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ABSTRACT 24 

Clonal tracking methods provide quantitative insights into the cellular output of genetically 25 

labelled progenitor cells across time and cellular compartments. In the context of gene and cell 26 

therapies, clonal tracking methods have enabled the tracking of progenitor cell output both in 27 

humans receiving cellular therapies and in corresponding animal models, providing valuable 28 

insight into lineage reconstitution, clonal dynamics, and vector genotoxicity. However, the 29 

absence of a toolbox by which to interrogate these data has precluded the development of 30 

standardized analytical frameworks within the field. Thus, we developed barcodetrackR, an R 31 

package that provides users with tools for the analysis and visualization of clonal dynamics 32 

across time and cellular compartments in clonal tracking experiments. Here, we demonstrate the 33 

utility of barcodetrackR in exploring longitudinal clonal patterns and lineage relationships in the 34 

context of a number of clonal tracking studies of hematopoietic stem and progenitor cells 35 

(HSPCs) in humans receiving HSPC gene therapy and in animals receiving lentivirally 36 

transduced HSPC transplants.  37 
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INTRODUCTION 38 

Genetic labelling permits quantitative tracking of clonal progeny via high-throughput sequencing 39 

(clonal tracking) and provides opportunities to interrogate clonal dynamics in a number of in 40 

vitro and in vivo contexts. The two most common clonal tracking approaches, cellular barcoding 41 

and viral integration site recovery, have been primarily leveraged to interrogate hematopoietic 42 

stem and progenitor cell (HSPC) or immune cell dynamics both in model animals(1–5) and in 43 

humans(6,7). In these methodologies, integrating retro- or lentiviruses are used to transduce 44 

individual HSPCs or other target populations such that individual cells each contain a unique, 45 

permanent genetic tag or integration site label that can be recovered from progeny cells via high 46 

throughput sequencing (Fig. 1). Measurement of each label’s abundance in the pool of all 47 

recovered labels is directly associated with the abundance of that clone within the labelled 48 

population being assayed, for instance T cells, B cells or myeloid cells. These lineage abundance 49 

measurements can provide insights not only into the bias, stability, and ontogenetic relationships 50 

of HSPCs(8), but also into the dynamics of clones within cell populations whose abundances are 51 

largely independent of HSPC behavior, such as certain T cell(9) and natural killer (NK) cell 52 

subsets(10). Furthermore, such clonal tracking methods have also been leveraged to provide 53 

valuable insight into the clonal dynamics of cancer progression(11), in vitro differentiation(12), 54 

and clonal dynamics of CAR-T cells(13). 55 

 56 

Given the diversity of labelling and recovery strategies, as well as underlying differences in 57 

vector and barcode constructs, a number of approaches for recovery of sequences from raw 58 

sequencing data and determination of “true” integration site or genetic tag from sequencing 59 

artifacts or other confounders have been developed and are largely approach-dependent(14–17). 60 
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However, tools with which to perform downstream analyses of the clonal abundances 61 

determined by these pipelines have not been published or made publicly available; as a result, 62 

flexible open-source tools, such as those that exist for single-cell RNA-sequencing(18,19) have 63 

been sought after by those in the clonal tracking field in order to derive biological meaning in an 64 

accessible manner from these large datasets(20). Such tools would also allow direct comparisons 65 

across datasets or meta-analyses. 66 

 67 

Here, we present our open-source R package, barcodetrackR. barcodetrackR encompasses a 68 

variety of flexible tools that can provide insights into clonal dynamics and the relationships 69 

between cellular compartments starting with clonal abundance data. We illustrate the utility of 70 

barcodetrackR by analyzing publicly available clonal tracking datasets from studies in 71 

lentivirally transduced non-human primates(8,10,21), xenograft mice transplanted with human 72 

cord blood cells(22) and blast cells(23), and lentiviral gene therapy patients(6,24). More details 73 

on each dataset and access paths are summarized in Table 1.  74 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.07.23.212787doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.212787
http://creativecommons.org/licenses/by/4.0/


 5

RESULTS 75 

Inferring lineage relationships based on global clonal distributions 76 

Pairwise comparisons of clonal abundance profiles in clonal tracking data provide insight into 77 

the relationships between upstream progenitor pools across cellular compartments. Here, we use 78 

barcodetrackR to determine and visualize the correlation values and dissimilarity indices (Fig. 2) 79 

between samples from three clonal tracking datasets (Six et al, Belderbos et al, Elder et al, Table 80 

1) as a means to interrogate the similarities of upstream progenitor pools contributing across 81 

cellular compartments. The Six dataset contains individual viral integration site read counts from 82 

longitudinally collected patient T cell, B cell, granulocyte (Gr), monocyte (Mo), and natural 83 

killer cell (NK) samples following autologous lentiviral HSPC gene therapy. We find that the Gr 84 

and Mo samples share high correlation with one another, while the T cell, B cell, and NK 85 

samples show lower correlation with samples from other lineages, but high correlation between 86 

different timepoints within the same lineage (Fig. 2A). A similar pattern is observed when 87 

plotting the Bray-Curtis dissimilarity indices between samples from the Six dataset, projected 88 

into two dimensions using principal coordinates analysis (PCoA), where the first axis of 89 

variation separates NK cells from other lineages based on their clonal abundances, and the 90 

second separates T cells, B cells, and myeloid (Gr and Mo) cells (Fig. 2B). These analyses 91 

demonstrate that the myeloid lineages are closely coupled and thus likely arise from shared 92 

pathways originating from the same HSPC pool, in comparison to disparate generation of mature 93 

