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ABSTRACT 

The continental subsurface houses a major portion of life’s abundance and diversity, yet little 

is known about viruses infecting microbes that reside there. Here, we used a combination of 

metagenomics and genome-informed microscopy to show that highly abundant carbon-

fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of 

previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches 

displayed resistances of Ca. Altiarchaea against eight predicted viral clades, which showed 

genomic relatedness across continents but little similarity to previously identified viruses. 

Based on metagenomic information, we tagged and imaged a putatively viral genome rich in 

protospacers using fluorescence microscopy. Virus-targeted genomeFISH revealed a lytic 

lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as 

the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging 

of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral 

diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We 

conclude that infections of primary producers with lytic viruses followed by cell lysis 

potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems. 

 

INTRODUCTION 

Earth’s continental subsurface harbours 2-6 x 1029 prokaryotic cells [1, 2], which represent a 

major component of life’s diversity on our planet [3, 4]. Among these organisms are some of 

the most enigmatic archaea, including Aigarchaeota, Asgard archaea, Altiarchaeota and 

members of the DPANN radiation [5-8]. Although the ecology and diversity of subsurface 

microorganisms has been under investigation in several studies, the fundamental question 

relating to how microbial diversity and composition in the deep subsurface change with virus 

infection remains mostly unanswered. Viruses have long been recognized as major drivers of 

microbial diversification [9], yet little is known about their lifestyle, activity and impact on 

oligotrophic subsurface ecosystems. Recent evidence demonstrated high numbers of virus-cell 

ratios in marine subsurface sediments [10], suggesting ongoing viral proliferation in the deep 

biosphere. In addition, pronounced morphological diversity of bacteriophages with presumably 

lytic representatives has been found in granitic groundwater of up to 450 m depth [11], and 

might be the result of recombination events, horizontal gene transfer and lysogeny known to 

shape microbial communities of the subsurface [12]. The recent recovery of two novel 

bacteriophage genera with lytic genes from groundwater highlights the potential of subsurface 

environments for being huge reservoirs of previously unknown viruses [13]. Furthermore, a 
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study on predominant Halanaerobium spp. from anthropogenic subsurface communities 

(hydraulically fractured wells) suggested long-term host-virus dynamics, extensive viral 

predation and adaptive host immunity based on clustered regularly interspaced short 

palindromic repeats (CRISPR) spacer to protospacer matches [14]. CRISPR systems function 

as defense mechanisms for bacteria and archaea against mobile genetic elements (MGEs), 

including viruses [15]. The CRISPR locus is usually flanked by cas genes and interspaced by 

short variable DNA sequences termed spacers [15] previously acquired from invading MGEs. 

The diversification of CRISPR-Cas immunity in the host over geographical distances and time 

due to preceding viral infections and protospacer mutations has been well-documented, e.g., for 

Sulfolobus islandicus [16]. 

Oligotrophic anaerobic subsurface environments can be populated by a variety of different 

microorganisms, some of them belonging to the phylum Altiarchaeota [7, 17]. In fact, these 

organisms can reach high abundances in their ecosystems with up to 70% of the total 

community in the aquifer or with up to 95% within the biofilm (BF) they form [18, 19]. 

Members of the genus Ca. Altiarchaeum–Ca. A. hamiconexum being the best-studied 

representative [7]–occur in anoxic subsurface environments around the globe [20, 21] and fix 

carbon via the reductive acetyl-CoA (Wood-Ljungdahl) pathway [7]. In certain ecosystems, 

Ca. Altiarchaea form nearly pure BFs, which are kept together by filamentous cell surface 

appendages called “hami“ (singular: hamus) [22]. Studies to date showed symbiotic 

relationships of Ca. Altiarchaea with bacterial partners Thiothrix sp. [23], and 

Sulfuricurvum sp.  [24], but also a co-occurrence with the episymbiont Ca. Huberiarchaeum 

crystalense, belonging to the DPANN clade, has been recently reported  [17, 25]. A single 

transmission electron micrograph and the presence of CRISPR systems led to speculations on 

the existence of Ca. Altiarchaeum viruses in the subsurface [26]. However, mesophilic archaeal 

viruses from the deep terrestrial subsurface remain highly enigmatic, despite the fact that 

mesophilic archaeal genomes contain more MGEs than their thermophilic counterparts [27]. 

The knowledge gap on archaeal viruses is fostered by a lack of their genome entries in public 

databases [28], missing marker genes for viruses [29] and a bias towards viruses related to 

economical, medical or biotechnological activities [30]. In addition, only ~150 archaeal viruses 

have been isolated and described to date [31]. Recent exhaustive metagenomic surveys aided 

the discovery of novel archaeal viruses [32] from multiple ecosystems, including the ocean [33, 

34], hot springs [35-37] and soils [38, 39], and eventually allowed targeting and visualization 

of an uncultivated virus based on its genome [40]. 
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Due to their world-wide distribution and high abundance as the main primary producer in 

certain continental subsurface ecosystems, Ca. Altiarchaea represent the ideal model genus for 

studying viruses and their infection mechanisms of mesophilic microorganisms in the 

subsurface. This is especially relevant because the extent to which lytic infections occur in the 

continental subsurface is unknown, and lysogeny is assumed to be the predominant viral 

strategy [41]. Consequently, we used metagenomics to predict viruses that infect 

Ca. Altiarchaea in subsurface ecosystems at four different sites across three continents. The 

most abundant putative virus, which showed little homologies with sequences in public 

databases and thus carried no viral hallmark genes, was visualized and characterized using 

genome-informed microscopy, providing novel insights into its viral lifestyle. Our analyses 

further demonstrate the diversification of CRISPR systems of Ca. Altiarchaea along with a 

decline in virus abundances over six years.  

 

MATERIAL AND METHODS 

Mining public metagenomes for Altiarchaeota 

To get an overview of the global distribution of Altiarchaeota, we searched metagenomes in 

the IMG/M database [42] (database accessed in July 2018) for Altiarchaeota contigs using 

DIAMOND blastp (v0.9.22) [43] with the putative hamus subunit (NCBI accession no 

CEG12198.1) as a query and an e-value and length cut-off of 1e-10 and 300 amino acids, 

respectively. The Altiarchaeota distribution based on 16S rRNA gene sequences was obtained 

from the SILVA SSU Parc database [44] based on all 16S rRNA genes classified as 

Altiarchaeota and for which geographic information was available (July 2018).  

