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Highlights  19 

• Rapid and automated detection of unruptured intracranial aneurysms (UIAs) in MRAs 20 

• Highly specific, sensitive UIA detection to reduce radiologist input for screening 21 

• Detection is versatile to image resolution, modality and has tuneable mm sensitivity 22 

Abstract 23 

Unruptured intracranial aneurysms (UIAs) are prevalent neurovascular anomalies which, in rare 24 
circumstances, rupture to create a catastrophic subarachnoid haemorrhage. Although surgical 25 
management can reduce rupture risk, the majority of IAs exist undiscovered until rupture. Current 26 
computer-aided UIA diagnoses sensitively detect and measure UIAs within cranial angiograms, but 27 
remain limited to low specificities whose output requires considerable neuroradiologist interpretation 28 
not amenable to broad screening efforts. To address these limitations, we propose an analysis which 29 
interprets single-voxel morphometry of segmented neurovasculature to identify UIAs. Once 30 
neurovascular anatomy of a specified resolution is segmented, interrelationships between voxel-specific 31 
morphometries are estimated and spatially-clustered outliers are identified as UIA candidates. Our 32 
automated solution detects UIAs within magnetic resonance angiograms (MRA) at unmatched 86% 33 
specificity and 81% sensitivity using 3 minutes on a conventional laptop. Our approach does not rely 34 
on interpatient comparisons or training datasets which could be difficult to amass and process for rare 35 
incidentally discovered UIAs within large MRA files, and in doing so, is versatile to user-defined 36 
segmentation quality, to detection sensitivity, and across a range of imaging resolutions and modalities. 37 
We propose this method as a unique tool to aid UIA screening, characterisation of abnormal vasculature 38 
in at-risk patients, morphometry-based rupture risk prediction, and identification of other vascular 39 
abnormalities. 40 
 41 
Graphical Abstract   42 
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1. Introduction 43 
Intracranial aneurysms (IAs) are bulging, weak outpouchings of arteries that supply blood in the brain. 44 
IAs are relatively common (2% to 5% prevalence; Figure 1A,B) but rarely discovered prior to incident 45 
(International Study of Unruptured Intracranial Aneurysms (ISUIA), 2003). While most unruptured IAs 46 
(UIAs) are asymptomatic, between 0.25% and 1% spontaneously rupture resulting in a subarachnoid 47 
haemorrhage, a catastrophic event associated with a 40 to 50% mortality rate and with 50% of survivors 48 
left with permanent disabilities (Figure 1C) (Leng et al., 2018; Thompson et al., 2015; van Gijn et al., 49 
2007; Williams and Brown, 2013). Therefore, early detection of UIAs is paramount so that management 50 
to prevent future rupture can be considered (Figure 1D,E) (Mayo Foundation, 2017).  51 
 52 
Aneurysms are detected and measured by radiologists interpreting computed tomography angiograms 53 
(CTA), digital subtraction angiograms (DSA), or magnetic resonance angiograms (MRA) (Li et al., 54 
2009; Okahara et al., 2002). In 65% to 91% of cases UIA detection is incidental, and the frequency of 55 
incidental detection has been rising due to an increased use of high-resolution intracranial MRAs which 56 
do not require intravenous contrast or x-ray radiation (Corfield et al., 2010; Duan et al., 2018; Mair, 57 
2015; Thompson et al., 2015). However, incidental detection is often by radiologists not specialised in 58 
neuroanatomy who are not searching for an UIA. Therefore, detection sensitivity may be limited by the 59 
shortage of experienced neuroradiologists able to review the increasing number of cranial radiology 60 
examinations (Z. Shi et al., 2020).  61 
 62 
Computational analyses can provide a rapid and automated identification of UIAs to serve as a 63 
supportive reference to the nonspecialist radiologist for increased UIA detection accuracy. As 64 
radiologist UIA detection sensitivity can be as low as 64% (Miki et al., 2016), computer-aided diagnoses 65 
are attractive to improve accuracy while increasing the number of patient images analysed. 66 
Conventional computer aided diagnoses detect UIAs using predetermined morphometries of interest 67 
(curvature, sphericity, convexity), but have been less able to accurately identify irregular or small UIAs 68 
(Jin et al., 2016; Yang et al., 2011). Recent machine learning approaches surmount conventional 69 
limitations by detecting nonintuitive patterns consistent in aneurysmal regions, however their 70 
performance must be conditioned on large annotated training sets often unavailable for rare incidentally 71 
discovered UIAs. To date, conventional and machine learning approaches have achieved above 80% 72 
sensitivity but at the cost of low specificity, generating 4 to 41 additional false positive UIAs per image 73 
(Faron et al., 2019; Jin et al., 2016; Nakao et al., 2018; Stember et al., 2019; Ueda et al., 2019), which 74 
may not reduce the time required during radiologist interpretation (Z. Shi et al., 2020). 75 
 76 