T, B, and NK lineages. 94 

 95 

These pairwise measures can be also used to compare clonal abundances across anatomical 96 

compartments. The Belderbos dataset contains clonal abundance information from a number of 97 
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sorted and unsorted immune cell samples from bone marrow (BM) sites and the spleen of a 98 

mouse transplanted with a lentivirally barcoded human cord blood CD34+ HSPC xenograft. We 99 

observe high correlation between T cell samples across all anatomical sites, while B cell and Gr 100 

samples show high correlation to one another only within each anatomical site (Fig. 2C). This 101 

pattern is evident in the PCoA plot (Fig. 2D) as well. Unsorted cell samples from the spleen and 102 

pelvic BM vary in their clonal relationships to other samples, likely because of the underlying 103 

heterogeneity of the lineage composition of these bulk samples (Fig. 2C). These analyses 104 

support the notion that geographically isolated HSPC pools are responsible for the clonal 105 

composition of their respective geographic niches, and that the clonal composition of T cells 106 

across sites is largely independent from the output of these pools, supporting the thymic-107 

dependent developmental pathway for T cells. Indeed, geographic isolation of HSPC output has 108 

been observed in another study in macaques; however, within the macaque study, T cell output 109 

early after transplantation was instead found to be anatomically compartmentalized and 110 

dependent at least short-term on these geographically isolated HSPC pools(25). 111 

 112 

Comparing clonal distribution across animals from serial transplant experiments can also provide 113 

insight into the self-renewal capacity of engrafted, clonally marked cells. The Elder dataset 114 

contains clonal abundance information from serial xenograft mouse transplants of lentiviral-115 

transduced ALL blasts. We observed high correlation of clonal abundances between samples 116 

collected from primary, secondary, and tertiary transplant recipient mice, excluding a few sites in 117 

the primary transplant (Fig. 2E). This aligns with the results presented by Elder et al(23) noting 118 

equipotential functional capability of ALL cells with some variation between sites, based on 119 

random sampling of the population of engrafted ALL cells. Samples from the same “generation” 120 
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of serial transplant cluster together in principal coordinate space, supporting the notion presented 121 

in the study that ALL founder cells retain self-renewal capacity over several serial transplants 122 

(Fig. 2F). The distinct groupings of clones based on anatomic sampling site within the primary 123 

transplanted animals suggests that ALL clonal output also appears to be geographically 124 

compartmentalized, at least initially. Altogether, these three examples illustrate the utility of 125 

barcodetrackR in probing global clonal relationships between samples collected from various 126 

lineages or time points, providing valuable insights from a number of diverse biologic contexts. 127 

 128 

Determining clonality based on clonal counts and diversity measures 129 

In clonal tracking studies, both clonal counts and diversity measures can provide insight into the 130 

clonality of progenitor cell pools. Here, we utilize barcodetrackR to assess clonality by 131 

visualizing the detected clone counts and Shannon diversities of samples from three datasets over 132 

time (Fig. 3). When quantifying clone numbers within the Six dataset, we show hundreds of 133 

unique integration sites retrieved across five purified peripheral blood lineage samples, with a 134 

larger number of clones detected in B cells and T cells as compared to Gr, Mo, and NK cells at 135 

most individual timepoints (Fig. 3A). Decreasing clonal diversity (Shannon index) in the NK cell 136 

lineage, as compared to other lineages, indicates that over time, a smaller number of clones 137 

account for a larger fraction of hematopoiesis in the NK cell compartment (Fig 3B). This implies 138 

a more oligoclonal population of contributing progenitors. The finding that the mature NK cell 139 

compartment is largely composed of a few high-contributing clones post-transplantation is in 140 

agreement with rhesus macaque barcoded autologous HSPC transplant studies(10). 141 

 142 
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Next, we analyzed patterns in the number of detected clones and Shannon diversities over time in 143 

peripheral blood samples from a single mouse xenograft obtained from the Belderbos dataset. 144 

We show that more clones were detected from the bulk peripheral blood sample at sacrifice than 145 

at the first time point (green line, Fig. 3C). The Shannon diversity of bulk samples decreased 146 

after the 9-week time point before stabilizing (Fig. 3D), underscoring the notion that clone 147 

counts alone are not ideal measures of sample diversity. These findings suggest that within this 148 

xenograft transplantation model, the diversity of HSPC output becomes stable over time, in 149 

agreement with previous long term clonal tracking studies in macaque(8) and human(7). 150 

 151 

Finally, we use barcodetrackR to quantify an extreme case of minimal clonal counts and 152 

Shannon diversities in the context of clonal hematopoiesis using the Espinoza dataset (Table 1). 153 

