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Abstract

We analyze the phylogeny and taxonomy of the SARS-CoV-2 virus using compression. This

is a new alignment-free method called the “normalized compression distance” (NCD) method. It

discovers all effective similarities based on Kolmogorov complexity. The latter being incomputable

we approximate it by a good compressor such as the modern zpaq. The results comprise that the

SARS-CoV-2 virus is closest to the RaTG13 virus and similar to two bat SARS-like coronaviruses

bat-SL-CoVZXC21 and bat-SL-CoVZC4. The similarity is quantified and compared with the same

quantified similarities among the mtDNA of certain species. We treat the question whether Pangolins

are involved in the SARS-CoV-2 virus.

I. INTRODUCTION

In the 2019 and 2020 pandemic of the COVID-19 illness many studies use essentially two

methods, alignment-based phylogenetic analyses e.g. [19], and an alignment-free machine

learning approach [23]. These pointed to the origin of the SARS-CoV-2 virus which causes

the COVID-19 pandemic as being from bats. It is thought to belong to lineage B (Sarbecovirus)

of Betacoronavirus. From phylogenetic analysis and genome organization it was identified as

a SARS-like coronavirus, and to have the highest similarity to the SARS bat coronavirus

RaTG13 [19] and similar to two bat SARS-like coronaviruses bat-SL-CoVZXC21 and bat-

SL-CoVZC45.

Alignment methods are generally used but have many drawbacks which make alignment-

free methods more attractive [28], [27], [30]. The purpose of this study is to introduce a new
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alignment-free method based on lossless compression of the whole genome sequences of base

pairs of the involved viruses, the normalized compression distance (NCD) method. We use

it here to identify the 60 closest viruses to the SARS-CoV-2 virus and to determine their

relations (taxonomy) in a phylogeny tree. With this method we can actually quantify these

relations and compare them to similar relations between the mtDNA’s of mammal species in

order to gain an intuition as to what they mean.

II. MATERIALS AND METHOD

We first obtain viruses we want to compare the SARS-CoV-2 virus to, without duplicates,

partially sequenced viruses, and SARS-CoV-2 viruses. RNA sequences have A,C,G,U and

DNA have A,C,G,T base pairs, but since SARS-CoV-2 is an RNA virus but all sequences

considered here have base pairs A,C,G,T, technically the sequences are cDNA (complementary

DNA) of the RNA sequence in the virus itself. We select a SARS-CoV-2 virus from the many,

at least 5500, examples available. Then we compute for each virus in the resulting database its

NCD distance from the selected SARS-CoV-2 virus. For an explanation of the NCD see the

Appendix. Subsequently we order the resulting NCD’s from the smallest to the largest. The

virus causing the smallest NCD distance with the SARS-CoV-2 virus is the most similar to

that virus. We next take the 60 viruses which have the least NCD’s with the selected SARS-

CoV-2 virus and compute the phylogeny of those viruses and the SARS-CoV-2 virus. Next

we compare 37 viruses to determine the relation of the SARS-CoV-2 virus with Pangolins.

III. DATA AND DATA CLEANING

We downloaded the data broadly in two parts. The original input data are stored by Rudi

Cilibrasi at:

-rw-rw-r– 1 rudi rudi 2.0G Jul 17 15:46 incoming/gisaid hcov-19 2020 07 17 22.fasta

-rw-rw-r– 1 rudi rudi 29M Jul 17 15:45 incoming/gurjit-data.zip

We downloaded from the GISAID [11] data base on July 17th, 2020 in total 66,899

sequences. A part of at least 99.9% of the GISAID data are SARS-CoV-2 viruses. The

remainder are not technically SARS-CoV-2 viruses but are related and of interest. One of

the authors of the machine learning approach study [23] was so kind as to supply us with

the 6,751 sequences used in that paper. There is one SARS-CoV-2 virus among them. Thus,

at least 99.9% of the data is not SARS-CoV-2 viruses but other viruses. Therefore we can

compare our results about the phylogeny of SARS-CoV-2 directly with those of [23].
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We removed a single sequence with a special exception part in the code because it had

a bad name: gisaid hcov-19 2020 07 17 22.fasta.fai hCoV-19 29868 1713295574 80 82.

That name is too short to be useful: ”hCoV-19”. Altogether therefore we imported 73,649

sequences total into the raw sequence database. Each viral sequence is an RNA sequence and

seems to be around 30,000 RNA base pairs(A/T/G/C) in size. The total size of all sequence

data together is in the order of two Gigabyte. Of the sequences initially downloaded from

GISAID, we applied a lowercase transformation to each to reduce pointless variability. After

that, we computed a histogram of all the characters in the sequence and counted the size of

each group. Many sequences contained the base pairs A, C, G, N, T or other letters. The

letters A,C,G, and T signify the basic DNA nucleotides. the meaning of ’N’ and the other

letters involved can be found on a FASTA file format reference webpage. for example, “N”

means “unknown nucleotide residue.” We retained the deduplicated unique 15,578 sequences

with the known nucleotides A,C,G, and T from the GISAID download. The 6,751 sequences

obtained from the authors of [23] were over the letters A,C,G, and T already.