To investigate Altiarchaeota-virus relationships, we explored ecosystems where Altiarchaeota 

comprised the majority of the community. Therefore, metagenomic data from a microbial mat 

growing in the sulfidic groundwater-fed Alpena County Library Fountain (ACLF) (Alpena, MI, 

USA) were obtained from NCBI Sequence Read Archive (SRA) repository [45] as were 

metagenome samples from Horonobe Underground Research Laboratory at 140 and 250 m 

depth (HURL, Hokkaido, Japan) [21]. The analysis was complemented with three metagenomic 

datasets from CO2-enriched groundwater erupted from a cold-water Geyser (Andernach, 

Middle Rhine Valley, Germany) [46], and the metagenome of a sulfidic spring Mühlbacher 

Schwefelquelle Isling (MSI) in Regensburg, Germany [7]. All BioProject, BioSample 

accessions and information on sampling of MSI for various experiments are provided in Table 

S1 and S2, respectively. 
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Re-sampling of MSI for virus-targeted genomeFISH and metagenomic sequencing 

BF samples were collected as previously described [19] from the 36.5 m deep, cold (~10 °C), 

sulfidic spring MSI in Regensburg, Germany (N 48° 59.142, E 012° 07.636) in January 2019, 

for which further geological description has been reported elsewhere [47]. Environmental 

parameters of the sulfidic spring were extensively investigated previously [18, 23] and 

remained almost constant over years. For virus-targeted genomeFISH, BF samples were fixed 

by addition of formaldehyde (3% v/v) and incubation at room temperature for one hour. For 

investigating infection stages, BF flocks were gently separated from several bigger flocks by 

using a pipette tip finally yielding 18 smaller flocks (range 170 – 5 870 µm2). BF flocks for all 

microscopy experiments were subsequently washed three times in 1x phosphate buffered saline 

(PBS, pH 7.4) followed by dehydration via an ethanol gradient (50%, 70% v/v, and absolute 

ethanol, 10 min each). Samples were stored in absolute ethanol at -20 °C until further 

processing.  

Three types of samples were collected for metagenomics: i) BF flocks; ii) the planktonic 

community (>0.1 µm pore-size fraction); and iii) the viruses and lysed cells (<0.1 µm pore-size 

fraction). Sampling of Altiarchaeota BF flocks for DNA extraction and metagenomic 

sequencing from the sulfidic spring (MSI) was performed in October 2018. For sampling the 

unfiltered planktonic microbial community, 70 L of groundwater were filtered onto a 0.1 µm 

pore-size PTFE membrane filter (Merck Millipore, Darmstadt, Germany). The flow-through 

was collected in a sterilized container, and a final concentration of 1 mg L-1 of iron (III) chloride 

(Carl Roth, Karlsruhe, Germany) was applied for chemical flocculation for 30 minutes [48]. 

Flocculates were filtered onto 5 x 0.2 µm membrane filters (<0.1 µm fraction). DNA was 

extracted directly from collected BF samples using the RNeasy® PowerBiofilm Kit (Qiagen, 

Hilden, Germany) using a DNA-conform workflow. DNA from the 0.1 µm and pooled 0.2 µm 

membrane filters with iron flocculates was extracted using PowerMax Soil DNA Extraction Kit 

(Qiagen, Hilden, Germany), DNA was precipitated overnight and cleaned with 70% ethanol. 

Shotgun metagenome sequencing was conducted within the Census of Deep Life Sequencing 

call 2018 and performed using the Illumina HiSeq platform at the Marine Biological 

Laboratory, Woods Hole, MA, USA.  

 

Detection of viral genomes in metagenomes 

Raw shotgun sequencing reads were trimmed and quality-filtered using bbduk 

(https://github.com/BioInfoTools/BBMap/blob/master/sh/bbduk.sh) and Sickle [49]. Read 

assembly was conducted by using metaSPADes v.3.10 [50] unless stated otherwise. Scaffolds 
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<1 kb length were excluded from further analysis. Genes were predicted using prodigal [51] 

(meta mode) and functional annotations were determined by using DIAMOND [43] against 

UniRef100 [52]. Altiarchaeota genomes were retrieved from public datasets as described 

previously [46] and further cleaned or re-binned using GC, coverage and taxonomy information 

[53], which was necessary for all genomes except for Altiarchaeota from MSI_BF_2012 (Table 

S1). Viral scaffolds >3 kb were identified by applying a combination of tools as presented in 

Figure S1A. Predicted viruses were classified into viruses and putative viruses according to the 

classification system presented in Figure S1B. Viral scaffolds were subsequently checked for 

mini-CRISPR arrays using default settings of CRISPRCasFinder [54] as some archaeal viruses 

can bear mini-CRISPR arrays with 1-2 spacers having likely a role in interviral conflicts [55, 

56].  

 

CRISPR-Cas analysis of Altiarchaeota genomes 

Cas genes and direct repeat (DR) sequences were identified in binned Altiarchaeota genomes 

via CRISPRCasFinder [54] and genes were additionally confirmed via searches against 

UniRef100 [52]. CRISPR DR sequences were tested for formation of secondary structures 

using RNAfold [57] and checked against the CRISPRmap database (v2.1.3-2014) [58] for 

formation of known motifs. The consensus DR sequence was used in both possible orientations 

to extract host-specific spacers from raw reads by using MetaCRAST [59] with Cd-hit [60] 

clustering at 99% identity. Spacers were filtered for minimum and maximum lengths of 20 and 

60 nucleotides, respectively. Only spacers that were present on a read that contained at least 

one complete DR sequence with an exact match to the template were considered. Finally, 

spacers were further clustered with Cd-hit [60] at 99% identity and matched to viral 

protospacers on the compiled output of viral identification tools using the blastn --short 

algorithm with a 80% similarity threshold. For comparing spacer dynamics (total abundance, 

diversity and matches to Altivir_1_MSI and Altivir_2_MSI genomes) of 2012 and 2018 

samples from MSI, all spacers of the four respective MSI samples were clustered with Cd-hit 