Figure 1: Intracranial aneurysm pathology and treatment. (A,B) IAs are bulging vessels within the 

head that are at risk of (C) rupture, causing subarachnoid haemorrhaging. Incidentally discovered UIAs 

can be monitored or surgically treated through (D) endovascular coiling or (E) neurosurgical clipping, 

which both carry nontrivial risk. Adapted from the Mayo Foundation. 
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Herein, we present an image analysis method based on a single-voxel morphometry approach to rapidly, 77 
automatically, and specifically identify UIAs. Our algorithm automatically reconstructs 3D 78 
presentations of patient neurovasculature from MRA, CTA, or DSA image datasets, then seeks to 79 
identify UIA candidates based on three voxel morphometry attributes: distance from vessel centreline, 80 
distance from vessel edge, and distance from image base. Identified UIA location and size are measured 81 
and validated against clinician measurement. We analysed a cohort of 29 TOF MRAs presenting UIAs 82 
who are benchmarked against 705 healthy TOF MRAs. Our automated algorithm is unique in its rapid 83 
analysis of large 3D datasets without the need for training data or interpatient comparisons, its high and 84 
tuneable specificity and sensitivity to identify fine features for clinical observation, and its versatility 85 
in analysing a range of MRA resolutions as well as CTA and DSA modalities. 86 
 87 
2. Methods and Calculation 88 
Medical imaging records of 14 patients exhibiting at least one unruptured intracranial aneurysm and 27 89 
healthy patients were retrospectively recruited from 2009 to 2019 and de-identified by the Medical 90 
Imaging and Neurosurgery Departments of the Royal Brisbane & Women’s Hospital according to 91 
ethical clearances (LNR/2019/QRBW/49363). While each healthy patient was imaged once, many 92 
patients harbouring UIAs were monitored over several years so that a total of 29 aneurysm-containing 93 
TOF MRAs were imaged. The UIA parent vessel, location, and dimensions were described within 94 
radiology reports and annotated within 2D slices of the image as illustrated in Figure S1. A further 678 95 
healthy TOF MRAs were acquired from publicly available repositories (MIDAS and IXI) as described 96 
previously (Mouches and Forkert, 2019). TOF MRA, CTA, and DSA images were captured in the 97 
transverse direction at slice XY-resolutions spanning [0.18 x 0.18] to [0.61 x 0.61] mm/pixel and slice 98 
steps with Z-resolutions from 0.38 to 2 mm/pixel. 99 
 100 
A Dell Latitude 5300 laptop with 16 GB RAM and 1.90 GHz Intel Core i7-8665U processor produced 101 
all timed runs. The proposed MATLAB algorithm (The MathWorks Inc, Natick, USA) resembles a 102 
pipeline with several distinct steps, as illustrated in Figure 2 and detailed in the following subsections.  103 
 104 

2.1. Global segmentation of a neurovascular mask (Auto-Segmentation) 105 
Initially a universal threshold value was calculated to segment intravascular blood from surrounding 106 
cranial tissue (Figure 3A). All voxel intensities throughout the CTA, DSA, or TOF-MRA image were 107 
linearly divided into 𝑛𝑏𝑖𝑛 = 50 bins from maximal to minimal voxel intensity, similar to Nyúl et al., 108 
2000. Voxel intensity brightness, x, belonging to different tissue types, such as dim extravascular soft 109 
tissue versus bone versus bright intravascular blood, was estimated by a sum of lognormal distributions 110 
(Figure 3B) as previously performed for MRA images (Forkert et al., 2012): 111 

Figure 2: Intracranial aneurysm identification algorithm pipeline. The algorithm can input several 

different image modalities, including MRA, CTA, DSA. The images first undergo a global Auto-

Segmentation to generate 2-3 tissue masks, the segmented neurovascular mask undergoes several Mask 

Processing steps, followed by a Centreline Estimation throughout the mask. Using the centreline, 

several Morphometry metrics are applied to measure geometrical properties of each voxel within the 

segmented vascular mask. The final Outlier Detection step identifies voxel properties consistent with 

normal vasculature, and regions which have large numbers of abnormal voxel properties. These regions 

are segmented as aneurysmal candidates for clinician assessment and computational measurement. 
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𝑓𝑖(𝑥; 𝑐𝑖 , 𝜇𝑖 , 𝜎𝑖) =
𝑐𝑖

𝑥𝜎𝑖√2𝜋
exp(−

(log(𝑥) − 𝜇𝑖)
2

2𝜎𝑖
2 ) 112 

With tissue content scalar 𝑐𝑖 and tissue intensity mean 𝜇𝑖 and standard deviation 𝜎𝑖. Voxel intensities 113 
throughout the image were estimated as the sum of these lognormal distributions. In CTA images all 3 114 
aforementioned tissue types could be detected simultaneously, 𝑓1+2+3, while in TOF MRA and DSA 115 
images only intravascular and extravascular tissue could be distinguished, 𝑓1+2. The six or nine 116 
parameters of 𝑓1+2 or 𝑓1+2+3 were fit by minimising normalised error to the log voxel intensity of 117 
histogram bin 3 to 48 as to avoid overexposed and underexposed inconsistencies (removing 𝐸𝑏𝑖𝑛 = 4% 118 
of bins from either end). A threshold value, 𝑇𝑣, was calculated to segment vessels from the brain tissue:  119 

𝑇𝑣 = 𝑥 [
𝜕3𝑓(𝑣−1)+𝑣

𝜕𝑥3
= 0] + (mode(𝑓𝑣) − 𝑥 [

𝜕3𝑓(𝑣−1)+𝑣

𝜕𝑥3
= 0])(

𝑓𝑣(mode(𝑓𝑣))

𝑓(𝑣−1)+𝑣 (mode(𝑓(𝑣−1)))
)

𝑘𝑇

 120 

Where v is the vessel mask index (𝑣 = 2 for TOF MRAs and DSAs, 𝑣 = 3 for CTAs), where mode(𝑓𝑣) =121 

exp(𝜇𝑣 − 𝜎𝑣
2) represents the mode of lognormal distribution 𝑓𝑣, and where 𝑥 [

𝜕3𝑓(𝑣−1)+𝑣

𝜕𝑥3
= 0] describes 122 

a critical point of inflection change between the modes of 𝑓𝑣 and 𝑓𝑣−1 as shown in Figure 3B. Explicitly 123 
determined weight parameter 𝑘𝑇 dictates neurovascular mask size, later leveraged to normalise 124 
segmentation across different MRA resolutions.  125 

Figure 3: Intracranial segmentation, vascular network analysis, and aneurysm identification. 