In this study, multiple lentiviral insertions in an HSPC mediated dysplastic clonal erythroid and 154 

myeloid expansion, while largely sparing the lymphoid lineages. In agreement with the findings 155 

of the study, we find that the longitudinal clone numbers contributing to the B and T cell lineages 156 

fluctuate, but that the Shannon diversity index of these lineages remains high, especially at early 157 

time points, indicating polyclonal contribution to the lymphoid lineages (Fig 3E). However, after 158 

day 266 post-transplant, we observe a massive drop-off in both the number of unique clones 159 

detected (Fig 3E) and the Shannon diversity (Fig 3F) within the myeloid lineages. This 160 

coincides chronologically with the development of clonal hematopoiesis in the myeloid lineage. 161 

In the Espinoza study, 6 detected genetic tags in this dataset were all in fact found to correspond 162 

to a single lentivirally transduced cell with 9 insertions (3 of which were virtually undetected 163 

with the available dataset’s methodology due to deletions in the insertion proviral sequences), 164 

verifying that this pattern is representative of clonal hematopoiesis(21). While in the above 165 
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examples we utilize unique detected clones at each time point, cumulative clone counts can also 166 

be calculated (Fig. S1) and provide a complementary view of clone numbers over time. 167 

Altogether, these examples emphasize the utility of diversity measures in interrogating the clonal 168 

output of progenitor pools in a number of contexts. 169 

 170 

Analyzing longitudinal clonal dynamics based on clonal abundances 171 

Longitudinally tracking the abundance of individual clones can provide insight into clonal 172 

dynamics within lineages. We employed barcodetrackR to analyze longitudinal NK cell samples 173 

from an animal in the Wu et al study (Table 1), in which NK cell clonal dynamics were 174 

interrogated over 3 years in rhesus macaques receiving lentivirally barcoded autologous 175 

HSPCs(10). The detected clones in the NK cell compartment within this study remained largely 176 

independent from the HSPC pool responsible for the majority of non-NK hematopoiesis. We first 177 

visualize all individual NK cell clones from the Wu dataset in a binary heat map that depicts the 178 

presence or absence of all clones observed at 0.01% abundance or greater in at least one NK cell 179 

sample (Fig 4A). We find that new NK cell clones are detected at each time point, but that the 180 

number of newly detected clones decreases at later time points. 181 

 182 

Next, we analyzed distinct clonal dynamics in individual NK cell clones using barcodetrackR to 183 

generate a heat map showing the abundance of the top ten NK cell clones from each sample over 184 

time (Fig. 4B). We visualize only the top clones in order to focus on the clones responsible for 185 

the majority of this cellular compartment’s clonal composition, with stars on the heatmap 186 

indicating the top ten contributing clones in each sample. One group of clones contributed at 187 

high levels for 3 months but subsequently declined. Of the top ten clones from the second time 188 
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point (4 months), some clones declined in abundance while others increased in abundance at the 189 

6-month time point before subsequently declining. A group clones became high abundance at 8.5 190 

months and continued to contribute a large fraction of NK cell activity through the 20-month 191 

time point. Finally, a set of clones became high contributors at the 17.5-month time point after 192 

being virtually undetectable at previous timepoints. This analysis reveals the waxing and waning 193 

patterns of high-abundance NK cell clones over time, which were further interrogated in the Wu 194 

study. Lastly, we utilized statistical testing within barcodetrackR to view changes in proportion 195 

within the NK cell samples, marking clones with a star which had a statistically significant 196 

change (Chi-squared test) in abundance in the labelled sample in comparison to the previous 197 

sample (Fig 4C). This type of visualization and analysis further highlights the highly dynamic 198 

clonal patterns within the NK cell compartment. Altogether, these results indicate that the 199 

longitudinal tracking of highly abundant clones within datasets can provide insight into clonal 200 

dynamics at a single-clone level.  201 

 202 

Quantifying lineage bias based on shared clonality 203 

Clonal tracking studies measure HSPC clonal contributions to different mature blood cell 204 

lineages. Thus, the lineage bias of HSPCs, such as those that skew towards myeloid or lymphoid 205 

lineages, can be interrogated on a global scale by comparing the ratio of clonal abundances 206 

between two specific lineages. Here, we use barcodetrackR to probe this concept of lineage bias 207 

in the Six clinical gene therapy trial dataset(6) and the Koelle rhesus macaque dataset(8)(Table 208 

1), both based on lineage-purified samples following autologous transplantation with genetically 209 

tagged HSPCs. 210 

 211 
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We first track the density of clones, weighted by their added proportions, at each value of lineage 212 

bias (log ratio) between the Gr and T cell lineages across multiple timepoints in the Six dataset. 213 

We find the presence of three high-contributing sets of clones as determined by Gr/T lineage 214 

bias: Gr-biased (rightmost peak), balanced clones (middle peak), and T-biased (leftmost peak) 215 