[60] at 99% identity and representative sequences of each cluster were matched to 

representative Altivir_1_MSI and Altivir_2_MSI genomes from the BF of 2012 (Table 1). All 

data arising from spacer counts were normalized by genome abundance of the respective 

Altiarchaeota genome. 
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Annotation and clustering of viral genomes  

Coding sequences of predicted viral scaffolds were identified using prodigal (meta mode) [51] 

and respective proteins were annotated via DIAMOND search [43] against UniRef100 [52] by 

applying HHpred [61, 62] with an e-value cut-off of 10-6 against the following databases: 

PDB_mmCIFC70_4_Feb, Pfam-A v.32.0, NCBI_Conserved_Domains_v3.16 and TIGRFAMs 

v15.0 database. For the two most abundant predicted viruses Altivir_1_MSI and 

Altivir_8_HURL we additionally applied DELTA-BLAST [63] searches against NCBI’s non-

redundant protein sequences (nr) and used PHMMR [64] against reference proteomes. 

Predicted viral scaffolds carrying multiple hits against existing bacterial genomes in UniRef100 

[52] and no viral hallmark genes or carrying extensive CRISPR arrays (detected as false 

positives) were removed from further analyses.  

Clustering of entire viral genomes on nucleic-acid level was performed with VICTOR [65] 

using the Genome-BLAST Distance Phylogeny method [66] with distance formula d0 and 

OPTSIL clustering [67]. A separate virus clustering was performed using vConTACT2 [68, 69] 

applying the database ‘ProkaryoticViralRefSeq94’ [70] and visualization of the viral network 

was performed in Cytoscape version 3.7.2 [71]. Intergenomic similarities between viral 

genomes and the corresponding heatmap were calculated using VIRIDIC accessible through 

http://viridic.icbm.de with default settings [72]. In order to further investigate the genetic 

relationship between the Altiarchaeota viruses, proteins of all viral genomes were clustered by 

first performing an all against all blastp with an e-value cut-off of 10-5 and a bitscore threshold 

of 50. Then, the results were loaded into the mcl program with the parameters " -l --abc". The 

genomic maps were plotted using the genoPlotR v.0.8.9 [73] package of the R programming 

environment [74]. 

 

Relative abundance of viruses and hosts 

Abundance of hosts and viruses was determined via read mapping respective genomes using 

Bowtie2 [75] in sensitive mode followed by mismatch filtering for host genomes (2%, 

depending on read length). Abundances were normalized to the total number of base pairs (bp) 

sequenced of each sample scaling to the sample with lowest counts, which is herein referred to 

as relative abundance or normalized coverage. Rank abundance curves were built based on the 

abundance of scaffolds carrying ribosomal protein S3 (rpS3) sequences predicted in 

metagenomic assemblies after running prodigal (meta mode) [51] and annotation [43] against 

UniRef100 [52]. For normalized rank abundance curves based on sequencing depth for the 
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ecosystem MSI, we only considered rpS3 sequences with a coverage >2.4 after normalization 

as this value represents the lowest coverage of any assembled rpS3 sequence in the MSI dataset. 

 

Design, synthesis and chemical labeling of gene probes 

To target Altivir_1_MSI, a 8.9 kb putative viral genome recovered from the MSI_BF_2012 

metagenomic dataset, eleven dsDNA polynucleotide probes of 300 nucleotides length were 

designed using genePROBER (gene-prober.icbm.de/), according to [76]. In addition, a single 

300 bp fragment of a Metallosphaera turreted icosahedral virus strain MTIV1 (NCBI accession 

no. MF443783.1) was designed as a negative control probe, because the Metallosphaera sp. 

virus was not detected in the metagenome of MSI_BF_2012. Sequences for all probes are given 

in Table S3. 

The probes were synthesized as described in [76]. Shortly, all polynucleotides were chemically 

synthesized as gBlocks® Gene Fragments (Integrated DNA Technologies, San Jose, CA, 

USA), reconstituted in 5 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0 and then labeled with the 

ULYSIS™ Alexa Fluor™ 594 nucleic acid labeling kit (Thermo Fisher Scientific, MA, USA). 

Two µg of either an equimolar mixture of the eleven Altivir_1_MSI polynucleotides or of the 

single negative control polynucleotide were used in a single labeling reaction and then purified 

using NucAway Spin Columns (Thermo Fisher Scientific, USA). Before being used as probes 

for virus-targeted genome fluorescence in situ hybridization (genomeFISH), the labeled probes 

were measured spectrophotometrically using a NanoDrop™ (Thermo Fisher Scientific, USA). 

The calculated labeling efficiency was 9.16 and 16.6 dyes per base for Altivir_1_MSI probe 

and negative control probe, respectively. 

 

Virus-targeted genomeFISH of MSI biofilms 

Virus-targeted genomeFISH was performed according to the direct-geneFISH protocol [77], 

with the modifications detailed further. In brief, Altiarchaeota BF, dehydrated in an ethanol 

series, were carefully placed in the middle of a press-to-seal silicone isolator (Sigma-Aldrich 

Chemie GmbH, Taufkirchen, Germany) mounted on Superfrost® Plus slides (Electron 

Microscopy Sciences, Hatfield, USA), and subsequently air-dried. Because Altiarchaeota lack 

the typical archaeal S-layer as outer sheath [78] and hence are more prone to membrane 

disintegration, no extra permeabilization step was required. Different formamide 

concentrations (20%, 30%, 50%) were tested to exclude false positive hybridization signals. In 

the final assay, 20% of formamide was used in the hybridization buffer that contained 5x SSC 

buffer (saline sodium citrate, pH 7.0), 20% (w/v) dextran sulfate, 20 mM EDTA, 0.25 mg mL- 1 
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sheared salmon sperm DNA, 0.25 mg mL-1 yeast RNA, 1x blocking reagent, 0.1% (v/v) sodium 

dodecyl sulfate and nuclease-free water. The final NaCl concentration of 0.225M in the washing 

buffer corresponded to the 20% formamide in the hybridization buffer. As rRNA probes, the 

dual-Atto488-labeled probes NON338 [79] and a SM1-Euryarchaeon-specific probe 

“SMARCH714” [80] were used. A volume of 45 µl hybridization mixture was used, with a 

final gene probe concentration of 330 pg µL-1 (30 pg µL-1 for each polynucleotide) and rRNA 

probe final concentration of 1 pmol µL-1. In the hybridization chamber, 30 ml of formamide-

water solution were added to keep a humid atmosphere. The denaturation and hybridization 

times were 30 min and 3 hours, respectively. The post hybridization washing buffer contained 