(A,B) Segmentation of a 3D neurovascular mask based on a sum of lognormal distributions. (C) 

Identification of centrepoints via mask erosion, connecting adjacent centrepoints bottom-to-top into a 

network of branches, and measuring branch lengths and bifurcation points to detect centrepath length. 

(D) A voxel-specific polynomial regression was individually fit to measure the correlation between 

voxel distance from centreline (radius) versus voxel distance from vessel edge (depth) and voxel 

distance from base (path) for each image. (E) The error of actual voxel radius from expected voxel 

radius was measured and (F) outliers which were spatially-clustered together were identified as 

aneurysmal candidates, (G) overlaid in red over segmented mask image intensities with UIA region 

inset. The algorithm required 3 minutes to execute. 
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2.2. Evaluating single-voxel morphology (Mask Processing and Centreline Estimation) 126 
Once the neurovascular mask is segmented, centrepoints are defined via a 3D medial surface thinning 127 
operation after filling closed voxel holes in the image. These centrepoints were then dilated and 128 
annealed together using a 𝑚𝑑𝑖𝑙 = 2 voxel rolling ball, and then centrepoints were re-identified in order 129 
to remove overestimated and overlapping small vessels using a range of binary morphological 130 
operations. A centreline was then connected through neighbouring centrepoints starting with the 131 
centrepoint in the lowest (most caudal) axial plane. When the next nearest unallocated centrepoint was 132 
further than 𝑑𝑙𝑖𝑛𝑘 = 1mm away, the terminal end of that vessel branch had been reached and the 133 
centreline for a new vessel was evaluated from the next lowest centrepoint. Branch endpoints between 134 
𝑑𝑙𝑖𝑛𝑘 = 1mm and 𝑑𝑙𝑎𝑡𝑐ℎ = 2mm away from a previously allocated centrepoint were then connected to 135 
form the full neurovascular tree. Once completed, an interconnected branch network of centrelines 136 
through the segmented neurovascular mask was formed (Figure 3C).  137 
 138 
Voxels within the vascular mask were evaluated using a range of morphometric properties: taking the 139 
vascular voxel as reference, 𝑑𝑐 indicates the distance to vessel centreline, 𝑑𝑒 distance to edge, and 𝑑𝑏 140 
distance to the carotid vessel, defined as the nearest terminal centrepoint at the bottom of the mask 141 
(Figure 3D). The first two properties were calculated using Euclidean distance operations performed on 142 
Boolean matricies between the neurovascular model and points defining the vessel centrelines. The 143 
third distance operation required sorting individual vessel branches’ distance to the bottom of the 144 
vascular tree. Since many vessel branches intersect with many other vessel branches at multiple points, 145 
a combinatorial approach identified the tree branch path network which minimised total mask 𝑑𝑏 across 146 
all intersecting branch entrances and exits.  147 
 148 

2.3. Identifying aneurysms as outlier voxel clusters (Morphometry and Outlier Detection) 149 
Each voxel’s three morphometries formed a consistent relationship. That is, the distance of a voxel from 150 
the vessel centreline (𝑑𝑐) depended on how far it was from the vessel edge (𝑑𝑒) as well as its distance 151 
away from the base of the mask (𝑑𝑏) (Figure 3E). A voxel far from the vessel centreline was more likely 152 
to be near the vessel edge and these distances were larger nearer the thick carotid arteries and not thin 153 
terminal cranial vessels. This relationship was characterised through fitting a polynomial regression 154 
through all voxels within the neurovascular masks (>10,000 voxels). For speed, a polynomial regression 155 
was used to estimate a voxel’s centreline distance (𝑑𝑐) which was first-order in its edge distance (𝑑𝑒) 156 
and fourth-order in its base distance (𝑑𝑏). Several other global and local polynomial regressions (loess) 157 
were compared but either exhibited a worse regression fit or prohibitively long processing times, 158 
respectively. Clusters of voxels which had centreline distances inaccurately predicted by our ℎ(𝑑𝑒 , 𝑑𝑏) 159 
regression were treated as outliers and considered to belong to either noncylindrical or inadequately 160 
large vessel anatomies, suggestive of vascular regions that may be aneurysm candidates (Figure 3F,E). 161 
Since this outlier detection is based on a single patient image and not a large dataset of patients, it can 162 
be particularly universal to anatomical and imaging differences. 163 
 164 
The definition of these voxel cluster outliers, or aneurysm candidates, can be tailored for high or low 165 
detection sensitivity based on user demand and clinical application. For our multi-repository validation 166 
we identified aneurysm candidates as voxel clusters beyond the polynomial regression’s 𝐸𝑜𝑢𝑡 = 96% 167 
confidence interval and larger than 𝑉𝑚𝑖𝑛 = 17.3ℎ(𝑑𝑒 , 𝑑𝑏) + 1.5 mm3 to allow for aneurysm detection 168 
in large central as well as small peripheral vessels. Voxel centreline distance estimated from ℎ(𝑑𝑒 , 𝑑𝑏) 169 
typically varied from 1.5 mm at the carotid artery base to 0 mm at the terminal ends of peripheral 170 
arteries. We later demonstrate how users can decrease 𝐸𝑜𝑢𝑡 and 𝑉𝑚𝑖𝑛 to increase detection sensitivity 171 
for small or emergent aneurysmal buds. 172 
 173 