(Fig. 5A). By systematically comparing each cell type in the dataset, we find that three sets of 216 

clones can be found when comparing Mo/T, Gr/B, or Mo/B lineages (Fig. S2) further supporting 217 

differences in upstream progenitors accounting for myeloid versus lymphoid lineages. In 218 

contrast, when comparing Gr/Mo or T/B lineages, we find that the majority of clones have 219 

balanced contribution to the two lineages (Fig. S2). Interestingly, clones contributing to the NK 220 

cell samples are predominantly unilineage, sharing very little clonality with other lineages, 221 

including other lymphoid lineages such as T and B cells (Fig. S2). This is in line with clonal 222 

tracking studies performed in a rhesus macaque animal model(2,10). Conducting the same 223 

analysis on longitudinal samples from the Koelle dataset reveals the presence of Gr-biased, 224 

balanced, and T-biased clones at the 4.5-month timepoint (Fig. 5C), consistent with the Six 225 

dataset. However, there is an increase in abundance of balanced clones at later timepoints, 226 

indicating a shift towards hematopoiesis from multipotent upstream progenitors, capable of 227 

reconstituting both myeloid and lymphoid lineages. This is also the case when comparing the T 228 

cell lineage to the Mo lineage as the majority of clones contribute similar abundances to Gr and 229 

Mo lineages (Fig. S3).  230 

 231 

We next use barcodetrackR to construct an abundance-weighted chord diagram between three 232 

lineages in the Six dataset. We selected the Gr, T, and Mo lineages at the final 55-month time 233 

point (Fig. 5B), finding that a large fraction of detected hematopoiesis at this time point is shared 234 
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between all three lineages (purple). However, there also exist clones detected only in two 235 

lineages (yellow, blue, green), and biased clones only found in one lineage, indicated by the 236 

white space around the perimeter. Likewise, a similar pattern is observed in the Koelle dataset at 237 

the final 38-month time point (Fig. 5D) with a large fraction of detected hematopoiesis arising 238 

from clones detected in all three lineages (purple). The fraction of detected hematopoiesis arising 239 

from T-Gr or T-Mo restricted clones (blue, yellow respectively), however, is minimal compared 240 

to that arising from Gr-Mo restricted clones (green), supporting the notion of upstream 241 

progenitors biased towards the myeloid lineage within this dataset. Thus, barcodetrackR 242 

provides a number of functions useful for inferring the lineage biases of upstream progenitors 243 

from clonal tracking data. 244 

 245 

barcodetrackR is versatile and includes a user-friendly graphical user interface 246 

We highlight the versatility of barcodetrackR by analyzing clonal tracking data collected from 247 

TCR sequencing by visualizing the number of T cell clones detected and the Shannon diversity 248 

of longitudinal samples from X-SCID patients treated with HSPC gene therapy(24) (Fig. S4). 249 

The barcodetrackR package includes a graphical user interface (built using shiny(26)) to allow 250 

researchers without programming experience to use these advanced quantitative tools.  After 251 

uploading genetic tag count matrices and metadata, users can toggle between tabs corresponding 252 

to different visualizations and analyses. Within each tab, users can specify calculation and 253 

display methods to create reproducible analyses and publication-quality data visualizations. 254 

 255 
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DISCUSSION 256 

A recent gathering of over 30 researchers in the clonal tracking field (2018 StemCellMathLab 257 

workshop(20)) formalized a call for the development of open-source tools for the analysis of 258 

clonal tracking data in order to promote rigor and reproducibility within the field. Here, we 259 

provide and showcase our open-source R package barcodetrackR, which encompasses an 260 

extensive, flexible, and accessible set of tools in order to address these needs and serve as a 261 

critical foundation on which to build further analytical approaches in the clonal tracking field. 262 

While tools for the processing of the raw sequencing data from clonal tracking experiments have 263 

been previously developed (16), barcodetrackR represents the first formal tool dedicated to 264 

interrogating the underlying biology represented by these clonal abundances. As shown, 265 

barcodetrackR is a multifaceted toolkit and has diverse applications, underscoring the utility of 266 

using complementary data analysis methods and visualizations to probe biological hypotheses. 267 

The development and implementation of a shiny app further adds to the utility of the package by 268 

making it more accessible to the clonal tracking community, which continues to expand as 269 

sequencing costs decline and methodologies continue to improve. 270 

 271 

Although our package encompasses a large number of tools and methods, it is by no means an 272 

exhaustive toolbox, and we envision continuing to add to it in the future in order to address new 273 

biologic questions that arise. While the majority of prior clonal tracking experimental designs 274 

have precluded the acquisition of replicate samples and often encompassed few transplanted 275 

humans and/or animals, future studies will likely be able to acquire biological replicates in a 276 

number of different contexts to allow for more rigorous statistical testing of sample relationships 277 

and clonal dynamics. And while clustering methods to identify populations  of clones with 278 
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similar properties have thus far been limited to hierarchical(10) and k-means(6) in the literature, 279 

and to hierarchical clustering within barcodetrackR, the growing development of clustering 280 

frameworks of single cells in the scRNA-seq field may provide a future basis by which to 281 

identify clusters of clones based on longitudinal behavior and distribution across 282 

compartments(27). Furthermore, other challenges remain in the clonal tracking field, namely, the 283 

necessity for improved sharing and aggregating of data. We believe barcodetrackR can be of 284 

high utility to the clonal tracking field and serve as an important step towards building a more 285 

robust and reproducible analytical framework in the field. 286 

MATERIALS AND METHODS 287 

Package availability 288 

The barcodetrackR package is freely available from GitHub under a Creative Commons 0 289 

license and can be found at https://github.com/dunbarlabNIH/barcodetrackR. A frozen version of 290 

the package at the time of publication will be placed on Zenodo. The analytical and  visualization 291 

tools included in barcodetrackR rely on the ggplot2(28), vegan(29), proxy(30), and circlize(31) 292 

packages, as well as a number of packages in the tidyverse(28) suite. The user interface is built 293 

using the shiny package in R(26). barcodetrackR can be installed in R using the devtools(28) 294 

utility and the command  devtools::install_github("dunbarlabNIH/barcodetrackR"). Within the 295 