As a representative of the SARS-CoV-2 virus we selected the most common one in the

dataset as the basis for the NCD against all others. It appeared in the sorted virus list

with 105 multiples. In Section IV it appears at the top with an NCD of 0.003621 and

has the official name of gisaid hcov-19 2020 07 17 22.fasta<hCoV-19/USA/WI-WSLH-

200082/2020—EPI ISL 471246—2020-04-08 .

We then looked at whether there was much variation among the SARS-CoV-2 viruses

themselves since this may invalidate the NCD distance between the inspected viruses and

the selected SARS-CoV-2 virus. We retained the viruses in the list after deduplication and

filtering for A,C,G,T. The worst NCD against the selected SARS-CoV-2 virus was 0.874027

namely gisaid hcov-19 2020 07 17 22.fasta <hCoV-19/pangolin/Guangxi/P1E/2017—EPI ISL

410539—2017 from a Pangolin. Removing that one sequence from the list we got a worst

NCD of 0.873367 also from a Pangolin in 2017. We then removed all sequences from 2017.

After this we were left with over 15,500 sequences and obtained a worst NCD of 0.738175

also from a Pangolin.

Removing all sequences from 2017, 2018, and 2019, left 15,513 viruses in the list.

The worst-case NCD across all the remaining sequences of the SARS-CoV-2 virus

to the selected SARS-CoV-2 virus is 0.044986 and the average is 0.009879. The

worst-case sequence [20] can be found at gisaid hcov-19 2020 07 17 22.fasta<hCoV-
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19/USA/OH-OSUP0019/2020—EPI ISL 427291—2020-03-31 and its registration code is

EPI ISL 427291. [20].

Since the NCD is a metric (satisfies the triangle property) this will not unduly upset the

greater NCD distances (only by ±0.044986) from the multiple SARS-CoV-2 viruses to the

selected SARS-CoV-2 virus. The analytic software is available at Github source code URI:

https://github.com/rudi-cilibrasi/ncd-covid

NCD virus name

0.00362117 selected SARS CoV 2 EPI ISL 471246

0.0111034 MN908947.3 alt. SARS CoV 2

0.444846 BetaCoV/bat/Yunnan/RaTG13/2013—EPI ISL 402131 EPI ISL 402131

0.788416 MG772933.1 bat SL CoVZC45

0.791082 MG772934.1 bat SL CoVZXC21

0.917493 KF569996 Coronaviridae 785

0.917563 KC881006 Coronaviridae 783

0.91801 KC881005 Coronaviridae 782

0.918257 FJ882963 Coronaviridae 726

0.918381 AY278554 Riboviria 2953

0.918447 EU371561 Riboviria 3205

0.918497 AY278488 Riboviria 2951

0.918531 AY278741 Riboviria 2954

0.918553 AY278491 Riboviria 2952

0.918565 NC 004718 Coronaviridae 806

0.918597 EU371563 Riboviria 3207

0.918605 FJ882935 Coronaviridae 722

0.918658 AY357075 Riboviria 2979

0.918669 EU371559 Riboviria 3203

0.918691 DQ640652 Riboviria 3098

0.918724 EU371562 Riboviria 3206

0.918796 AY350750 Riboviria 2977

0.918829 AY864805 Riboviria 3030

0.918945 FJ882945 Coronaviridae 724

0.919072 EU371560 Riboviria 3204

0.919117 AY864806 Riboviria 3031

0.919182 EU371564 Riboviria 3208

0.919221 AY394850 Riboviria 2981

0.919244 FJ882942 Coronaviridae 723

0.919486 AY357076 Riboviria 2980

0.91954 FJ882954 Coronaviridae 725

0.91993 KF367457 Coronaviridae 784

0.920486 AY515512 Riboviria 2987

0.921053 JX993988 Coronaviridae 779

0.923045 GQ153543 Coronaviridae 751

0.923151 GQ153542 Coronaviridae 750

0.92541 DQ648857 Riboviria 3101

0.925706 GQ153547 Coronaviridae 755

0.925802 JX993987 Coronaviridae 778

0.925844 GQ153544 Coronaviridae 752

0.925951 GQ153548 Coronaviridae 756

0.925982 GQ153545 Coronaviridae 753

0.926013 GQ153540 Coronaviridae 748

0.92613 GQ153546 Coronaviridae 754

0.92615 GQ153539 Coronaviridae 747

0.92615 GQ153541 Coronaviridae 749

0.926681 DQ412043 Riboviria 3074

0.931577 DQ412042 Riboviria 3073

0.932533 DQ648856 Riboviria 3100

0.952228 NC 014470 Coronaviridae 823

0.994546 NC 025217 Coronaviridae 835

0.994897 NC 034440 Coronaviridae 847

0.994986 FJ938057 Coronaviridae 734

0.994986 AY646283 Riboviria 3003

0.995078 EF065512 Riboviria 3126

0.995078 EF065511 Riboviria 3125

0.995078 EF065510 Riboviria 3124

0.995086 EF065506 Riboviria 3120

0.995086 EF065507 Riboviria 3121

0.995086 EF065505 Riboviria 3119

TABLE I

FIRST 60 ITEMS IN THE SORTED LIST OF USED 6,751 VIRUS SEQUENCES.