20 mM Tris-HCl (pH 8.0), 5 mM EDTA (pH 8.0), nuclease-free water, 0.01 % SDS, and 

0.225 M NaCl. A second washing step with 1x PBS (pH 7.4) for 20 min was performed. Then, 

the slides were transferred for one minute into molecular grade water and quickly rinsed in 

absolute ethanol. For staining, we used 15 µL of a mixture of 4’,6-diamidin-2-phenylindole 

(4 µg mL-1) in SlowFade Gold Antifade Mounting medium (both Thermo Fisher Scientific, 

Waltham, MA, USA). All solutions and buffers for virus-targeted genomeFISH experiments 

were prepared with molecular grade water (Carl Roth, Karlsruhe, Germany). For the experiment 

with individual flocks, 17 out of 18 flocks were treated with the Altivir_1_MSI probe and one 

flock with the negative control probe.  

The BF material was examined and imaged with an Axio Imager M2m epifluorescence 

microscope equipped with an Axio Cam MRm and a Zen 2 Pro software (Carl Zeiss Microscopy 

GmbH, Jena, Germany). Channel mode visualization was performed by using the 110x/1.3 oil 

objective EC-Plan NEOFLUAR (Carl Zeiss Microscopy GmbH) and three different filter sets 

from Carl Zeiss: 49 DAPI for visualizing Altiarchaeota cells, 64 HE mPlum for the detection 

of viral infections, and 09 for achieving 16S rRNA signals. Enumeration of cells and viral 

signals was performed manually. Viral signals were categorized into three major groups, i.e., 

viral adsorption on host cells, advanced infections and viral bursts.  

 

Structured illumination microscopy 

For structured illumination microscopy, virus-targeted genomeFISH was carried out on 

a BF flock mounted on a cover slip (thickness No. 1.5H, Paul Marienfeld GmbH & Co. KG, 

Lauda-Königshofen, Germany) and processed as stated above except that no DAPI was added 

to the mounting medium. Samples were analyzed using an inverted epifluorescence microscope 

(Zeiss ELYRA PS.1) equipped with an α-Plan-Apochromat 100x/1.46 oil DIC M27 Elyra 
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objective, F Set 77 He filter, and a Zen black edition software, all obtained from the 

manufacturer Carl Zeiss Microscopy GmbH. 

 

Transmission electron microscopy 

BF flocks from MSI were pre-fixed in glutaraldehyde (Carl Roth, Karlsruhe, Germany) to a 

final concentration of 2.5% (v/v) and physically fixed via high-pressure freezing followed by 

freeze substitution, which was carried out with 0.2% osmium tetroxide, 0.25% uranyl acetate 

and 9.3% water in acetone as described previously [81]. After embedding in Epon resin and 

polymerization for 72 h, the samples were ultrathin sectioned and post-stained with 1% lead 

citrate for two minutes. Transmission electron microscopy was carried out on a Zeiss EM 912 

(Zeiss, Oberkochen, Germany) with an integrated OMEGA-filter at 80 kV in the zero-loss 

mode. Imaging was done using a 2k x 2k pixel slow-scan CCD camera (TRS Tröndle 

Restlichtverstärkersysteme, Moorenweis, Germany).  
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RESULTS 

Globally distributed Ca. Altiarchaea have complex CRISPR systems with conserved DR 

sequences  

Screening of 16S ribosomal RNA (rRNA) datasets and metagenomes within IMG [42] 

confirmed a global distribution of organisms belonging to the phylum Altiarchaeota (Figure 

S1). We performed metagenomic analyses of four terrestrial subsurface ecosystems that showed 

high abundance of the genus Ca. Altiarchaeum (Table S1), previously also termed Alti-1 [20], 

ranging from 37 to 352 m below ground. These ecosystems included i) an anoxic aquifer 

accessible through an artesian well (Mühlbacher Schwefelquelle, Isling, MSI) [24] sampled in 

2012 and 2018 and ii) a high-CO2 geyser (Geyser Andernach, GA) [46] both located in 

Germany, iii) a sulfidic spring in the US (Alpena County Library Fountain, ACLF) [45], and 

iv) a deep underground laboratory in Japan (Horonobe Underground Research Laboratory, 

HURL) at 140 and 250 m depth [21]. All eight genomes of Ca. Altiarchaeum (Table S1) carried 

genetic information for Type I-B-CRISPR-Cas immunity including proteins Cas5, Cas7, Cas8a. 

Proteins of a Type III CRISPR-Cas immunity were found at the ACLF, HURL, and MSI site, 

including Repeat Associated Mysterious Proteins (RAMP, Cmr) of Type III-B and III-C, and 

Csm proteins of the Type III-A system (Table S4). Confidence in binning CRISPR arrays and 

assigning DR sequences to Ca. Altiarchaea arose from the 16-146 fold higher abundance of 

these organisms (and their CRISPR arrays) in the ecosystems than other microbes (Figure S2, 

[7, 21, 45]). Additionally, two versions of a CRISPR DR sequence assigned to Ca. Altiarchaea 

were highly conserved across these ecosystems (Figure S3, Table S4). DR sequence 1 occurred 

in all four ecosystems, whereas DR sequence 2 was only found at the HURL and the ACLF site 

(Table S4). While all DR sequences from the four sites were previously unknown in the 

CRISPRmap database, DR sequence 1 in orientation 1 and DR sequence 2 in both orientations 

structurally resembled motif 13 and 12 of the database, respectively. All four sequences form 

thermodynamically favorable secondary structures and carry an AAA(N) motif (Figure S3), 

indicating that both strands of the CRISPR array could theoretically be transcribed. 
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Table 1: Characteristics of potential viruses of Altiarchaeota detected in subsurface ecosystems. Viruses were clustered at genus level and 
based on intergenomic similarity (Figure 2, Figure S4 and S5). 
 

