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Antimicrobial resistance is a major global health threat and its development is promoted
by antibiotic misuse. While disk diffusion antibiotic susceptibility testing (AST, also called
antibiogram) is broadly used to test for antibiotic resistance in bacterial infections, it faces
strong criticism because of inter-operator variability and the complexity of interpretative
reading. Automatic reading systems address these issues, but are not always adapted or avail-
able to resource-limited settings. We present the first artificial intelligence (AI)-based, offline
smartphone application for antibiogram analysis. The application captures images with the
phone’s camera, and the user is guided throughout the analysis on the same device by a
user-friendly graphical interface. An embedded expert system validates the coherence of the
antibiogram data and provides interpreted results. The fully automatic measurement pro-
cedure of our application’s reading system achieves an overall agreement of 90% on suscep-
tibility categorization against a hospital-standard automatic system and 98% against man-
ual measurement (gold standard), with reduced inter-operator variability. The application’s
performance showed that the automatic reading of antibiotic resistance testing is entirely
feasible on a smartphone. Moreover our application is suited for resource-limited settings,
and therefore has the potential to significantly increase patients’ access to AST worldwide.
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1 Introduction

The development of new antimicrobial agents is currently outpaced by the emergence of new an-
timicrobial resistance1 (AMR). The appearance and diffusion of AMR has become a serious health
threat2, whose magnitude is not yet fully understood because of the lack of data, especially in areas
where the access to antimicrobial susceptibility testing is difficult. A high-profile review3 forecasts
ten million deaths worldwide by 2050. Although these numbers have been criticized2, these studies
underline the critical health burden of AMR and the need for global data2, 4.

Testing the susceptibility of bacteria is important for patient treatment and, if done system-
atically, gathering data can provide precious epidemiological information. Different test methods5

exist. Arguably the most widely used is the Kirby-Bauer disk diffusion test.

In this test, cellulose disks (pellets) containing antibiotics at a given concentration are placed
in a Petri dish with an agar-based growth medium previously inoculated with bacteria. While the
plate is left to incubate, the antibiotic diffuses from the pellet into the agar. The antibiotic concen-
tration is highest near a pellet and decreases radially as the distance from the disk increases6. The
bacteria cannot grow around those disks that contain antibiotics to which they are susceptible. The
growth of the bacterial colony stops at a distance from the pellet which corresponds to a critical an-
tibiotic concentration, forming a visible bacteria-free area around the cellulose disk. This is called
a zone of inhibition. After incubation, the diameter of the zone of inhibition around each antibiotic
disk is measured: the categorization of the microorganisms as susceptible (S) Intermediate (I) or
Resistant (R) is obtained by comparison of the diameter against standard breakpoints7 established
by international committees such as the European Committee on Anitimicrobial Susceptibility
Testing (EUCAST) or the Clinical and Laboratory Standards Institute (CLSI) 8.

The disk diffusion method is relatively simple, can be performed entirely by hand, requires
no advanced hardware, and has a low cost. However, it is criticized for several reasons. First, it
is labor-intensive and time-consuming. Second, it is subject to important inter-operator variabil-
ity: accurate performance of disk diffusion testing relies on proficient technicians, starting with
the quality of plate preparation (e.g. inoculum, purity)9. The diameter of the inhibition zone is
measured by eye with a caliper or ruler and approximated to the closest millimeter10. However, the
inhibition zone might not be a perfect disk (e.g. if the inhibition zone overlap) or if the pellet is too
close to the border of the dish (see below, Figure 6a, f and h). In this case the problem of measuring
a diameter is ill-posed and, together with intrinsic measurement error, introduces subjectivity and
inter-operator variability in the measurement. Third, it requires an advanced level of expertise for
interpretation. Sometimes, the inhibition zone diameter is not sufficient by itself to determine the
susceptibility. Indeed, several mechanisms of resistance are expressed at a low level in vitro but
have major impact in vivo and can lead to treatment failure. Moreover, susceptibility to a whole
class of antibiotics or a given molecule class can sometimes be inferred from the susceptibility to
another one, thus reducing the number of required tests. In those cases, interpretative reading is
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needed. Interpretation is based on expert rules published and updated by scientific societies, such
as EUCAST in Europe11.