With respect to the figures: Figures IV and 2 were done with the PHYLIP (PHYLogeny

Inference Package) [29] and Figure 3 with the Complearn Package [5].
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IV. RESULTS

In the sorted list of NCD’s between the selected SARS-CoV-2 virus and the 6,751 other

viruses the selected SARS-CoV-2 virus appears on the top of the list with NCD toward itself of

0.00362117 (should be 0 but the computation has a small error margin). The next virus is the

only SARS-CoV-2 virus in the data base of 6,751 virus sequences (not the selected one) with

NCD=0.0111034. This gives confirmation that the NCD’s in the list are accurately calculated

since the number is so very low. The code is MN908947.3. It is isolate Wuhan-Hu-1, complete

genome GenBank: MN908947.3 of 29903 bp ss-RNA linear VRL 18-MAR-2020 of the family

Viruses; Riboviria; Orthornavirae; Pisuviricota; Pisoniviricetes; Nidovirales; Cornidovirineae;

Coronaviridae; Orthocoronavirinae; Betacoronavirus; Sarbecovirus.

The following virus has an NCD of 0.444846 with the selected SARS-CoV-2 virus and is the

closest (apart from the above SARS-CoV-2 virus). It is Sarbecovirus/EPI ISL 402131.fasta/

<BetaCoV/bat/Yunnan/RaTG13/2013—EPI ISL 402131. The first part is the classification

of the subfamily of viruses, the code EPI ISL 402131 is that of the virus itself which one

can use with Google to obtain further information. In this case the virus is sampled from a

bat in Yunnan Province in in the PRC (China) in 2013 and is 29855 bp RNA linear VRL

24-MAR-2020, and its final registration code is MN996532. It is known as Bat coronavirus

RaTG13 of the family Viruses; Riboviria; Orthornavirae; Pisuviricota; Pisoniviricetes; Nidovi-

rales; Cornidovirineae; Coronaviridae; Orthocoronavirinae; Betacoronavirus; Sarbecovirus.

The virus is found in the Rhinolophus affinis, a medium-size Asian bat of the Yunnan

Province (China). The human coronavirus genome shares at least 96.2% of its identity with

its bat relative, while its similarity rate with the human strain of the SARS virus (Severe

Acute Respiratory Syndrome) is much lower, only 80.3% [8]. The NCD distance between the

selected RSA-CoV-2 virus and this virus is about the same as that between the mtDNA’s of

the Chimpansee and the PigmyChimpansee according to the Table II.

The next three viruses have respectively NCD=0.788416 for Coronaviridae/CoVZC45.fasta/

< MG772933.1, and NCD=0.791082 for Coronaviridae/CoVZXC21.fasta/ < MG772934.1

and at a larger distance NCD=0.917493 for Coronaviridae/Coronaviridae 783.fasta/ <

KC881006 Here the part “fasta/ < KC881006” means that the registration code is KC881086.

The first of these two viruses is the Bat SARS-like coronavirus isolate bat-SL-CoVZC45,

complete genome at 29802 bp RNA linear VRL 05-FEB-2020 of the above family of viruses.

Its NCD with the selected SARS-CoV-2 virus is slightly larger than the mtDNA distance
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Fig. 1. The evolutionary directed binary tree built from the 60 virus sequences in Table I. These viruses have the least NCD

distance with the SARS-CoV-2 virus. S(T ) = 0.998948. We use human mtDNA as outgroup; it is about the same size as the

viruses and it can be assumed to be completely different. Where it joins the tree there is the root. The labeling of the items is as

follows. All sequences are labeled as they occur in the data of [23] together with their registration code. The most interesting

are the 11th to 15th (inclusive) sequences of the tree from the top of the page. The 13th to 15th virus sequences (inclusive)

are the most interesting for us. The 13th is EPI ISL 402131 which is the bat/Yunnan/RaTG13/2013 that is the RaTG13 Bat

Coronavirus sampled in Yunnan in 2013. The 14th label is selected SARS-CoV-2 virus which occurs 105 times in the virus

database of GISAID. It is the top one in the sorted list Table I with NCD of 0 with respect to the selected SARS-CoV-2 virus,

that is, it is the same virus EPI ISL 428253. The 15th label is MN908947 which is a SARS-CoV-2 virus Wuhan Hu-1 from

the Wuhan Seafood market collected Dec 2019, submitted 05-JAN-2020, and reported in Nature, 579 (7798), 265-269,270-

273 (2020). The 11th and 12th labels are the CoVZC45 Bat Coronavirus and the CoVZXC21 Bat Coronavirus. Numbers