2.4. Refining poorly-segmented neurovascular masks (Optional Local Resegmentation) 174 
For poor quality images with under- or over-saturated cranial images, it may be difficult to analyse 175 
morphometry due to a fusing of adjacent vessels or an inaccurate capture of the aneurysm shape (Figure 176 
4A). In such cases, a more accurate segmentation can be achieved through re-estimating the 177 
segmentation threshold for many small regions throughout the vessel structure. However, this more 178 
accurate local segmentation comes at the price of increased time and experimentally evaluated 179 
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parameters. This local segmentation procedure proceeds by evaluating the vessel centrepoints produced 180 
from Section 2.2 and drawing spherical neighbourhoods around these centrepoints for re-segmentation. 181 
Next, successive centrepoints neighbourhood are considered until all their contained vessel masks have 182 
been re-segmented. Finally, the remaining image space is also re-segmented based on the threshold 183 
assigned to each voxel’s closest neighbourhood, which allows for significant mask growth. 184 
 185 
The diameter of these spherical neighbourhoods must be large enough to consider the thickest vessel 186 
diameter while sampling frequency along the centrepoints must be fine enough to not allow 187 
unconsidered gaps. To ensure adequate neighbourhood overlap, sampling frequency was dictated by 188 
spherical neighbourhood centroid spacing scaled to sphere and vessel radius: 189 

𝑑𝑚𝑎𝑥 = 𝑘𝑑√4𝑅𝑛
2 − 𝑅𝑣

2 190 

Where 𝑅𝑛 is the desired spherical neighbourhood radius, 𝑅𝑣 is the calculated vessel mask radius, and 191 
𝑘𝑑 is a user-defined scalar between 0 and 1 adjusting neighbourhood overlap, where 𝑘𝑑 = 1 would 192 
allow neighbourhoods to overlap just enough to encompass the current vessel radius. Spherical 193 
neighbourhoods which are too large or too infrequent would limit the effectiveness of the local 194 

Figure 4: Optional refinements of the UIA identification pipeline. (A) While the algorithm pipeline 

presented in Figures 2 and 3 is rapid, sensitive, and specific, it struggles with large convoluted 

neurovascular masks with overlapping vasculature. When a more detailed mask and IA identification is 

required at the expense of increased computational time, additional pipeline refinements can be 

performed. (B) A local resegmentation can be performed which recalculates the threshold of the 

neurovascular mask within spherical neighborhoods along the previous centrelines, and then expands 

those thresholds into the remainder of the image. This resegmentation serves to cull vessel thicknesses 

within overlapping high-signal regions and enhance the vessel mask into regions with low signal and can 

be iterated as desired. (C) A mask refinement can be performed which surveys an aneurysmal candidate 

and deletes vessel centrelines which enter an aneurysm to provide a more complete IA segmentation. 
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segmentation, but small or frequent neighbourhoods create unnecessary computational burden. Our 195 
masks appeared to work best with 𝑅𝑛 = 2.75 mm and 𝑘𝑑 = 0.5 to allow for re-segmented masks to 196 
grow in dim peripheral regions but also shrink in bright carotid regions (Figure 4B).  197 
 198 
Spherical neighbourhoods can predominately be comprised of brain tissue near shrinkingly small 199 
vessels, resulting in only one lognormal distribution of low voxel intensities and skewing the calculation 200 
of a threshold value to extremely low values for re-segmentation, causing brain tissue to be interpreted 201 
as vessels. To avoid this, we ensure these neighbourhood minimum or maximum thresholds do not 202 
exceed predefined global limits. Specifically, we propose: if 𝑇𝑣 < 𝑇𝑚𝑖𝑛, then 𝑇𝑣 = 𝑇𝑚𝑖𝑛 =203 

𝑥 [
𝜕2𝑓1+2

𝜕𝑥2
= 0] or if 𝑇𝑣 > 𝑇𝑚𝑎𝑥, then 𝑇𝑣 = 𝑇𝑚𝑎𝑥 = mode(𝑓2), which represent the minimum and 204 

maximum values 𝑇𝑣 is defined to have if two or more tissues are present. 205 
 206 

2.5. Refining poorly-segmented aneurysmal masks (Optional Aneurysm Mask Refinement) 207 
For several neurovascular masks harbouring an intracranial aneurysm, a network of vessel centrepoints 208 
determined by the binary erosion technique outlined in Section 2.2 could erroneously include 209 
centrepoints of the UIA leading to misidentification or an incomplete aneurysmal mask. To address this 210 
issue, we added a function which first identifies UIA candidates with increased sensitivity (𝐸𝑜𝑢𝑡,𝑟𝑒 =211 
60%) as in Section 2.3, then for each UIA candidate determines whether a nearby branch of centrepoints 212 
terminates. Branches closer than 𝑅𝑐𝑢𝑙𝑙 from the UIA centroid and within 𝑑𝑐𝑢𝑙𝑙 from terminal centrepoint 213 
are culled. This process can be applied to trim many small branches diverging from major vessels by 214 
lowering other IA detection parameters such as 𝑉𝑚𝑖𝑛 from Section 2.3. After the UIA-entering branches 215 
are deleted, the UIA detection is re-run at the original threshold sensitivity (Figure 4C).  216 
 217 
3. Results  218 
Our image analysis approach is conventional in specifying which morphometry attributes are indicative 219 
of UIAs but also mimics machine learning approaches by identifying unique patterns in single-voxel 220 
morphometries for each image. In doing so, our algorithm becomes adaptable to image quality and 221 
detection accuracy inputs. Our image processing steps require user-selected parameters (Table 1) which 222 
must be validated to be widely applicable but whose detection sensitivity can also be adjusted to detect 223 
fine or coarse aneurysmal candidate regions. Correspondingly, we validate the accuracy and 224 
demonstrate the versatility of our statistical approach herein.     225 
 226 