Predicted viral 
clade 

Sample Coverage Normalized 
coverage 

Host:virus 
ratio 

Genome 
length 
(kbps) 

%GC No. 
ORFs 

Av. 
ORF 
length 
(bps) 

Coding 
density 
(%) 

No. of non-
normalized 
spacer 
matches 
(associated 
repeat 
type) 

Classification Tools for 
identification 

Annotations 
of proteins 

                            

Altivir_1_MSIC MSI_>0.1µm_201
8 

545 179 2,3 8,9 35,0 13 526 76,6 61 (1) Putative virus VirSorter cat 
3 
circular 

Nuclease, 
Mucin-like 
domain-
containing 
protein, 
Arginase, 
Geranylgeran
yl transferase 
type i beta 
subunit, 
winged helix-
turn-helix 
transcriptiona
l regulator 

MSI_<0.1µm_201
8 

32 18 23,4 8,8 35,2 13 514 75,8 32 (1) not identified 

MSI_BF_2018 20 9 301,9 8,9 35,3 13 517 75,4 278 (1) not identified 

MSI_BF_2012 4561 767 3,0 8,9 35,2 14 499 78,4 108 (1) not identified 

Altivir_2_MSIC MSI_>0.1µm_201
8 

456 150 2,8 17,4 24,0 35 421 84,7 0P Putative virus VirSorter cat 
3 
 VogDB  

Modification 
methylase 
MboII, 
bacteriophag
e Gp111 
protein, 
Tetratricopep
tide repeat, 
AAA 15 
domain-
containing 
protein, DNA 
polymerase 

MSI_BF_2018 39 18 150,2 22,7 24,7 43 455 86,2 29 (1) Putative virus VirSorter cat 
3 
 VogDB  

MSI_BF_2012 1048 176 13,1 20,8 24,6 39 450 84,8 7 (1) Virus VirSorter cat 
3 
 VogDB  
 circular 

Altivir_3_ACLF ACLF 240 199 4,8 12,6 31,9 15 787 93,8 9 (1) 
8 (2) 

Putative virus VirSorter cat 
3 

- 

Altivir_4_ACLFT ACLF 169 140 6,8 8,2 32,0 18 360 78,9 3 (1) 
10 (2) 

Putative virus VirSorter cat 
3 
VogDB 

Tetratricopep
tide repeat, 
lipid 
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transferase, 
Transposase 

Altivir_5_ACLFC ACLF 15 13 75,0 5,1 27,8 16 245 76,2 5 (1) 
2 (2) 

Putative virus VirSorter cat 
3 
circular 

- 

Altivir_6_ACLF ACLF 13 11 85,6 4,6 35,0 8 509 88,8 18 (1) 
9 (2) 

Putative virus VirSorter cat 
3 

- 

Altivir_7_ACLF ACLF 65 54 17,8 3,8 29,1 9 323 75,8 1 (1) 
0 (2) 

Putative virus VirSorter cat 
3 
VogDB 

RNA ligase 

Altivir_8_HURLH,
C 

HURL_250m 1843 913 1,8 22,6 35,6 36 502 79,9 13 (1) 
59 (2) 

Virus VirSorter cat 
2 
VogDB 
circular 

Large 
terminase, S-
layer 
domain-
containing 
protein, 
Major capsid 
protein 10A, 
Prohead core 
protein serine 
protease, 
Nuclear pore 
complex, 
Tetratricopep
tide repeat, 
AAA family 
ATPase, 
PAPS 
reductase 
domain-
containing 
protein, 
phage portal 
protein  

 
Ccircular genome 

             
Hcarries hallmark genes              
Tpotential transposon              
PIn this sample the virus was only recovered as a partial sequence and recruited no spacer matches from the same sample. However, the more complete genome from 2012 did have matching protospacers as shown in Figure 4.              
Note: No Altiarchaeota viruses were detected in samples from HURL (140 m) and GA              
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Eight novel viral clades with genome relatedness across continents show infection 

histories with Altiarchaeota 

Using matches of Altiarchaeota spacers to protospacers, we were able to identify 13 predicted 

viral genomes in three out of the four sampling sites (Table 1). No viruses targeted by 

Ca. Altiarchaea spacers could be predicted for GA and the HURL site at 140 m depth. Only 

two out of the 13 predicted viral genomes, i.e., the 20.8 kb Altivir_2_MSI_BF_2012 and the 

22.6 kb Altivir_8_HURL, had hits in the VOG database (Table S5), carried viral hallmark genes 

and were circular, prompting us to classify them as viruses. The others were designated as 

putative viruses according to our classification scheme (Figure S1). All 13 were categorized as 

lytic viruses according to VirSorter [82]. Four predicted viruses were circular and thus complete 

in their genome sequence (Figure 1, Table 1). The 13 viral genomes formed eight monophyletic 

clades based on the VICTOR analysis, representing potentially eight individual genera 

(VICTOR threshold for genus was 15.8% nucleotide based intergenomic similarity). Viral 

genomes in the Altivir_1_MSI and Altivir_2_MSI clades were recovered in all sampled time 

points from the MSI site (Table 1, Figure 2), both in the cellular and virus enriched fractions. 