11, 12, 13, 14, and 15 have the least NCD distances to the selected SARS-CoV-2 virus. Here are the NCD’s of the selected

SARS-CoV-2 virus against 59 others: selected SARS CoV 2 EPI ISL 471246 0.932533 0.994986 0.918724 0.919072

0.925802 0.919182 0.918691 0.995086 0.91954 0.918829 0.444846 0.926681 0.926013 0.995086 0.952228 0.919486 0.91801

0.995078 0.918531 0.918381 0.919117 0.918257 0.92615 0.788416 0.925982 0.994546 0.00362117 0.917563 0.923045

0.92615 0.918658 0.918597 0.920486 0.919221 0.917493 0.91993 0.92541 0.925844 0.921053 0.994986 0.918945 0.925951

0.923151 0.995078 0.0111034 0.931577 0.918497 0.918553 0.995078 0.925706 0.791082 0.919244 0.92613 0.997632

0.994897 0.918447 0.918796 0.918605 0.918669 0.918565. The entire 60× 60 NCD distance matrix underlying this tree is

too large to display but available from the authors on request.

between the Human and the Gorilla at 0.737 and slightly lower than the mtDNA distance

between the Human and the Orangutan at 0.834.

The second of these two viruses is the Bat SARS-like coronavirus isolate bat-SL-

CoVZXC21, complete genome at 29732 bp RNA linear VRL 05-FEB-2020 of the same

family. The same comparison of the NCD distance between this virus and the selected SARS-

CoV-2 virus with the NCD of mtDNA’s between (the same) species holds also for this second

July 24, 2020 DRAFT

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.22.216242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.216242
http://creativecommons.org/licenses/by/4.0/


7

virus.

The third virus in the list is the Bat SARS-like coronavirus Rs3367, complete genome at

29792 bp again of the same family. Comparing the NCD between this virus and the selected

SARS-CoV-2 virus yields that it is slightly smaller than the NCD between the Human mtDNA

and the Blue Whale mtDNA at 0.920 and slightly larger than between the mtDNA of the

Finback Whale and the mtDNA of the Brown Bear at 0.915.

We can conclude that the SARS-CoV-2 virus is likely from the family Viruses; Riboviria;

Orthornavirae; Pisuviricota; Pisoniviricetes; Nidovirales; Cornidovirineae; Coronaviridae; Or-

thocoronavirinae; Betacoronavirus; Sarbecovirus.

Fig. 2. The evolutionary directed binary tree built from 37 virus sequences with the human mtDNA to determine

the root. It contains the selected SARS-CoV-2 sequence and all the GISAID sequences ending in /2017, /2018, and

/2019 (this includes the three pangolins). Added are a dozen close sequences from all GISAID sequences and a dozen

close sequences from the machine learning approach study [23] data. The ladders in the directed binary tree usually

accomodate more than two outgoing branches. Here are the NCD’s of the selected SARS-CoV-2 virus against the

other viruses: selected SARS CoV 2 EPI ISL 471246 0.010421 0.00417827 0.444846 0.0412256 0.0130447 0.0111034

0.435097 0.00375992 0.788416 0.00362117 0.0106989 0.738314 0.00986522 0.0122137 2.04891e-08 0.873888 0.873228

0.0115198 0.0117974 0.004039 0.00389972 0.0111034 0.0116699 0.00417711 0.0116699 0.0111034 0.0116699 0.0123525

0.791082 0.997632 0.00417827 0.00417827 0.0105702 0.00417827 0.00417827 0.004039 0.0101417. The entire 37 × 37
NCD distance matrix is too large to display but available from the authors on request.
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A. The Pangolin connection

As we saw in determining the worst-case NCD between the selected SARS-CoV-2 virus

and other GISAID SARS-CoV-2 database viruses the database is littered with Pangolin viruses

from 2017, 2018, and 2019. Several studies e.g. [16], [31] hold that while the SARS-CoV-2

virus probably originates from bats it may have been transmitted to another animal and/or

recombined with a virus there and transmitted zoonotic to humans. The other animal is most

often identified as the Pangolin. The compression method shows that the NCD’s between

the Pangolin SARS-CoV-2 virus and the human SARS-CoV-2 virus are far apart. However,

they are not farther apart than 0.738175 to 0.874027. The bat-SL-CoVZXC21 and bat-SL-

CoVZC45 viruses are at NCD=0.791082 and NCD=0.788416. Thus the Pangolin and bat

origins are comparable for these viruses while the bat origin is more likely and modification

by the Pangolin is a possibility from these data. But the RaTG13 virus has an NCD=0.444846

distance with the human SARS-CoV-2 virus that is close to one half of the Pangolin distance.

Also in the tree of Figure 2 the Pangolin viruses are generally far from the selected SARS-

CoV-2 virus. Hence the hypothesis that the Pangolin species is an intermediary between the

bat viruses above and the human SARS-CoV-2 virus is perhaps unlikely.