3.1. Rapid automated IA detection is sensitive and specific  227 
The sensitivity of this algorithm was validated over a cohort of patients presenting to the Royal Brisbane 228 
and Women’s Hospital (RBWH) between 2009 and 2019 who harboured an UIA imaged by TOF MRA 229 
(14 patients, 29 TOF MRA images). Several patients were imaged on more than one occasion to monitor 230 
aneurysmal shape changes over time and assess rupture risk for surgical decision-making. Accuracy of 231 
algorithm-identified aneurysm location and size was validated by interventional radiologists asked to 232 
retrospectively annotate, measure, and comment on unedited TOF MRA image slices while blinded to 233 
the algorithm’s detection as illustrated in Figure S1. The specificity of this algorithm was validated over 234 
a cohort of 27 patients not identified to have an intracranial aneurysm using TOF MRA and DSA. 235 
Additionally, the specificity of this algorithm was further validated over public IXI and MIDAS 236 
repositories for another 678 healthy TOF MRA patients (Mouches and Forkert, 2019). Images were 237 
automatically excluded from consideration if severe TOF MRA imaging artefacts interrupted the 238 
neurovascular mask construction (N = 6), or if only 1 lognormal distribution could be detected during 239 
segmentation (N = 94 to N = 154 depending on normalisation) so that a neurovascular mask could not 240 
be identified. This exclusion criteria and rate is consistent with prior publications (14% to 23% excluded 241 
versus 20% previously; Mouches and Forkert, 2019).  242 
 243 
To provide a fair comparison, all validations were performed with identical parameters, which also 244 
ensured the algorithm was fully automated. The speed of the algorithm varied between 1.5 and 12 min 245 
primarily depending on image resolution (which affected image matrix size), and neurovascular mask 246 
volume (which affected time-intensive binary distance operations). The 734 TOF MRAs varied across 247 
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10 image resolutions from 0.26 to 0.80 mm/voxel (Figure S2). Median processing times per TOF MRA 248 
image were 5.2 min, 2.7 min, and 2.0 min for RBWH, MIDAS, and IXI datasets respectively.  249 
 250 
There was a clear trend between XY image resolution and segmented mask volume and length. This 251 
trend led to the under-segmentation of low-resolution TOF MRA images within the IXI and MIDAS 252 
repository datasets creating large neurovascular masks containing additional peripheral vessels 253 
irrelevant for aneurysmal identification such as venous sinuses and torcula. An exponential relationship 254 
between XY image resolution and the 𝑘𝑇 thresholding parameter was defined to normalise segmentation 255 
across resolutions (Figure 5, Figure S2). Without normalisation, images from MIDAS and IXI 256 
repositories were significantly different to RBWH with respect to mask length and volume. After 257 
normalisation, mask lengths were more equal between repositories.  258 
 259 
The algorithm’s identification achieved 81% sensitivity and 86% specificity, correctly identifying UIAs 260 
within 17 of 21 TOF MRAs within the RBWH database, and correctly identifying no aneurysms within 261 
518 of 602 normal patient images within RBWH, IXI, and MIDAS databases (Figure 5). Nearly 80% 262 
of the 84 false positive UIA locations existed within the carotid siphon, where several tortuous bends 263 
deviate from normal cylindrical vessel geometry and poor contrast or segmentation could appear as 264 
though the siphon self-intersects (Bogunović et al., 2012; Duan et al., 2019). Most other false positive 265 
UIAs appeared within small overlapping peripheral arteries, especially for low-resolution images, such 266 
as the M3 and M4 segments in the anterior cerebral artery (as illustrated in Figure S3).  267 
 268 

3.2. Detection pipeline is versatile to imaging resolution and MRA, CTA, or DSA modalities 269 
This algorithm was principally developed for TOF MRA imaging, which represents a promising 270 
technique to 3D image intracranial vasculature without the use of intravenous contrast or x-ray 271 
radiation. However, many patients are unable to be imaged via MRA, including those who have 272 

Table 1: Summary of algorithm parameters. These algorithm parameters are grouped into the 

pipeline steps specified in Figure 2 and throughout methodology Section 2. Values are provided as a 

guide to replicate the algorithm performance in this paper but can be changed based on user preferences. 

Detection sensitivity was lowered in Figure 7 to demonstrate the impact of varied detection sensitivity.  
 