The Altivir_2_MSI genomes recovered from the virus enriched fraction were fragmented and 

thus excluded from further analysis. Intergenomic pairwise similarities for the four 

Altivir_1_MSI varied between 99.3-99.7%, this clade representing a single viral species (the 

threshold for species demarcation was 95% similarity). The three Altivir_2_MSI genomes had 

similarities between 87.0-96.1% and represented two viral species (Figure S5). Using 

vConTACT2, Altivir_1_MSI formed a cluster with Altivir_6_ACLF, a putative virus from 

ACLF, with whom it shared five protein clusters (Figure 2, Figure S4). This relatedness 

between viruses from highly distant subsurface ecosystems was further supported by the 

VIRIDIC analysis, which showed an intergenomic similarity of 11.2% for the 

Altivir_1_MSI/Altivir_6_ACLF pair (Figure S5), and by the VICTOR analysis, which placed 

them in the same monophyletic clade (Figure 2). All remaining viruses apart from 

Altivir_1_MSI, Altivir_2_MSI, and Altivir_6_ACLF were designated by vConTACT2 as 

unclustered singletons. Only one protein cluster was shared between Altivir_2_MSI, 

Altivir_4_ACLF, and Altivir_8_HURL, and no protein clusters between the remaining 3 

viruses, indicating that all these viruses are distant from each other (Figure 2). In total, these 

eight viral genera were affiliated to seven vConTACT viral clusters 

(Altivir_1_MSI/Altivir_6_ACLF grouped together), clusters unrelated with previously 

published viral genomes in the RefSeq94 database (Figure S4). Comparing the genomes of 

Altivir_1 and Altivir_2 individually across the samples from 2012 and 2018, we identified 
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different developments of the two viral genomes. Altivir_2_MSI clade presented gene content 

variations between the genomes from different samples (Figure S6), which is in agreement with 

the fact that it represents two viral species. By contrast, Altivir_1_MSI accumulated multiple 

single nucleotide polymorphisms and only represented strain level variations of the same 

species (SNPs) (Figure S7, Table S6). 

 
Figure 1: Global distribution of abundant Altiarchaeota (group Alti-1) and their 

predicted viruses in Altiarchaeota hot spots. Distribution analysis is based on 16S rRNA 

gene sequencing (yellow dots) and the detection of hamus genes in metagenomes from IMG 

(blue and purple dots). Purple dots correspond to the four investigated sites of this study. 

Normalized host and virus coverage are given for the four subsurface habitats: Alpena County 

Library Fountain (ACLF, MI, USA), Horonobe Underground Research Laboratory (HURL, 

Japan), Mühlbacher Schwefelquelle Isling (MSI, Germany) and Geyser Andernach (GA, 

Germany). Percent relative abundance of dominant Altiarchaeota compared to other 

community members is shown in Table S1. Only Altivir_1_MSI and Altivir_2_MSI obtained 

from biofilm (BF) samples are shown. The letter “C” indicates circular genomes. n.d.: none 

detected. World map has been generated using Ocean Data View[99].  

 

Host-virus ratios based on metagenome read mapping varied greatly (between 1.8 and 301.9; 

Table 1) with the smallest ratios of 1.8 for Altivir_8_HURL, followed by 2.3 for Altivir_1_ 

MSI_>0.1µm_2018, 2.8 for Altivir_2_MSI_>0.1µm_2018 and 3.0 for 

Altivir_1_MSI_BF_2012. Abundance of viruses in the planktonic fraction (>0.1µm) suggests 
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profound concentration of Altiarchaeum BF on the 0.1µm filter membrane during the filtration 

process. Relative abundance of viruses based on normalized coverage ranged between 9 

(Altivir_1_MSI_BF_2018) and 913 (Altivir_8_HURL, Figure 1, Table 1). The genomes of 

Altivir_2_MSI_ BF_2018 and Altivir_8_HURL carried short CRISPR arrays with one spacer 

each, but spacers from these mini-CRISPR arrays did not match other viruses in the respective 

ecosystems (data not shown).  

Several predicted viruses carried genes with matches in public databases, which included 

methyltransferases, tetratricopeptide repeat proteins and proteins of the AAA family ATPase 

(Table 1, Table S7). We found the circular Altivir_8_HURL genome to have 36 genes including 

the auxiliary metabolic gene (AMG) phosphoadenosine phosphosulfate reductase (PHMMR, e 

value: 6.1e-48) probably facilitating assimilatory sulfate reduction in the host. Altivir_1_MSI 

was of particular interest for this study, as it was highly abundant in the metagenome MSI_BF-

2012, recruited many spacer hits and only five out of its 14 proteins could be annotated (Table 

1, Table S7). These included a nuclease (HHpred, e value: 2.8e-19) and a Mucin-like domain-

containing protein (PHMMR, e value: 4.2e-23) having a likely role for attachment to the host 

cell surface. In sum, only 16.4% of the 159 proteins across all Altivir genomes have a putative 

function assigned rendering the remaining genes of yet unknown function as genetic dark matter 

(summary of annotations in Table 1). 

 
Figure 2: Phylogenomic Genome-BLAST Distance Phylogeny (GBDP) tree of 

Altiarchaeota viruses and viral proteins clusters. A) The tree was inferred using the distance 

formula D0 yielding average support of 69%. The numbers above branches are GBDP pseudo-

bootstrap support values from 100 replications. The branch lengths of the resulting VICTOR 

[65] trees are scaled in terms of the respective distance formula used. The tree shows that the 

eight predicted viral genomes were assigned to the same family, to eight different genera and 
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ten species (which is the result of having multiple genomes included for Altivir_1_MSI and 

Altivir_2_MSI). B) Protein clustering across all viruses revealed that 

Altivir_1_MSI_>0.1µm_2018 and Altivir_6_ ACLF, originating from different continents, 

have five protein clusters (2-6) in common. Altivir_2_MSI_BF_2012, Altivir_4_ACLF and 

Altivir_8_HURL shared only one protein cluster (1). Open reading frames of the viral genomes 

were predicted using MetaGeneAnnotator [100] and further translated with the R package 

seqinr v.3.6.-1. 

 

Genome-informed microscopy reveals a lytic lifestyle for Altivir_1_MSI 

We selected the in silico predicted Altivir_1_MSI viral clade for visualization by genome-

informed microscopy, due to its high abundance at the MSI site, and despite the lack of viral 

hallmark genes. Virus-targeted genomeFISH with a probe containing eleven double stranded 

polynucleotides was successfully implemented to visualize the distribution of the circular 

genome of Altivir_1_MSI within altiarchaeal BF (Figure 3A, Figure S8). In contrast to the 

negative control with a non-matching probe (Figure S9), our target probes enabled us to detect 

altiarchaeal cells containing Altivir_1_MSI. Multiple cells were surrounded by halo signals, 

corresponding to a viral burst [83] and providing evidence for Altivir_1_MSI being an active 

virus and lysing Altiarchaeota cells.  