V. DISCUSSION

Previously most studies into the COVID-19 pandemic suggested that the virus involved

originated from bats. Bats are a known reservoir of viruses that can zoonotic transmit to

humans [18]. Virtually all those mentioned studies use alignment-based methods. Analyzing

the involved SARS-CoV-2 virus with the NCD is in this setting a novel alignment-free method

based on compression. It places the RaTG13 bat virus the closest to the SARS-CoV-2 virus

followed by the two SARS-like coronaviruses bat-SL-CoVZXC21 and bat-SL-CoVZC4. The

similarity is quantified and compared with the same quantified similarities among the mtDNA

of certain species. A possible involved other animal is the Pangolin. The method used here, the

normalized compression distance (NCD) method is based on Kolmogorov complexity analysis

and compression [15], [6]. It is domain-independent and requires no parameters to be set,

apart from the used compression algorithm. Earlier studies using alignment-based methods

have suggested that the the SARS-CoV-2 virus originated from bats before being zoonotical

transferred to humans. The machine-learning approach, an alignment-free method, in [23]

came to the same conclusion. The current, completely different, alignment-free method with
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the results we present here, confirms this conclusion. Hence there is little doubt by now that

the virus involved originates from bats with as runner-up the Pangolin.

VI. CONCLUSION

We provide a new alignment-free method based on compression to determine the phylogeny

and taxonomy of the SARS-CoV-2 virus (the virus causing the COVID-19 pandemic). The

method is based on compression, remarkably simple, very fast, and quantifies a distance to

a number between 0 (identical) and 1 (totally different). It uses only the unprocessed viral

DNA/RNA sequences. In the Appendix it is briefly explained and illustrated by examples

of mammal species via mtDNA sequences and the phylogeny and taxonomy of the SARS

virus. To compare it with another alignment-free method based on machine learning and

other techniques [23] we used the same database of over 6000 unique viral sequences. To

select the sequence of the SARS-CoV-2 virus against which the unique viral sequences are

compared we use a data base of over 15,000 unique SARS-CoV-2 viruses. Obtaining similar

results as the earlier studies, and confirming the generally believed hypothesis, this method

is less complicated than the previous methods. It yields quantitative evidence that can be

compared with similar distances among the mtDNA of familiar mammals. Since the method

is uncomplicated and very fast it is useful as an exploratory investigation into the phylogeny

and taxonomy of viruses of new epidemic outbreaks.

APPENDIX

In 1936 A.M. Turing [25] defined the hypothetical “Turing machine” whose computations

are intended to give a formal definition of the intuitive notion of computability in the discrete

domain. These Turing machines compute integer functions, the computable functions. By

using pairs of integers for the arguments and values we can extend computable functions to

functions with rational arguments and/or values.

A. Kolmogorov Complexity

Informally, the Kolmogorov complexity of a string is the length of a shortest string from

which the original string can be losslessly reconstructed by an effective general-purpose

computer such as a particular universal Turing machine U . Hence it constitutes a lower

bound on how far a lossless compression program can compress. For details see the text

[17]. In this paper we require that the set of programs of U is prefix free (no program is a
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proper prefix of another program), that is, we deal with the prefix Kolmogorov complexity. We

call U the reference universal prefix machine. Formally, the conditional prefix Kolmogorov

complexity K(x|y) is the length of a shortest input z such that the reference universal prefix

machine U on input z with auxiliary information y outputs x. The unconditional prefix

Kolmogorov complexity K(x) is defined by K(x|ǫ) where ǫ is the empty word of length

0.. The functions K(·) and K(·|·), though defined in terms of a particular machine model,

are machine-independent up to an additive constant and acquire an asymptotically universal

and absolute character through Church’s thesis, and from the ability of universal machines to

simulate one another and execute any effective process.

The Kolmogorov complexity of an individual finite object was introduced by Kolmogorov

[12] as an absolute and objective quantification of the amount of information in it. It is

sometimes confused with the information theory of Shannon [21], which deals with average

information to communicate objects produced by a random source. They are quite different.

B. Information Distance

The information distance D(x, y) between strings x and y is defined as

D(x, y) = min
p
{|p| : U(p, x) = y ∧ U(p, y) = x},

where U is the reference universal prefix machine above. Like the Kolmogorov complexity

K, the distance function D is upper semicomputable. Define

E(x, y) = max{K(x|y), K(y|x)}.

In [1] it is shown that the function E is upper semicomputable, (Here and elsewhere in this

paper “logarithm” or “log” refers to the binary logarithm.) D(x, y) = E(x, y)+O(logE(x, y)),

the function E is a metric (more precisely, that it satisfies the metric (in)equalities up to

a constant), and that E is minimal (up to a constant) among all upper semicomputable

distance functions D′ satisfying the normalization conditions
∑

y:y 6=x 2
−D′(x,y) ≤ 1 and

∑
x:x 6=y 2

−D′(x,y) ≤ 1 (to exclude bogus distances which state, for example, that every y

is in distance 1
2

of a given x). We call this metric E universal.

