes and VPS4, a randomly 486 

chosen KEGG ortholog annotated in all 4 species. In each of the GAL genes, the branch length 487 

for K. aestuarii was the longest, and is at least double in length relative to the other branches in 488 

the GAL7 and GAL10 gene trees (Figure 4C; Supplementary Figure 7). The branch lengths of K. 489 

dobzhanskii were similar to those of K. marxianus in the trees of all three GAL genes. This 490 

pattern was not seen in the randomly chosen VPS4 gene. This result suggests that relaxed 491 

selection on the GAL genes may exist in K. aestuarii, but not K. dobzhanskii, or that the 492 

relaxation may have persisted longer in K. aestuarii. Increased sampling in this clade would 493 

improve our understanding of the selective forces at work.   494 

GAL optimization is correlated with optimization in the thiamine biosynthesis pathway 495 

In general, multiple metabolic pathways, as opposed to a single one, likely contribute to 496 

adaptation to an ecological niche [54,115]. To identify additional pathways associated with 497 

galactose optimization, we tested whether levels of codon optimization in GAL genes were 498 

significantly correlated with levels of codon optimization in other KEGG orthologs (KOs). We 499 

identified 78 / 2,572 KOs with a significant positive or negative association with GAL 500 

optimization (PIC, multiple test corrected p-value <0.05; Supplementary Table 3). One of the 501 

strongest positive associations (8th smallest p-value in GAL10 out of 28 KOs with significant 502 

positive associations) was with THI6 (KO K14154), a member of the thiamine biosynthesis 503 

pathway (Figure 5A and B). We expanded our analysis to the two branches of the thiamine 504 

biosynthesis pathway present in the budding yeast subphylum that converge on THI6 (Figure 505 

5C). On the branch of the thiamine biosynthetic pathway that begins with the substrates 506 

pyridoxal 5’phosphate and L-histidine, we found significantly (p<0.05) correlated codon 507 

optimizations between the THI20/THI21/THI22 gene family and the GAL genes GAL1 and 508 
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GAL10 (Figure 5C). In the other branch of the pathway, codon optimization in THI4 is only 509 

correlated with GAL10 (Figure 5C). Among genes involved in thiamine biosynthesis, the 510 

strongest association with the GAL pathway was seen in THI6 where there was a significant 511 

positive association with optimization in all three GAL genes (Figure 5B). The positive 512 

correlation seen using PIC suggests that this association does not reflect phylogenetic constraint 513 

but adaptation.  514 

Support for the notion that ecological adaptation explains the correlation between the thiamine 515 

biosynthesis and GAL pathways can be found in both major clades examined. Within the CUG-516 

Ser1 clade, there is a significantly higher (p<0.05) THI6 codon optimization in species associated 517 

with either human or insect ecological niches when compared to species only isolated from 518 

insect ecological niches (Figure 5D). The difference in THI6 codon optimization is even more 519 

significant (p<0.001) in the Saccharomycetaceae where THI6 codon optimization is higher in 520 

species only associated with dairy ecological niches and not alcohol ecological niches (Figure 521 

5E). Many lactic acid bacteria found in dairy environments, such as Lactobacillus brevis, require 522 

extracellular thiamine [116]. One possible model is that, in dairy communities containing lactic 523 

acid bacteria and yeasts, stiff extracellular competition for thiamine may boost the expression of 524 

thiamine biosynthesis genes in these yeasts. Alternatively, the thiamine biosynthesis and 525 

galactose metabolism pathways may be connected by metabolic intermediates [117]. It is 526 

possible that both a biochemical and ecological explanation underlie the correlation between 527 

codon optimization in the GAL and thiamine biosynthesis pathways. 528 
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 529 

Figure 5 – Codon optimization in the GAL pathway is positively and significantly 530 

correlated with optimization of multiple thiamine biosynthesis proteins. A) The two 531 

branches of the thiamine biosynthesis pathways present in budding yeasts converge on THI6. B) 532 

The PIC correlation between codon optimization in the GAL genes and THI6 in species with 533 

evidence of genome-wide translational selection on codon usage (s-value >=0.5). The strongest 534 

correlation is between GAL10 and THI6 (182 species), followed by GAL1 (168 species), and 535 

GAL7 (170 species). C) Optimization in GAL10 is also correlated with optimization of the 536 

THI20/THI21/THI22 gene family and THI4– these genes encode the enzymes upstream of THI6.  537 

Optimization in GAL1 is additionally correlated with THI20/THI21/THI22 optimization. There is 538 

no correlation between optimization in the THI5/THI11/THI12/THI13 gene family and any GAL 539 

genes. D) Optimization in THI6 is significantly greater in CUG-Ser1 clade species associated 540 

with human or human and insect ecological niches (14 species) when compared to species 541 

associated only with insect ecological niches (48 species) (p-value=0.011). Twelve species were 542 

not associated with either human or insect ecological niches. E) Optimization in THI6 is 543 

significantly higher in Saccharomycetaceae species associated with dairy ecological niches (6 544 

species) versus those associated with alcohol ecological niches (16 species) (p-value=1.9e-4). Ten 545 

species with THI6 are associated with both ecological niches, and 33 species are not associated 546 

with either environment. 547 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.22.214635doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.214635
http://creativecommons.org/licenses/by-nc/4.0/


CONCLUSIONS 548 

Here we use reverse ecology to connect genotype (codon optimization) with phenotype (growth 549 

rate on galactose) and ecology (isolation environment) across an entire evolutionary lineage 550 

(budding yeasts). By studying a well-known metabolic pathway in a diverse microbial 551 

subphylum, we provide a proof of concept for the utility of codon optimization as a genomic 552 

feature for reverse ecology. Our discovery of optimization in the GAL pathway in dairy-553 

associated Saccharomycetaceae and human-associated CUG-Ser1 yeasts is consistent with the 554 

known functional roles of the enzymes in the pathway. The complete GAL pathway metabolizes 555 

lactose, a component of dairy environments, into usable energy [118]. The GAL10 gene is 556 

associated with phenotypes associated with human colonization in CUG-Ser1 yeasts [85]. 557 

Similarly, in the Kluyveromyces species found on dairy-associated niches that are able to 558 

metabolize lactose into glucose and galactose, there is high optimization in this pathway 559 

compared to closely related species not associated with dairy. Interestingly, examination of 560 

codon optimization in the gene sets of the four Kluyveromyces species studied here would have 561 

identified at least K. marxianus as a potential dairy-associated yeast, even in the absence of any 562 

knowledge about its isolation environments. Thus, genome-wide examination of codon 563 

optimization in fungal, and more generally microbial, species can generate specific hypotheses 564 

about metabolic ecology in species for which ecological data are lacking. These results are 565 

especially promising as this method can be applied directly to genomic data—which is the only 566 

source of information for microbial dark matter known only from DNA [119].  Finally, using an 567 

unbiased approach, we identified a strong correlation between optimization in the thiamine 568 

biosynthesis pathway and the GAL pathway. This novel finding suggests that codon optimization 569 
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may also be useful for identifying co-regulated or correlated pathways in microbial, including 570 

fungal, species.   571 
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