GitHub repository, we include a vignette illustrating the use of barcodetrackR on several 296 

published barcoding datasets, which is available as an R markdown file or in html format online 297 

at: https://dunbarlabNIH.github.io/barcodetrackR. All figures included in the manuscript were 298 

generated using the barcodetrackR package, and the R markdown file “create_all_figures.Rmd” 299 

is included in the barcodetrackR GitHub. 300 

 301 
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Dataset availability 302 

The datasets used in this study are publicly available from published barcoding experiments and 303 

detailed in Table 1. Data were pre-processed in R to create tabular data files amenable for entry 304 

into barcodetrackR, and these procedures are outlined in scripts within the inst/sample_data 305 

directory within the barcodetrackR package on GitHub. 306 

 307 

Data collection, genetic tag retrieval, and normalization 308 

Multiple clonal tracking methodologies exist in the literature(30), with the most recent methods 309 

relying on next-generation sequencing to retrieve lineage tracing elements. Several analysis 310 

pipelines exist for the retrieval and error-correction of lineage tracing elements from sequencing 311 

data(14–17). The experimental techniques utilized, the number of cells sampled, the level of 312 

tagged cell within the population, the sequencing platform applied, and the computational 313 

method of genetic tag extraction affect the number and frequency of tags detected in a lineage 314 

tracing study. 315 

 316 

The barcodetrackR package can operate on any dataset that contains rows as observations and 317 

columns as samples, regardless of which experimental method for genetic labelling and 318 

approaches for tag retrieval were used. When creating a SummarizedExperiment (SE) object 319 

from the publicly available Bioconductor repository(32) for input into barcodetrackR, users have 320 

the option of including a threshold to exclude low-abundance occurrences that are more likely to 321 

come from noise or sequencing error(2). Using a threshold of 0.005, for example, retains genetic 322 

tags which are present at an abundance of 0.5% or greater in at least one sample. Within this 323 
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paper, the Six, Elder, Espinoza, Wu, and Koelle datasets were used with a threshold of 0.0001. 324 

The Belderbos and Clarke datasets were used with no threshold. 325 

 326 

Instantiating a SE through the function create_SE automatically creates the following assays: 327 

counts: the raw values from the input dataframe, percentages: the per-column proportions of 328 

each entry in each column, ranks: the rank of each entry in each column, normalized: the 329 

normalized read values in counts-per million (CPM), and logs: the log of the normalized values. 330 

The default normalization is counts per million, and log-normalized values are calculated by 331 

taking the log of plus-one normalized data so that zeros are retained. Both the scale factor and 332 

the log base can be passed as arguments to the create_SE command. The use of an SE object 333 

permits the addition of custom assays to the object to facilitate flexibility (e.g. custom 334 

normalization strategies). 335 

 336 

Global clonal distributions 337 

Users can view correlations between samples on a grid using the cor_plot function, 338 

longitudinally using the autocor_plot function, or for two samples using the scatter_plot 339 

function. Choices for correlation measures include "pearson", "spearman", or "kendall." The 340 

functions include display parameters as inputs, such as whether to display correlation values in a 341 

cor_plot grid as color, colored circles, or showing the actual correlation value.   342 

 343 

The mds_plot function calculates dissimilarity indices between samples using any distance 344 

metric within the vegdist function from the R package vegan(29). At time of publication, these 345 

include "manhattan", "euclidean", "canberra", "clark", "bray", "kulczynski", "jaccard", 346 
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"gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", or "cao". 347 

The distance methods produce a matrix composed of the distances between samples, given the 348 

composition of genetic tags in each sample. Principal coordinates analysis is performed on the 349 

distance matrix using the base R function cmdscale in order to display dissimilarity between 350 

samples in two dimensions.  351 

 352 

Clonal diversity 353 

Three measures of within-sample diversity can be calculated by the function clonal_diversity: 354 

shannon diversity (H’) , simpson diversity (λ), and inverse-simpson, which is calculated as 1/λ. 355 

Their equations are as follows: 356 

 357 

�� �  � � ��  �	 ��

�

� ��

 


 �  �  ��
�

�

� ��

  