Thus, for every pair of finite files x, y we have that E(x, y) is at least as small as the

smallest D′(x, y). This means that E(x, y) is at least as small as the distance engendered by
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the dominant feature shared between x and y. The normalized information distance (NID) is

defined by

NID(x, y) =
E(x, y)

max{K(x), K(y)}
. (A.1)

It is straightforward that 0 ≤ NID(x, y) ≤ 1 (up to an O(1/max{K(x), K(y)}) additive

term). It is is a metric [15] (and so is the NCD we will meet in (A.4) see [6]. As an

aside, a nonoptimal precursor to the NID/NCD was given in [14].) Since by the symmetry

of information law [10] or see [17],

K(x, y) = K(x) +K(y|x) +O(log(K(x) +K(y))) (A.2)

= K(y) +K(x|y) +O(log(K(x) +K(y))),

rewriting the NID using (A.2) yields

NID(x, y) =
K(x, y)−min{K(x), K(y)}

max{K(x), K(y)}
, (A.3)

up to some terms that we ignore. For more details on this derivation see [17] or [26].

In this way, in [1], [15] we and others developed theoretical approaches to the similarity

of finite objects. We proved that these theories based on Kolmogorov complexity are perfect.

By approximating the Kolmogorov complexities involved by real-world compressors we

transformed these theoretical notions into applications that work better than we could expect

[6], [7]. It turns out that on natural data the above process gives adequate results. The

resulting similarity measure is a parameter-free and alignment-free method. (In bioinformatics

the computation of the similarity between genetic strings commonly involves the so-called

“alignment method.” This method incurs often a high or even forbidding computational cost.

for certain problems biologists look for alignment-free methods.) It is a non feature-based

similarity. That is, it captures every effective distance: effective versions of Hamming distance,

Euclidean distance, edit distances, alignment distance, Lempel-Ziv distance, and so on. It can

simultaneously detect all similarities between pieces that other effective distances can detect

separately.

Let us give an intuitive explanation. Two objects are deemed close if we can significantly

“compress” one given the information in the other, the intuition being that if two pieces are

more similar, then we can more succinctly describe one given the other. The NID discovers

all effective similarities in the sense that if two objects are close according to some effective
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similarity then they are also close according to the NID. One of the advantages of this

similarity is that it works for noisy objects [4]. It is a quantity between 0 (identical) and 1

(completely dissimilar).

C. Normalized Compression Distance

Unfortunately, the universality of the NID comes at the price of incomputability. In fact,

it is not even semicomputable and there is no semicomputable function at a computable

distance of it [24]. One uses real data-compression programs to approximate the Kolmogorov

complexity. The length of the compressed version of a finite object is obviously computable.

Usually the computation process is fast. For the natural data we are dealing with we assume

that the length of the compressed version is not too far from its Kolmogorov complexity. We

substitute the Kolmogorov complexity in the NID by its approximation. If Z is a compressor

and we use Z(x) to denote the length of the compressed version of a string x, then we arrive

at the Normalized Compression Distance:

NCDZ(x, y) =
Z(xy)−min(Z(x), Z(y))

max(Z(x), Z(y))
, (A.4)

where we have replaced the pair (x, y) in the formula by the concatenation xy (file y appended

to file x) and we ignore logarithmic terms in the numerator and denominator, see [6].

REMARK 1. In [6] there are axioms to capture the real-world setting, and show that

(A.4) approximates optimality. Actually, the NCD is a family of compression functions

parameterized by the given data compressor Z. Common compressors are gzip (a Lempel-Ziv

compressor with small window size of 32kB), bzip2 (a block-sorting compressor based on

the Burrows-Wheeler transform with a larger window size of 256kB), and PPMZ (prediction

by partial matching (PPM) which is an adaptive statistical data compression technique based

on context modeling and prediction [9].

The objects being compared for similarity must fit in, say, one-half the window size. Gzip

is by far the poorest compressor while PPMZ the best (although slowest) in this lineup.

For example, the ideal compressor Z takes care that NCDZ(x, x) equals 0. With Z =gzip

usually it is between 1
2

and 1 (very bad). With Z =bzip2 it is lower but nowhere near 0,

and NCDPPMZ(x, x) in the genomic experiment of Table II below was between 0.002 and

0.006. For more experimental evidence see [3]. ✸
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REMARK 2. Because of the normalization it does not matter for the NCD whether the length

of data set x is different from the length of y. In practice, this difference should not be too

great. ✸

To visualise the n2 pairwise distances between n data we construct a dendrogram. To do

so we take the n×n distance matrix as input, and construct a dendrogram with the n objects

as leaves (so the dendrogram contains n external nodes or leaves and n − 2 internal nodes

like in the figures below). We assume n ≥ 4. The resulting dendrogram models the distance

matrix as good as possible qualitatively. If the distance between object o1 and object o2 is

smaller that between o1 and o3, then the shortest path in the dendrogram between o1 and o2

has at most as many edges as the shortest path between o1 and o3 (equal if o2 and o3 are

sibling nodes.) Thus, the edges themselves have no length and the dendrogram represents

the partial order induced by the distance matrix. The S(T ) value in Figures IV and 3 (with

S(T ) = 1 is as good as possible) tells how well the tree represents the distance matrix [6].