Automatic reading systems have been introduced to alleviate the drawbacks of disk diffusion
AST 12, 13. These systems acquire pictures of the plate and automatically measure the diameters
of the inhibition zones. Most of them include an expert system which can elaborate interpreted
results. It helps mitigate the risk that the laboratory reports erroneous susceptibility results and
ensures compliance with regulatory guidelines. Commercial devices14–16 that automatically read
antibiograms are commonly used in hospitals and laboratories, but the procedures they use are
not fully disclosed. These systems aim towards great and flawless automation and a high degree of
standardization of the culturing procedures in order to concurrently increase quality and turnaround
times. These needs are not the same in resources-limited hospitals, where AST might be not
implemented at all.

Because of their price, and hardware and infrastructure requirements, these systems are not
suited to resource-limited settings such as dispensaries or hospitals in resource-limited settings.
Affordable solutions are few. Image processing algorithms for automatic measuring inhibition
diameters have been published 17–21. Among these, only AntibiogramJ21 presents a fully functional
user-friendly software, but it operates on a desktop computer onto which the images need to be
previously transferred. We believe that reducing hardware requirements to just a smartphone is
key for the adoption and diffusion of such a tool. Moreover, smartphone applications are easy to
adopt and use if they follow established design patterns, and they benefit from an ecosystem which
facilitates setup and updates.

1.1 An all-in-one smartphone app for AST reading

This paper introduces the first fully offline mobile applicationI (the App hereafter) capable of
analyzing disk diffusion ASTs and yielding interpreted results, operating entirely on a smartphone.
The need of such an application was identified by Médecins Sans Frontières (MSF), who often
operates in low and middle income countries (LMIC) where AST is difficult or impossible to
implement. The MSF Foundation brought together the people and skills needed for this application
to be developed, truly believing that the App can have a great impact on the fields where MSF
operates and the global fight against AMR.

The App combines original algorithms, using machine learning (ML) and image processing,
with a rule-based expert system, for automatic AST analysis (see Figure 1). It embeds a clinically
tested third-party expert system13, 15 which could compensate for a lack of microbiology expertise.
The user is guided throughout the whole analysis and can interact at any step with the user-friendly
graphical interface of the application to verify and possibly correct the automatic measurements

Ihttps://fondation.msf.fr/en/projects/antibiogo
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Figure 1: Analysis of an AST plate with the App. A prepared and incubated Petri dish (a) is positioned
in a simple image acquisition setup made of cardboard (b) as stand we used two containers available in the
laboratory. A picture of the plate is taken with a smartphone and the analysis follows the workflow described
in (c): the Petri dish image is cropped and the antibiotic disks are found (c1); the image of each antibiotic
disk is fed to a ML model that identifies the antibiotic (c2); the diameter of the inhibition zone is measured
(c3) with an original algorithm. Finally, the Expert System uses the diameters to output interpreted results
(c4).
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if needed. The whole analysis takes place on the same smartphone used to acquire the picture
of the AST. Since it does not require any hardware other than a basic Android smartphone, and
because it works completely offline (without internet connection), the App is suited for resource-
limited settings. Therefore, the App could help fill the digital gap, increase patients’ access to
AST worldwide and possibly facilitate the collection of epidemiological data on antimicrobial
resistances, the lack of which is recognized today as a major health danger2, 4.

In fact, the main aim of this application is to facilitate the adoption of the disk diffusion AST
in resources-limited hospitals and laboratories where this test is not available yet. The App pursues
this objective by partially alleviating the need of expert human resources, making the reading more
reliable and provifing interpreted results. Therefore this application does not want to compete with
high-end commercial systems, which can count on dedicated hardware. Nevertheless, in order to
be reliable, it is fundamental that the App fulfills the minimum viable performance requirements,
as we show in this work.

In the following, we demonstrate that the App’s performance is similar to that obtained
with a commercial system and conform to manual reading (considered as the gold standard10).
The application’s full automatic procedure is evaluated on antibiograms prepared in laboratory
conditions both on standard and blood-enriched agar. Moreover, we explore the feasibility of a
ML-based automatic detection of resistance mechanisms recognizable by peculiar shapes of the
inhibition zones.

1.2 Image processing

The App presented in this paper is the first automatic AST reading system capable of running the
whole analysis of a disk-diffusion antibiogram offline on mobile devices, from image acquisition
to interpreted results. It helps laboratory technicians throughout the whole analysis process, sug-
gesting measurements, results and interpretations. The App can be summarized in three major
components:

• an dedicated image processing module (IP) that reads and analyzes the AST image,

• an expert system (ES) responsible for the interpretation of the data extracted by IP,

• a Graphical User Interface (GUI) that allows the execution of IP and ES on a smartphone.