 358 

Where R is the total number of species (in this case genetic tags), and pi is the proportion of each 359 

gentic tag in the sample. Additionally, users can simply display the nominal count or Shannon 360 

count. Shannon count is calculated as: 361 

����	
�  �  � 

 362 

To accurately compare diversity between samples, the same number of labeled cells should be 363 

used as starting material for quantification. This is especially important when assessing diversity 364 
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based on the nominal count of genetic tags retrieved. Belderbos et al showed that the Shannon 365 

count is stable with respect to filtering thresholds and stays below the theoretical library size 366 

upon re-sampling(22). Therefore, in some cases, it may be beneficial to use Shannon count rather 367 

than nominal genetic tag counts when comparing diversity between samples.  368 

 369 

Clonal patterns 370 

Heat maps created by the function barcode_ggheatmap display clonal abundances across 371 

samples by coloring cells based on the log-normalized abundance of each clone. Users specify 372 

the ordering of samples along the x-axis and the number of clones displayed per sample. By 373 

default, the top clones from each sample are marked by a star, but the user can also choose to 374 

label each entry in the heatmap by percentage or number of reads. The function includes 375 

aesthetic parameters, such as the label size, percent scale, and color scale, which can also be 376 

easily controlled within the barcodetrackR graphical user interface.  377 

 378 

Under default settings for the heat map function, individual clones are hierarchically clustered 379 

along the y-axis based on their log-abundance (or other specified assay) across samples. Setting 380 

the “dendro” parameter to TRUE allows users to see this clustering and setting the “clusters” 381 

parameter to a non-zero value will label hierarchical clusters of clones. The dendrogram is drawn 382 

using ggdendro(33). Users can choose from a number of methods to calculate the distance metric 383 

(any method included in the proxy R package) and clustering ("ward.D", "ward.D2", "single", 384 

"complete", "average", "mcquitty", "median", or "centroid"). Clones can also be ordered by the 385 

first sample in which they had a non-zero abundance by setting the “row_order” parameter to 386 

“emergence.”  387 
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 388 

To track the emergence of clones over time, the function barcode_binary_heatmap will display a 389 

heatmap indicating the presence or absence of clones in each sample. The “threshold” parameter 390 

to the function dictates the limit of detection. Clones with percentage abundance below this 391 

threshold in a given sample will be set to “absent.” Clones are ordered in the binary heatmap 392 

based on the first sample in which they emerged (had a non-zero abundance).  393 

 394 

The function barcode_ggheatmap_stat allows users to quantify changes in clone abundance 395 

based on statistical testing. This function requires the sample size of cells for each sample which 396 

cannot be calculated from the genetic tag count data. The sample size should be the number of 397 

labeled cells before amplification, because this is the population of cells which the clonal 398 

tracking data represent. To compare barcode abundances between samples, users can choose 399 

from a “chi-squared” or “fisher” exact test. The tests operate on a contingency table for each 400 

clone to determine whether the clone changed in proportion based on the abundance and sample 401 

size. By default, each sample is compared to the previous, but users can also specify to compare 402 

each sample to a single reference sample (such as the initial time point) by setting the 403 

“stat_option” parameter to “reference.” The user can specify a p-value threshold to assign 404 

significance and can choose to display p-values on the heat map, rather than stars indicating 405 

statistically significant changes. Also, the user can specify to only show clones which increase or 406 

decrease in proportion through the “stat_display” parameter.   407 

 408 
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Clonal bias 409 

The ridge_plot function calculates bias as a continuous variable and displays the density of 410 

clones at each level of log bias. In order to calculate log bias between clones that are only present 411 

in one sample, log bias is calculated as followed within the ridge plot function: 412 

 413 

��� �����.�.�  �  ���2 � �. �. � 	�������������� �  �  1
�. �. � 	�������������� �  �  1� 

 414 

The normalized value is taken from the SE slot which is scaled to counts per million. The option 415 

to only analyze clones present in both samples is also included in the ridge_plot function through 416 

the parameter “remove_unique”. The density of clones at each value of log bias is estimated 417 

using the kernel density estimator included in the ggplot2 R package. When the “weighted” 418 

parameter is set to TRUE, the function weights the density estimation by the combined 419 

abundance of the clone between the two samples, calculated as: 420 

 421 

 �����	� �� 	��	� �  �. �. � 	�������������� �  �   �. �. � 	�������������� � 422 

 423 

Chord diagrams 424 

The circos_plot function utilizes the circlize package in R(31) to display shared clones between 425 

samples. Samples are shown as regions around a circle with their shared clonality shown as links 426 

between regions. With each unique combination, a new link is created with a unique color drawn 427 

from a sequential color palette. When the “weighted” option is set to “FALSE”, the function 428 

operates on the counts assay. Therefore, the length of each region around the circle represents the 429 
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number of clones detected in each sample, and the width of links between regions is proportional 430 

to the number of shared clones. When the “weighted” option is set to “TRUE”, the function 431 

operates on the percentages slot. Each region around the circle has the same length 432 

corresponding to 100%, and the links between regions correspond to the fractional abundance of 433 

the shared clones within each sample. Therefore, when the “weighted” option is set to “TRUE”, 434 

the same link can have a different width at each connection to a region.  435 
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TABLE 1: EXAMPLE DATASETS 552 

Dataset Description Dataset availability Reference 

Six et al Longitudinal clonal tracking of HSPC 

output in six human patients receiving 

lentivirally modified autologous HSPC 

transplants. Data from the Wiskott-

Aldrich syndrome patient WAS5 are 

selected for analysis.  