For details see the cited reference. The method is available as an open-source software tool

[5].

D. Phylogeny

A DNA sequence is a finite string over a 4-letter alphabet {A,C,G, T}. We used the

mitochondrial genomes (mtDNA) of 24 mammals, each of at most 18,000 base pairs, obtained

from the GenBank Database. Hence, the mtDNA of every species involved is a string of at

most 36,000 bits. Since we use the entire mtDNA of every species involved we do ”whole-

genome” phylogeny.

Whole genome phylogeny is usually only feasible with alignment-free methods, like the

NCD method. This type of phylogeny is often computationally forbidding for the usual

alignment methods used in bioinformatics. Moreover, gene areas move easily over the genome

to other places again making the use of these methods impossible or hard. Hence it is more

usual in bioinformatics to select a particular gene from the genome of each species. This

particular gene should not evolve too fast, like the gene coding for insulin. Mutations here

are usually fatal for the individual concerned. Thus, biologists feel that comparing these genes

of species gives trustworthy information about the evolution of species. This may be called

“gene tree phylogeny.” See [22]. However, using different genes may result in different trees
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BlueWhale Cat Echidna Gorilla Horse Opossum PolarBear

BrownBear Chimpanzee FinWhale GreySeal HouseMouse Orangutan PygmyChimp

Carp Cow Gibbon HarborSeal Human Platypus Rat

BlueWhale 0.005 0.906 0.943 0.897 0.925 0.883 0.936 0.616 0.928 0.931 0.901 0.898 0.896 0.926 0.920 0.936 0.928 0.929 0.907 0.930 0.927

BrownBear 0.906 0.002 0.943 0.887 0.935 0.906 0.944 0.915 0.939 0.940 0.875 0.872 0.910 0.934 0.930 0.936 0.938 0.937 0.269 0.940 0.935

Carp 0.943 0.943 0.006 0.946 0.954 0.947 0.955 0.952 0.951 0.957 0.949 0.950 0.952 0.956 0.946 0.956 0.953 0.954 0.945 0.960 0.950

Cat 0.897 0.887 0.946 0.003 0.926 0.897 0.942 0.905 0.928 0.931 0.870 0.872 0.885 0.919 0.922 0.933 0.932 0.931 0.885 0.929 0.920

Chimpanzee 0.925 0.935 0.954 0.926 0.006 0.926 0.948 0.926 0.849 0.731 0.925 0.922 0.921 0.943 0.667 0.943 0.841 0.946 0.931 0.441 0.933

Cow 0.883 0.906 0.947 0.897 0.926 0.006 0.936 0.885 0.931 0.927 0.890 0.888 0.893 0.925 0.920 0.931 0.930 0.929 0.905 0.931 0.921

Echidna 0.936 0.944 0.955 0.942 0.948 0.936 0.005 0.936 0.947 0.947 0.940 0.937 0.942 0.941 0.939 0.936 0.947 0.855 0.935 0.949 0.941

FinbackWhale 0.616 0.915 0.952 0.905 0.926 0.885 0.936 0.005 0.930 0.931 0.911 0.908 0.901 0.933 0.922 0.936 0.933 0.934 0.910 0.932 0.928

Gibbon 0.928 0.939 0.951 0.928 0.849 0.931 0.947 0.930 0.005 0.859 0.932 0.930 0.927 0.948 0.844 0.951 0.872 0.952 0.936 0.854 0.939

Gorilla 0.931 0.940 0.957 0.931 0.731 0.927 0.947 0.931 0.859 0.006 0.927 0.929 0.924 0.944 0.737 0.944 0.835 0.943 0.928 0.732 0.938

GreySeal 0.901 0.875 0.949 0.870 0.925 0.890 0.940 0.911 0.932 0.927 0.003 0.399 0.888 0.924 0.922 0.933 0.931 0.936 0.863 0.929 0.922

HarborSeal 0.898 0.872 0.950 0.872 0.922 0.888 0.937 0.908 0.930 0.929 0.399 0.004 0.888 0.922 0.922 0.933 0.932 0.937 0.860 0.930 0.922

Horse 0.896 0.910 0.952 0.885 0.921 0.893 0.942 0.901 0.927 0.924 0.888 0.888 0.003 0.928 0.913 0.937 0.923 0.936 0.903 0.923 0.912

HouseMouse 0.926 0.934 0.956 0.919 0.943 0.925 0.941 0.933 0.948 0.944 0.924 0.922 0.928 0.006 0.932 0.923 0.944 0.930 0.924 0.942 0.860

Human 0.920 0.930 0.946 0.922 0.667 0.920 0.939 0.922 0.844 0.737 0.922 0.922 0.913 0.932 0.005 0.949 0.834 0.949 0.931 0.681 0.938