Section Symbol Notes Range Value Units 

Model 

segmentation 

(Section 2.1) 

𝑛𝑏𝑖𝑛 Histogram bin number ℤ+ 50 - 

𝐸𝑏𝑖𝑛 Excluded peripheral bins ℝ+ 4 % 

𝑘𝑇 Segmentation threshold parameter ℝ+ 0.3134𝑅𝑋𝑌
−1.522 - 

Mask 

processing & 

centreline 

estimation 

(Section 2.2) 

𝐷𝑑𝑖𝑙 Length to dilate and erode mask ℝ+ 0.7 mm 

𝑑𝑙𝑖𝑛𝑘 
Max distance between centre-

points of the same vessel branch 
ℝ+ 1 mm 

𝑑𝑙𝑎𝑡𝑐ℎ 
Max distance to connect two 

vessel branches 
ℝ+ 2 mm 

Morphometry 

& outlier 

analysis 

(Section 2.3) 

𝐸𝑜𝑢𝑡 Error threshold to identify outliers 
ℝ+ 

[0–100] 
96 % 

𝑉𝑚𝑖𝑛 Size threshold to identify outliers ℤ+ 
17.3ℎ(𝑑𝑒 , 𝑑𝑏)
+ 1.5 

mm3 

Optional: local 

resegmentation 

(Section 2.4) 

𝑅𝑛 
Spherical diameter around centre-

point to re-threshold 
ℤ+ 2.75 mm 

𝑘𝑑 
Overlap ratio between spherical 

neighbourhoods 
ℝ+ 

[0–1] 
0.5 - 

Optional:  

IA refinement 

(Section 2.5) 

𝐸𝑜𝑢𝑡,𝑟𝑒 Pre-threshold for potential outliers 
ℝ+ 

[0–100] 
60 % 

𝑅𝑐𝑢𝑙𝑙 
Culled branch candidate distance 

from UIA 
ℝ+ 10 mm 

𝑑𝑐𝑢𝑙𝑙 
Tip-to-bifurcation length of small 

isolated branch to cull  
ℝ+ 6.6 mm 
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previously had aneurysmal interventions with metallic neurosurgical clips or endovascular coils. 273 
Higher-resolution CTA and DSA are frequently employed as a primary or secondary imaging method 274 
to confirm aneurysm location and shape. In our RBWH MRA datasets, 82% of aneurysm-harbouring 275 
patients also had CTA or DSA imaging performed.  276 
 277 
This algorithm was applied to abnormal and normal CTA and DSA images in Figure 6. These 3D 278 
images frequently have much higher XY resolution (0.15 - 0.30 mm/voxel) but lower Z resolution (1.0 279 
- 2.0 mm/voxel) which can cause artefacts for vessels coarsely resolved in the Z-dimension. Even so, 280 
the algorithm was able to segment and identify UIAs within MRA, CTA, and DSA datasets, indicating 281 
its versatility across imaging modalities and clinical needs.  282 
 283 

3.3. Adjustable detection sensitivity can identify early budding aneurysms  284 
The algorithm can be tailored to suit specific clinical needs by adjusting two sensitivity parameters: the 285 
error threshold (𝐸𝑜𝑢𝑡) and the size threshold (𝑉𝑚𝑖𝑛) which identify outliers as candidate aneurysm 286 
regions. During algorithm validation and in Figure 5, these sensitivity parameters were kept constant 287 
across the 3 patient datasets and more than 700 patient images. However, sensitivity can be improved 288 

Figure 5: Algorithm validation and normalisation. (A,C) Median ℎ(𝑑𝑒 , 𝑑𝑏) regressions of single-

voxel morphometry for  IXI (N = 571), MIDAS (N = 107) and RBWH (N = 45) repositories, where 

spatially-clustered voxels beyond a 96% confidence interval from individual regressions were 

considered UIA candidates. (B,D) Specificity and sensitivity were evaluated with false-positives circled 

black and false-negatives circled red, where errors existed predominately in large and long 

neurovascular masks. A trend between low resolution MRAs producing large segmented masks was 

normalised from (A,B) 𝑘𝑇 = 1.78 by applying (C,D) 𝑘𝑇 = 0.3134 ∙ 𝑅𝑋𝑌
−1.522, as detailed in Figure S2. 
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at the cost of specificity (false-positive aneurysm detection) by decreasing the minimum error or cluster 289 
size of candidate aneurysm regions to highlight small or slightly bulging intracranial vessels. While 290 
these bulging regions may be false positives generated by atypically tortuous neurovasculature or 291 
imaging or segmentation artefacts, lowering these detection thresholds could be useful to suggest 292 
potential small, difficult-to-spot, or secondary UIAs for radiological assessment. 293 
 294 
To demonstrate the utility of this algorithm’s tuneable sensitivity, we identified a patient harbouring an 295 
UIA which was monitored over 5 TOF MRA imaging sessions between 2012 and 2018. During the 296 
initial visit in 2012, a large 4 x 3 mm saccular aneurysm was discovered on the left peripheral 297 
communicating artery and was monitored over the following 6 years. In 2018, a second bilateral 298 
aneurysm was discovered which led to a surgical decision of intervention. Using our algorithm at Figure 299 
5’s validation sensitivity, we identified the same UIAs at the same timepoints as the clinicians identified. 300 
We then repeated our algorithm using a heightened sensitivity which detected abnormal voxel clusters 301 

Figure 6: Algorithm versatility for different medical imaging modalities and resolutions. (A) 

Neurovasculature was imaged using right-hemisphere DSA (first row) before being rushed to surgery 

for endovascular coil placement. Later, this patient was imaged using TOF MRA with a large artefact 

at the location of the prior aneurysm (second row, red dotted circle). (B) Neurovasculature was imaged 

using TOF MRA or CTA for both brain hemispheres on the same date. Columns, from left to right, 

include original medical image mean intensity projection, voxel intensity histogram fit to the sum of 2 

or 3 lognormal regressions, segmented soft tissue, bone, and/or vasculature masks, and mask voxel 

intensity heatmap with identified aneurysms. Measured UIA dimensions from CTA or DSA appear 

inaccurate, highlighted in red text. Abbreviation S.T. corresponds to ‘soft tissue’. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.22.216812doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.216812
http://creativecommons.org/licenses/by/4.0/