Downloadable from 

https://github.com/Bus

hmanLab/HSC_diversi

ty/tree/master/data 

(6) 

Belderbos et 

al 

Longitudinal clonal tracking of HSPC 

output in twelve mice receiving 

lentivirally barcoded HSPC transplants 

from eight human umbilical cord blood 

donors. Data from the xenograft mouse 

C21 are selected for analysis. 

Downloadable from 

the Supplementary 

materials section of 

https://doi.org/10.1016

/j.bbmt.2019.08.026. 

(22) 

Elder et al Longitudinal clonal tracking of 

primograft acute lymphoblastic 

leukaemia (ALL) blasts in serially-

infused NSG mice receiving 

lentivirally barcoded ALL blast cells. 

Data from the ALL sample L4951 are 

selected for analysis. 

GEO Accession No: 

GSE149170 

(23) 

Espinoza et 

al 

Longitudinal clonal tracking of HSPC 

output in one rhesus macaque in which 

a lentivirally mediated clonal 

expansion occurred after receiving a 

lentivirally barcoded autologous HSPC 

transplant. 

GEO Accession No: 

GSE153130 

(21) 

Wu et al Longitudinal clonal tracking of natural Downloadable from (10) 
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killer cell subsets in five rhesus 

macaques receiving lentivirally 

barcoded autologous HSPC transplants. 

Data from the macaque ZJ31 are 

selected for analysis. 

the 

SUPPLEMENTARY 

MATERIALS section 

of 

https://doi.org/10.1126

/sciimmunol.aat9781 

Koelle et al Longitudinal clonal tracking of HSPC 

output in five rhesus macaques 

receiving lentivirally barcoded 

autologous HSPC transplants. Data 

from the macaque ZH33 are selected 

for analysis. 

Downloadable from 

https://github.com/dun

barlabNIH/R-code-

and-tabular-data 

(8) 

Clarke et al Longitudinal clonal tracking of T cells 

in thirteen patients receiving 

lentivirally modified autologous HSPC 

transplants. Data from the X-linked 

severe combined immunodeficiency 

(X-SCID) patient U207 are selected for 

analysis. 

Downloadable from 

https://doi.org/10.5281

/zenodo.1256169 

(24) 

553 
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FIGURE LEGENDS 554 

Figure 1: Clonal tracking experimental design 555 

Clonal tracking experiments generally follow the depicted framework, which encompasses, in 556 

order, the genetic labelling of cells to create an integrated DNA tag, transplantation or adoptive 557 

transfer of these cells into a recipient, acquisition of cellular progeny from the recipient 558 

following transplantation or adoptive transfer, genetic tag retrieval from progeny cells followed 559 

by high-throughput sequencing, algorithmic quantification of detected individual unique tags, 560 

and finally, downstream analyses, where the barcodetrackR toolkit can be utilized. 561 

 562 

Figure 2: Global clonal distributions 563 

Global clonal distributions in the Six, Belderbos, and Elder datasets. Pairwise Pearson 564 

correlation plots between longitudinal samples from the Six dataset (A). Row and column labels 565 

indicate months post-transplant (m) and cell type (Gr, Granulocyte; Mo, Monocyte; NK, Natural 566 

Killer cell). Bray-Curtis dissimilarity indices between samples from the Six dataset (B), grouped 567 

by cell type and labeled based on months post-transplant. The x and y-axis represent the two 568 

main axes of variation after conducting principal coordinate analysis on the Bray-Curtis 569 

measures of dissimilarity (MDS). Pairwise Pearson correlation plots between samples from 570 

different anatomical sites of a single transplanted mouse at euthanasia from the Belderbos dataset 571 

(C). Row and columns labels describe the anatomical site (BM, Bone Marrow) followed by the 572 

cell type (U, Unsorted samples). Bray-Curtis dissimilarity indices between samples from the 573 

Belderbos dataset (D) grouped by the anatomical site and labeled by cell type. Pairwise Pearson 574 

correlation values between samples of the same set of serial xenograft transplants from the Elder 575 
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dataset (E). Row and column labels describe the animal code (e.g. AE12), followed by the 576 

anatomical site, then the serial transplant designation (pri, Primary; sec, Secondary, ter, 577 

Tertiary), followed by the donor animal code if it is a sec or ter sample. AE12 is the primary 578 

recipient of ALL blast cells, AE32 is the secondary recipient receiving cells from the primary 579 

animal AE12, and AE88, AE89, AE90 are tertiary recipients receiving cells from AE32. Bray-580 

Curtis dissimilarity indices between samples from the Elder dataset (F) colored by the mouse of 581 

origin and labeled by the anatomical site.  582 

 583 

Figure 3: Measures of clonal diversity 584 

Number of detected clones and Shannon diversity of clones in the Six, Belderbos, and Espinoza 585 

datasets. The number of clones detected in each lineage (A) and the Shannon diversity index of 586 

each sample (B) from the Six dataset. The number of clones detected in each lineage (C) and the 587 

Shannon diversity index of each sample (D) from the Belderbos dataset. The number of clones 588 

detected in each lineage (E) and the Shannon diversity index of each sample (F) from the 589 