Opossum 0.936 0.936 0.956 0.933 0.943 0.931 0.936 0.936 0.951 0.944 0.933 0.933 0.937 0.923 0.949 0.006 0.960 0.938 0.939 0.954 0.941

Orangutan 0.928 0.938 0.953 0.932 0.841 0.930 0.947 0.933 0.872 0.835 0.931 0.932 0.923 0.944 0.834 0.960 0.006 0.954 0.933 0.843 0.943

Platypus 0.929 0.937 0.954 0.931 0.946 0.929 0.855 0.934 0.952 0.943 0.936 0.937 0.936 0.930 0.949 0.938 0.954 0.003 0.932 0.948 0.937

PolarBear 0.907 0.269 0.945 0.885 0.931 0.905 0.935 0.910 0.936 0.928 0.863 0.860 0.903 0.924 0.931 0.939 0.933 0.932 0.002 0.942 0.940

PygmyChimp 0.930 0.940 0.960 0.929 0.441 0.931 0.949 0.932 0.854 0.732 0.929 0.930 0.923 0.942 0.681 0.954 0.843 0.948 0.942 0.007 0.935

Rat 0.927 0.935 0.950 0.920 0.933 0.921 0.941 0.928 0.939 0.938 0.922 0.922 0.912 0.860 0.938 0.941 0.943 0.937 0.940 0.935 0.006

TABLE II

DISTANCE MATRIX OF PAIRWISE NCD. FOR DISPLAY PURPOSE, WE HAVE TRUNCATED THE ORIGINAL ENTRIES FROM

15 DECIMALS TO 3 DECIMALS PRECISION.

[2]. But using the whole genome gives a single tree. For the 21 original species used we do

not give the Latin names; they can be found in [6].

For every pair of mitochondrial genome sequences x and y, we evaluated the formula in

Equation A.4 using a good compressor like PPMZ The resulting distances are the entries in

an 21× 21 distance matrix Table II. Constructing a phylogeny tree from the distance matrix,

using our quartet tree method [7] as tree-reconstruction software, gives the corresponding

tree.

E. SARS Virus

We clustered the SARS virus directly after its sequenced genome was made publicly

available, in relation to potential similar virii. The 15 virus genomes were downloaded

from The Universal Virus Database of the International Committee on Taxonomy of Viruses,

available on Internet. The SARS virus was downloaded from Canada’s Michael Smith Genome

Sciences Centre which had the first public SARS Coronovirus draft whole genome assembly

available for download (SARS TOR2 draft genome assembly 120403). The NCD distance

matrix was computed using the compressor bzip2. The entire computation took only a couple

of minutes. The relations in Figure 3 are very similar to the definitive tree based on medical-

macrobio-genomics analysis, appearing later in the New England Journal of Medicine [13].
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AvianAdeno1CELO

n1

n6

n11

AvianIB1

n13

n5

AvianIB2

BovineAdeno3HumanAdeno40

DuckAdeno1

n3

HumanCorona1

n8

SARSTOR2v120403

n2

MeaslesMora

n12
MeaslesSch

MurineHep11

n10
n7

MurineHep2

PRD1

n4

n9

RatSialCorona

SIRV1

SIRV2

n0

Fig. 3. SARS virus among other virii, S(T ) = 0.988. Explanation text in nodes: AvianAdeno1CELO.inp: Fowl adenovirus

1; AvianIB1.inp: Avian infectious bronchitis virus (strain Beaudette US); AvianIB2.inp: Avian infectious bronchitis virus

(strain Beaudette CK); BovineAdeno3.inp: Bovine adenovirus 3; DuckAdeno1.inp: Duck adenovirus 1; HumanAdeno40.inp:

Human adenovirus type 40; HumanCorona1.inp: Human coronavirus 229E; MeaslesMora.inp: Measles virus strain Moraten;

MeaslesSch.inp: Measles virus strain Schwarz; MurineHep11.inp: Murine hepatitis virus strain ML-11; MurineHep2.inp:

Murine hepatitis virus strain 2; PRD1.inp: Enterobacteria phage PRD1; RatSialCorona.inp: Rat sialodacryoadenitis coron-

avirus; SARS.inp: SARS TOR2v120403; SIRV1.inp: Sulfolobus virus SIRV-1; SIRV2.inp: Sulfolobus virus SIRV-2.

We depicted the figure in the ternary tree style, rather than the genomics-dendrogram style,

since the former is more precise for visual inspection of proximity relations.
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[10] P. Gács, On the symmetry of algorithmic information, Soviet Math. Dokl., 15(1974), 1477–1480; Correction, Ibid.,

15(1974), 1480.

[11] GISAID at www.gisaid.org

[12] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems Inform. Transmission,

1:1(1965), 1–7.

[13] T.G. Ksiazek, et.al., A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome, New England J.

Medicine, Published at www.nejm.org April 10, 2003 (10.1056/NEJMoa030781).

[14] M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang, An information-based sequence distance and its

application to whole mitochondrial genome phylogeny, Bioinformatics, 17:2(2001), 149–154.
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