A total of 18 411 altiarchaeal cells and 502 viral infections (co-localization of Altivir_1_MSI 

and Ca. Altiarchaea signals) across 18 samples/BF flocks were analyzed via fluorescence 

microscopy and categorized into three main infection stages: i) viral adsorption to the host cells 

(8.5%), ii) advanced infection with intracellular virus signals and ring-like signals around the 

cells (76.5%), and iii) cell lysis with bursting cells and release of virions (15%) (Figure 3B). 

Super-resolution microscopy further showed extracellular signals of small fluorescently labeled 

particles, which we interpret as individual viral particles (Figure 3C). This observation was 

further supported by ultra-thin sectioning and transmission electron microscopy, which 

revealed many intracellular virus-like particles associated with Ca. Altiarchaea cells. These 

particles had an average diameter of 50 nm (SD ± 7 nm), as measured across eleven host cells 

(Figure 3D). The high percentage of cell lysis associated with the virus signals along with the 

high abundance of the virus in the planktonic and viral fraction suggests a lytic lifestyle for 

Altivir_1_MSI. 
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Figure 3: Visualization and quantification of Altivir_1_MSI-infected and non-infected 

Altiarchaeota biofilm (BF) cells from MSI site. For all virus-targeted genomeFISH 

experiments shown here, an Altivir_1_MSI probe was used for detecting viral infections. BF 

material was visualized with filter sets for DAPI (blue, cells), ATTO 488 (green, 16S rRNA 

signal) and Alexa 594 (red, viral genomes), and merged for analysis and display purposes. A) 

Virus-targeted genomeFISH displays the interactions between Altiarchaeota cells and their 

virus shown as red dots. For unmerged imaging data, see Figure S8. B) Different infection 

stages with Altivir_1_MSI. The enumeration performed with a regular epifluorescence 

microscope was based on 18 411 archaeal cells and categorized into three infection stages. 

Purple arrows indicate exemplary viruses that attach to host’s cell surface, white arrows show 

advanced infections and orange arrows bursting cells with free viruses. C) Coupling virus-

targeted genomeFISH with structured illumination microscopy showed extracellular signals of 

tiny fluorescently labeled viral particles attaching to Altiarchaeota’s cell surface but also in a 

free state as presumably released virions. D) Transmission electron microscopy revealed 

intracellular virus-like particles.  
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Spatio-temporal heterogeneity of predicted infections and CRISPR-Cas mediated 

immunity of Ca. Altiarchaea  

To investigate the development of virus immunities over time, we compared the publicly 

available metagenome from MSI (taken in 2012) to a newly sequenced BF sample from 2018. 

We also analyzed the planktonic microbiome (>0.1 µm) and a viral fraction (<0.1 µm), i.e., 

after 0.1 µm filtration and FeCl3 precipitation. We compared the change in relative abundance 

(normalized coverages) of Ca. Altiarchaeum, Altivir_1_MSI, Altivir_2_MSI and 

Ca. Altiarchaeum CRISPR spacers across these samples (Figure 4) with Ca. Altiarchaeum 

being the most dominant microbe in each sample (Figure S2). While the planktonic microbiome 

showed a tremendous diversity based on rpS3 sequences (238 different organisms, Figure 4), 

the diversity was quite restricted with 19 and 17 organisms in MSI_BF_2012 and 

MSI_BF_2018, respectively. Please note that there is a difference between the number of 

organisms detected in the rank abundance curves (Figure S2) and those reported in Figure 4 as 

the latter were normalized to read abundance to ensure comparability. 

Both predicted viral genomes (Altivir_1_MSI_BF_2012, Altivir_2_MSI_BF_2012) declined 

in abundance when comparing the BF sample from 2018 to the sample from 2012, and at the 

same time the host:virus ratio increased (Figure 4). While Altivir_1_MSI was more abundant 

in 2012 (host-virus ratio=3.2) compared to Altivir_2_MSI relative to its host (host-virus 

ratio=12.4), the pattern reversed in 2018 for the BF sample (host-virus ratio=299.3 compared 

to 94.1 for Altivir_1_MSI and Altivir_2_MSI, respectively). Both, the total spacer abundance 

and the spacer diversity increased from 2012 to 2018 in BF samples; i.e. from 21 to 352 (number 

of different spacers) including an ~20% increase in the number of spacer clusters that were 

singletons in the dataset (Figure S10) and from 1 119 to 1 425 (abundance of spacers). The 

abundance of spacers matching the genome of Altivir_1_MSI_BF_2012 decreased from 339 to 

116 spacers, whereas it increased from 36 to 55 for Altivir_2_MSI_BF_2012 in BF samples 

from 2012 to 2018. For both targets the number of different matching spacers increased over 

time, in line with the development of the total spacers in this ecosystem (Figure 4). Because 

planktonic Ca. Altiarchaeum cells (diameter: 0.4-0.6 µm) cannot pass the 0.1 µm pore-size 

filters, it is more likely that lysed Ca. Altiarchaeum cells ended up in the <0.1 µm fraction in 

2018 allowing binning of their genomes including the CRISPR system with low complexity of 

spacers from this fraction. The MSI_>0.1µm_2018 fraction and the MSI_<0.1µm_2018 

contained about half the number of total spacers of the MSI_BF_2018 sample, although the 

number of different spacers displayed less variability. Spacers from these samples hitting the 
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viral targets were often reduced in abundance compared to BF-derived CRISPR spacers (Figure 

4). 