Espinoza dataset. X-axes show months, weeks or days post-transplant with “sac” corresponding 590 

to the timepoint of euthanasia in the Belderbos dataset. The clone count reflects the number of 591 

unique clones detected in each sample, not the cumulative count at each timepoint. Shannon 592 

diversity is calculated on a per-sample basis based on the clonal population of each sample, not 593 

the cumulative number of clones. Gr, Granulocyte; Mo, Monocyte; bulk, unsorted population; 594 

CD34p, CD34 positive cell; nRBC, nucleated Red Blood Cell 595 

 596 

Figure 4: Longitudinal clonal patterns 597 

Clonal dynamics of NK cells from the Wu dataset. (A) Binary heat map showing the presence 598 
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(blue) or absence (white) of 11,799 individual clones detected at a proportion of 0.01% or greater 599 

in at least one NK cell sample from the Wu et al dataset. Columns represent samples and rows 600 

represent individual clones ordered by their first time point of detection. (B) Heat map showing 601 

the log normalized counts of the top ten clones from each NK cell sample from the Wu dataset. 602 

Overlaid asterisks indicate which clone is one of the top ten contributing clones for each sample, 603 

and clones are ordered on the y-axis based on hierarchical clustering of their Euclidean distances 604 

between their log normalized counts across samples. (C) Heat map depicting the same log 605 

normalized count values as in (B) but with overlaid asterisks instead indicating which clones 606 

significantly changed in proportion from the previous sample based on a p-value of < 0.05 607 

assessed by a chi-squared test of proportions. m, months post-transplant; NK 16, CD3-CD14-608 

CD20-CD56-CD16+ NK cells. 609 

 610 

Figure 5: Lineage bias 611 

Comparison of myeloid-lymphoid lineage bias in the Six and Koelle datasets. Ridge plot shows 612 

clonal bias between Gr and T lineages at multiple timepoints of the Six dataset (A) and the 613 

Koelle dataset (C). Ridges indicate the density of clones at the value of log-bias on the x-axes, 614 

and dots indicate individual clones, sized by their overall abundance. Multiple ridge plots along 615 

the y-axes correspond to the time point of each sample in months post-transplant. Chord diagram 616 

showing shared clonality between Gr, T, and Mo lineages from Six et al (B) and Koelle et al (D) 617 

datasets. Each uniquely colored chord represents a unique combination of lineages, and the width 618 

of each chord as it intersects with a lineage indicates the proportional contribution of that group 619 

of clones to that lineage. The space around the perimeter without a chord indicates the 620 

percentage contribution of unilineage clones. Gr, Granulocyte; Mo, Monocyte. 621 
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 622 

Figure S1: Cumulative clone counts from the Six, Belderbos, and Espinoza datasets 623 

The cumulative count of unique clones detected in each lineage across longitudinal samples from 624 

the Six (A), Belderbos (B), and Espinoza (C) datasets. X-axes show months, weeks or days post-625 

transplant with “sac” corresponding to the timepoint of euthanasia in the Belderbos dataset.  Gr, 626 

Granulocyte; Mo, Monocyte; bulk, unsorted population; CD34p, CD34 positive cell; nRBC, 627 

nucleated Red Blood Cell 628 

 629 

Figure S2: Systematic analysis of lineage bias in the Six dataset 630 

Ridge plots comparing the lineage bias at multiple time points between all pairwise combinations 631 

of lineages from the Six dataset not shown in Fig. 5 (A-C, E-G, I-K). Ridges indicate the density 632 

of clones at the value of log-bias on the x-axes, and dots indicate individual clones, sized by their 633 

overall abundance. Multiple ridge plots along the y-axes correspond to the time point of each 634 

sample in months post-transplant. Chord diagram showing shared clonality between Gr, B, and 635 

Mo lineages (D), Gr, NK, and Mo lineages (H), and T, B, and NK lineages (L) from Six et al. 636 

Each uniquely colored chord represents a unique combination of lineages, and the width of each 637 

chord as it intersects with a lineage indicates the proportional contribution of that group of clones 638 

to that lineage. The space around the perimeter without a chord indicates the percentage 639 

contribution of unilineage clones. Gr, Granulocyte; Mo, Monocyte; NK, Natural Killer cell. 640 

 641 

Figure S3: Systematic analysis of lineage bias in the Koelle dataset 642 

Ridge plots comparing the lineage bias at multiple time points between Gr and Mo lineages (A) 643 

and Mo and T lineages (B) from the Koelle dataset. Comparison of the Gr and T lineage is 644 
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shown in Fig. 5.  Ridges indicate the density of clones at the value of log-bias on the x-axes, and 645 

dots indicate individual clones, sized by their overall abundance. Multiple ridge plots along the 646 

y-axes correspond to the time point of each sample in months post-transplant. Gr, Granulocyte; 647 

Mo, Monocyte. 648 

 649 

Figure S4: Clonal diversity from TCR sequencing data 650 

The number of T cell clones detected at each timepoint (A) and the Shannon diversity (B) of T 651 

cell clones in each sample from the Clarke et al dataset (Table 1). Clone counts represent the 652 

number of unique TCR sequences detected at each point not the cumulative number of clones. 653 

Multiple replicates are shown at the 4, 6, 18, and 24 month time points, as described in Clarke et 654 

al(24). Each color represents an independent replicate. The x-axes represent months post-655 

transplant. 656 
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