New Results
Cell-ID: gene signature extraction and cell identity recognition at individual cell level
View ORCID ProfileCortal Akira, View ORCID ProfileMartignetti Loredana, View ORCID ProfileSix Emmanuelle, View ORCID ProfileRausell Antonio
doi: https://doi.org/10.1101/2020.07.23.215525
Cortal Akira
1Paris University, Imagine Institute, 75015 Paris, France, EU
2Clinical Bioinformatics Laboratory, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France, EU
Martignetti Loredana
1Paris University, Imagine Institute, 75015 Paris, France, EU
2Clinical Bioinformatics Laboratory, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France, EU
Six Emmanuelle
1Paris University, Imagine Institute, 75015 Paris, France, EU
3Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
Rausell Antonio
1Paris University, Imagine Institute, 75015 Paris, France, EU
2Clinical Bioinformatics Laboratory, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France, EU
Posted July 23, 2020.
Cell-ID: gene signature extraction and cell identity recognition at individual cell level
Cortal Akira, Martignetti Loredana, Six Emmanuelle, Rausell Antonio
bioRxiv 2020.07.23.215525; doi: https://doi.org/10.1101/2020.07.23.215525
Subject Area
Subject Areas
- Biochemistry (13191)
- Bioengineering (10032)
- Bioinformatics (32146)
- Biophysics (16565)
- Cancer Biology (13640)
- Cell Biology (19389)
- Clinical Trials (138)
- Developmental Biology (10477)
- Ecology (15545)
- Epidemiology (2067)
- Evolutionary Biology (19848)
- Genetics (13120)
- Genomics (18174)
- Immunology (13279)
- Microbiology (31110)
- Molecular Biology (12944)
- Neuroscience (67871)
- Paleontology (496)
- Pathology (2091)
- Pharmacology and Toxicology (3625)
- Physiology (5654)
- Plant Biology (11647)
- Synthetic Biology (3254)
- Systems Biology (7945)
- Zoology (1796)