Page 12 of 19 
 

larger than 0.7 mm3. Using this sensitivity, we could observe 302 
the growth of a small bulging region (0.9 – 2.9 mm3) at the 303 
same location that the bilateral aneurysm would form 6 years 304 
earlier, with no other false-positives detected (Figure 7). 305 
While such small regional voxel abnormalities may often 306 
occur due to imaging artefact or normal variances within 307 
neurovascular anatomy, such a sensitive identification could 308 
identify regions of radiologic interest similar to those 309 
performed in recent computer-aided diagnosis approaches 310 
(Faron et al., 2019; Miki et al., 2016; Nakao et al., 2018; 311 
Stember et al., 2019; Ueda et al., 2019).  312 
 313 
Previous computer-aided diagnoses have reached high levels 314 
of sensitivity but have done so exhibiting very low specificity, 315 
incorrectly detecting several false-positive UIAs per image. 316 
These approaches still require substantial radiological 317 
interpretation to exclude these false-positives and may not 318 
improve the number of medical images a radiologist can 319 
assess within a certain amount of time. Furthermore, detection 320 
rates vary between radiologists and neuroradiologists and our 321 
approach enables an unbiased detection and characterisation 322 
of UIAs at mm3 resolution (Okahara et al., 2002). This user-323 
adjustable approach will better provide both high-specificity 324 
screening of UIA presence and high-sensitivity UIA 325 
characterisation toward reduced radiologist workloads. 326 

4. Discussion 327 
We propose a new method to identify UIAs within 3D medical 328 
angiograms, principally within widely-used TOF MRAs 329 
(Thompson et al., 2015). The key innovations of our method 330 
include high sensitivity with high specificity and user-defined 331 
versatility while utilising large 3D medical images 332 
independent of interpatient comparison. Our method reaches 333 
at least an 81% sensitivity and 86% specificity, on-par with 334 
conventional computer aided MRA diagnoses achieving up to 335 
83.6% sensitivity and 75% specificity, while analysing MRAs 336 
10-fold faster (Miki et al., 2016; Štepán-Buksakowska et al., 337 
2014; Yang et al., 2011). Sensitivities above 90% have been 338 
reached with other machine learning approaches but only 339 
while generating as many as 4 - 22 false-positives per image 340 
indicating specificities near 0% (Faron et al., 2019; Nakao et 341 
al., 2018; Shi et al., 2020; Stember et al., 2019; Ueda et al., 342 
2019). One recent approach identified UIAs inside small 343 
~30mm vessel segments with 88.5% sensitivity and 98.5% 344 