Congruent with the decline in relative abundance of Altivir_1_MSI based on metagenomic 

analysis, we also observed heterogeneous infections of BF flocks via imaging. Some BF 

showed no infection with Altivir_1_MSI at all (Figure 5A, Figure S11), which aligns well with 

the decrease of the virus in the metagenomic data of the BF from 2012 to 2018. By contrast, 

we observed very few BF flocks that showed an extremely high infection and accumulation of 

rod-shaped microorganisms (Figure 5B, Figure S12&S13). The observed heterogeneity of 

infections in BF supports the aforementioned heterogeneity related to CRISPR resistances 

against Altivir_1_MSI with high spacer diversity dominated by singletons.
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Figure 4: Development of host-virus and spacer dynamics from 2012 to 2018 based on metagenomics. Predicted viruses became less abundant 

from 2012 to 2018. Considering the biofilms (BF), total spacer abundance and numbers increased from 2012 to 2018 while those matching 

Altivir_1_MSI decreased in abundance but increased in numbers. Number (no.) of microbial taxa refers to the number of different prokaryotes in a 

sample detected via rpS3 rank abundance curves (normalized by sequencing depth). Host-virus ratio is calculated from host and virus coverage based 

on read mapping. Abundance and number of different spacers were normalized to minimum relative abundance (rel. abd.) of the host based on read 

mapping;  
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Figure 5: Virus-targeted genomeFISH of two individual Altiarchaeota biofilm (BF) flocks depicting (A) a dense BF flock without infections 

and (B) one highly infected BF flock. For all virus-targeted genomeFISH experiments, an Altivir_1_MSI probe was used for detecting viral 

infections. White arrows indicate exemplary virus-Altiarchaeota interactions (advanced infections). BF material was analyzed with filter sets 

for DAPI (blue, cells), ATTO 488 (green, 16S rRNA signal) and Alexa 594 (red, viral genomes), and then the different fluorescent channels 

were merged for analysis and display purposes. For unmerged imaging data, see Figures S11&S12.  
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DISCUSSION 
Although life in the deep subsurface contributes significantly to overall biomass and microbial 

biodiversity on our planet, its low accessibility leaves host-virus interactions—especially those 

of uncultivated hosts—highly enigmatic. Detection of novel and uncultivated viruses missing 

conserved sets of hallmark genes has been an ongoing challenge in viromics [84]. Using a 

combination of bioinformatics and virus-targeted genomeFISH, we were able to visualize 

infections of Altiarchaeota with a hitherto unknown, presumably lytic virus from a subsurface 

ecosystem. We expanded the diversity of this virus detected in Germany (MSI) by identifying 

a distantly related viral genome also infecting Ca. Altiarchaea in North America (ACLF site). 

This suggests genomic relatedness of archaeal viruses over long distances, a phenomenon 

known for bacteriophages [85, 86] as well as a common infection mechanism. While 

Altiarchaeota viruses do not represent an exception regarding the high degree of protein 

annotations that remain dark matter, some proteins such as modification methylases or the 

phosphoadenosine phosphosulfate reductase were previously also detected on a 

Methanosarcina and other archaeal virus genomes [87, 88]. Altiarchaeota can apparently 

employ two different CRISPR systems (Type I and III) with high similarity of their DR 

sequences across larger geographic distances; although the reasoning behind two independent 

CRISPR systems remains unclear, an additional Type III system might mediate resistance 

against plasmids carrying matching protospacers but lacking a protospacer-adjacent motif [89], 

or against viruses that overcome Type I systems as previously described for Marinomonas 

mediterranea [90] and Sulfolobus islandicus [91]. Indeed, archaeal viruses found ways to 

interfere with CRISPR Type III systems by using a plethora of anti-CRISPR proteins [92, 93]. 

However, we could not detect homologs of these proteins in viruses targeting 

Ca. Altiarchaeum. 

Based on the metagenomic data collected in 2012 and 2018, it appears that the host prevailed 

in the arms race between Altiarchaeaota and the visualized virus (Altivir_1_MSI). The number 

of different spacers matching this virus increased towards 2018 with a prominence of spacer 

singletons in the metagenome (Figure S10), while the actual abundance of spacers matching 

Altivir_1_MSI decreased as did the abundance of the viral genome itself. CRISPR spacer 

diversification might be a successful response to an increasing number of variants in the 

genome of Altivir_1_MSI (Figure S7) suggesting its mutations. As a trade-off, spacer 

diversification might allow the host to decrease the total abundance of spacers. We conclude 

that CRISPR spacers were diversifying to mediate a greater bandwidth of resistances against 

the virus, which worked in favor for the overall population of Altiarchaeota in this ecosystem. 
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Moreover, the diversity of singleton spacers indicates a very heterogeneous Altiarchaeota 

population, which might be related to heterogeneous infections of the BF as visualized via 

virus-targeted genomeFISH.  

Our dual approach of coupling metagenomics to fluorescence microscopy enabled us to follow 

precisely the terrestrial subsurface predator-prey relationship of Ca. Altiarchaeum and one of 

its viruses. Our data suggests that the novel identified virus is lytic and challenge the current 

paradigm that lysogeny prevails in the subsurface [29, 41]. Instead, our data indicate that the 

“kill-the-winner” theorem–lytic viruses targeting abundant ecosystem key players [94]––also 

strongly applies to subsurface ecosystems. We currently do not know if this statement can be 

transferred to other subsurface ecosystems that have low cell counts [2] as viruses might 

struggle with finding a new host. However, replication measures of bacteria in the ecosystem 

with the visualized virus suggest that microbial proliferation is similar to other oligotrophic 

systems [46]. Lytic infections in subsurface microbial hosts might thus launch heterotrophic 

carbon cycling similar to the viral shunt in the marine environment [95]. In fact, recent 

lipidomic analyses coupled to mass-balance calculations provide evidence that subsurface 

environments dominated by Altiarchaeota are completely fueled by these organisms’ carbon 

fixation, transferring organic carbon to heterotrophs in the community [96]. This process might 

be the basis for microbial loops [97] as we see the accumulation of rod-shaped microbes around 

Altiarchaeota when they are lysing due to viral attacks (Figure S13). 

Here, we provide underpinning evidence for the frequent viral infection of a globally abundant, 

autotrophic key player of the subsurface carbon cycle. We discovered that one virus with a lytic 

lifestyle was even capable of infecting host cells in a dense BF, which is known to provide 

some protection from viral infection [98]. Subsurface ecosystems such as aquifers remain 

understudied regarding host-virus dynamics because of limited access, low microbial biomass 

and limited cultivation success. Our results presented here provide an experimental proof of 

concept for an ongoing host-virus arms race in the continental subsurface characterized by 

constant viral infections and cell lysis of subsurface microbes, followed by their own and their 

viruses’ diversification.  
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