Figure 7: Single-case longitudinal study of an emerging 

second UIA. Patient neurovasculature was imaged using TOF 

MRA over five monitoring sessions across six years. The initial 

four sessions monitored any shape changes from a large burst 

saccular aneurysm within the right hemisphere (50 mm3 final 

size). On the final monitoring session, a second bilateral 

aneurysm was detected within the left hemisphere (20 mm3 final 

size) which led to the decision to operate. Implementing the 

‘mask refinement’ option and an UIA detection sensitivity of 

0.7 mm3, the emergence of a bulging region was detected in the 

location of the second aneurysm up to 6 years (4 imaging 

appointments) prior to its clinical identification by a radiologist.  
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specificity, but required 8 hours to manually segment each neurovascular model into pieces (Yang et 345 
al., 2020). These machine learning approaches rely on large training datasets which may be difficult to 346 
acquire and time-consuming to train for 3D angiograms of incidentally-discovered UIAs. Altogether, 347 
computer-aided diagnosis have only increased radiologist diagnosis sensitivity from 64% to 69% and 348 
have not reduced radiologist interpretation time (Miki et al., 2016; Z. Shi et al., 2020; Štepán-349 
Buksakowska et al., 2014).  350 
 351 
Our clustered anomaly detection method presented in this paper calculates a unique morphometry 352 
regression for each individual image, and is not reliant on a large dataset of training images typical of 353 
current machine learning approaches (Faron et al., 2019; Miki et al., 2016; Štepán-Buksakowska et al., 354 
2014; Yang et al., 2011). And while current approaches frequently analyse medical images of only one 355 
single imaging modality and resolution, our method was evaluated over 10 different TOF MRA 356 
resolutions from 5 different hospitals and also applied to several CTA and 3D DSA images. A specific 357 
utility of our method is its ability to tailor mask segmentation and UIA detection sensitivity depending 358 
on user demand. If high sensitivity at the cost of low specificity is preferred, the UIA detection threshold 359 
can be lowered. This could also assist with the detection of secondary UIAs or abnormal budding 360 
regions as demonstrated in Figure 7. While our method could mimic current approaches by determining 361 
one average morphometry regression across our large healthy dataset of images, such a method would 362 
be limited due to the anatomical complexity and variability common to intracranial angiograms. This 363 
variability can be reduced through image normalisation approaches, but a recent neurovascular atlas 364 
(544 healthy TOF MRAs) indicates MRA normalisation may only allow consistent segmentation for 365 
major arteries (Mouches and Forkert, 2019). Our approach has several limitations. It relies on the 366 
construction of an interconnected centreline throughout all vessels, which occasionally cannot be 367 
achieved due to TOF MRA bleb artefacts (Corfield et al., 2010; Mair, 2015). Furthermore, TOF MRA 368 
imaging achieves poorer resolution than CTA or DSA methodologies (Lin et al., 2018), limiting the 369 
detection of small aneurysms in peripheral neurovasculature. Detection sensitivity increased with local 370 
image resegmentation and would likely further increase with enhanced centreline estimation, image 371 
normalisation, or local polynomial regression or smoothing algorithms (Kerrien et al., 2017; Pelka et 372 
al., 2017; Wong and Chung, 2007). We prototyped several such developments which can improve 373 
sensitivity or specificity slightly but require substantial increases in processing time. Finally, our large 374 
TOF MRA dataset is heavily biased toward healthy patients. It will be necessary to recruit additional 375 
patient cases harbouring rare incidentally discovered UIAs in order to have greater confidence in our 376 
detection sensitivity. 377 
 378 
The detection of UIAs prior to rupture allows for careful management to avoid haemorrhage. 379 
Fortunately, the incidental discovery of UIAs is becoming more frequent due to the increased use and 380 
resolution of MRA, a neurovascular imaging technique which does not require intravenous contrast or 381 
x-ray radiation (Thompson et al., 2015). While MRA may be a promising angiography technique to 382 
screen for UIAs in patients with a strong family history or those presenting migraines (Micieli and 383 
Kingston, 2019), it would be laborious, expensive, and unfeasible to engage expert neuroradiologists to 384 
review large numbers of cranial angiograms within a publicly-funded clinical imaging department (Z. 385 
Shi et al., 2020). In addition, once a UIA is discovered the surgical decision-making process remains 386 
‘complex and controversial’ where as many as 58.3% of UIA patients undergo neuro or endovascular 387 
surgery (International Study of Unruptured Intracranial Aneurysms (ISUIA), 2003). While rupture risk 388 
is associated with UIA size and location aspect ratio, neck-to-body ratio, and intra-UIA fluid dynamics 389 
and wall thickness (Duan et al., 2018; Ishibashi et al., 2009; Russell et al., 2013), no widely-accepted 390 
prediction of rupture exists to guide surgical decision-making, and recent studies suggest decision-391 
making has favoured interventional methods. Automated and rapid computational analyses of cranial 392 
angiograms could enable an unbiased screening of patient neurovasculature for UIAs and future 393 
identification of morphometric or blood flow features correlating to future UIA size and shape changes, 394 
surgical decisions, or rupture risk, or assessment of other vascular malformations (Chien et al., 2020; 395 
Huang et al., 2013; Z. Shi et al., 2020).  396 
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5. Conclusion 397 
We have developed a rapid and automated 3D cranial angiogram analysis algorithm which segments 398 
neurovasculature, assesses single-voxel relationships between arterial morphometries, and identifies 399 
spatially-clustered voxel outliers as a potential UIA candidate. This method represents a significant 400 
improvement due to its high specificity and sensitivity, its independence from inter-image comparisons, 401 
and its versatility to imaging resolution and modality. While time-intensive conventional image 402 
analyses and training-intensive machine learning approaches can only achieve sensitivity above 80% 403 
with low specificity, our rapid automated method achieves 86% specificity with 81% sensitivity which 404 
reduces radiologist burden in assessing algorithm false-positives. This computational tool can serve as 405 
a second set of eyes to aid radiologist interpretation during UIA screening and has future value in 406 
morphometry-based rupture risk prediction.  407 
 408 
All algorithms herein described to process and display medical images for UIA detection are freely 409 
available at https://github.com/mcallenby/UIAdetection2020. 410 
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Supplemental Material 556 

Figure S1: Radiologist-identified RBWH UIA sizes and locations. (top) De-identified table of 557 
representative UIA locations and measured dimensions where number corresponds to (bottom) 558 
radiologist annotated MRA or CTA images and the ability of our computational approach to correctly 559 
or incorrectly detect UIAs. Annotations include: L/R, left/right; MCA, middle carotid artery; PComA, 560 
peripheral communicating artery; AComA, anterior communicating artery; ICA, internal carotid artery; 561 
SCA, subclavian artery; AP, anteroposterior measurement; TR, traverse measurement; CC, 562 
craniocaudal (coronal) measurement.   563 
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Figure S2: Impact of kT normalisation on RXY during validation and assessment. The constant kT = 564 
1.78 appeared ideal for images with XY resolution of RXY = 0.32 mm/voxel but incorrectly segmented 565 
images with poorer RXY near 0.5 mm/voxel. Power regressions are compared which normalise kT values 566 
to 1.2 (yellow), 0.9 (orange), and 0.6 (red) at a RXY of 0.5 mm/voxel while maintaining kT = 1.78 at RXY 567 
= 0.32 mm/voxel. Linear regressions at similar intercepts were also compared with poorer low RXY 568 
image segmentations. Columns 2 and 3 of the grey and orange boxes are displayed in Figure 5.  569 
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Figure S3: Examples of false-positive identifications in the carotid siphon (80% of false-positives; top 570 
row) and anterior cerebral artery (20% of false positives; bottom row) for poor resolution IXI repository 571 
TOF MRA images (0.47 x 0.47 x 0.8 mm/voxel). The carotid siphon anatomy rapidly changes diameter 572 
and angle in different ways for different patients, which produces false-positive detections of dissecting 573 
aneurysms (top right). The poor resolution images segment anterior cerebral arteries that comprise only 574 
a few voxels in diameter, and due to their low resolution, these arteries appear to overlap during 575 
segmentation, creating false-positive artefacts.  576 
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