The application’s IP moduleII implements a novel algorithm for the measurement of the
inhibition diameters (described in Methods) and uses ML for the identification of the antibiotic
disks, which is unprecedented in this kind of applications. The IP module consists in a C++ library

IIavailable at https://mpascucci.github.io/AST-image-processing
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developed on OpenCV22 and Tensorflow23. The choice of C++ makes our library exploitable in
various contexts, including desktop computers and Android and iOS mobile devices. Moreover,
the library has a Python wrapper, useful for application prototyping, image batch processing and
benchmarking.

The App includes an expert system capable of performing coherence checks on the raw
susceptibility and providing interpreted results, with extrapolation on non-tested antibiotics and
clinical commentaries. The expert system’s knowledge base is provided and regularly updated by
i2a (Montpellier, France)13 and based on up-to-date EUCAST expert rules11. The expert system’s
engine was completely developed in TypeScript and works completely offline within the App.

Commercial AST reading systems use built-in image acquisition devices (cameras and scan-
ners) to ensure input consistency. The App works on images of ASTs taken directly with the
phone’s camera, with no additional external acquisition hardware. This inevitably introduces a
certain variability in the image quality. We tackle this issue by introducing a simple set of guide-
lines for image acquisition (see supplementary 7.1). These guidelines are designed to optimize
image quality, and therefore to reduce the need of heavy post-processing and the risk of numerical
artifacts. For the same reason, perspective distortions are not corrected. Instead, we developed a
simple acquisition setup (Figure 1) which ensures parallelism between the dish and the camera’s
image plane. The acquisition guidelines are conceived to be inexpensive and easy to implement
and integrate in the laboratory routine. Since smartphone cameras are not designed for quantitative
measurements, we provide a simple method to assess the camera’s optical distortions with a numer-
ically generated AST image. Moreover, while taking the picture, the application uses the device’s
gyroscopes and accelerometer, if available, to force the device orientation (parallel to ground, to
avoid perspective distortions) and stability (to avoid motion blur). The application also displays
a visual frame that helps center the Petri dish in the picture. Although Petri dishes have standard
shapes (square or disk), we do not rely on this assumption for the analysis.

The IP module analyzes an AST picture in three different sequential stages: plate cropping,
detection of antibiotic disks and inhibition diameter measurement. The resulting diameters are used
to categorize the susceptibility of the bacteria and interpret the results. These stages are described
in Methods and summarized in Figure 1. Once the antibiogram picture is taken, the Petri dish is
cropped out, the antibiotic disks are found and classified according to their label, the diameter of
the inhibition zones is measured and translated into susceptibility results. At this point the expert
system verifies the coherence of the measurements to highlight possible errors and finally returns
the interpreted results. Some screenshots of the App are shown in Figure 2 and a complete video
demo is available onlineIII.

IIIhttps://youtu.be/0hNr9zTu6ig
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Figure 2: Screenshots of the App in action. Left image: the App displays a zoomed image of an inhibition
zone and indicates with a dashed circle the automatically measured diameter and the detected antibiotic.
The user can edit the results with the controls below the image. Central image: the application can ask the
users if they see the peculiar shapes of inhibition zones associated with certain resistance mechanism. Right
image: at the end of the analysis, the interpreted results are shown to the user.
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AST set Plates Antibiotics Growth medium Petri dish shape Raters control
A1 570 8168 MH square 1 SIRscan
A2 75 649 blood mixed 1 SIRscan
A3 8 98 MH circular 8 manual

Table 1: Description of the AST sets used for the performance evaluation of the automatic reading. For
each data-set the columns indicate: the number of single Petri dishes in the data-set, the corresponding total
number of antibiotic disks, the type of growth medium, the shape of the plates, the number of independet
raters measuring the diameters, the reference used as control diameter.

1.3 Preparation of antibiotic susceptibility tests

In order to evaluate the App’s performances we ran the fully automatic analysis procedure (without
any manual intervention or correction) on three sets of antibiograms (A1-3) described in Table 1.

AST groups A1 and A2 consist of 571 and 74 antibiograms prepared during working routine
in the microbiology laboratory of the University Hospital in Créteil, France. The samples were
collected from patients of the hospital and the preparation and analysis of the AST was not designed
primarily for our study but followed the normal hospital procedures. AST set A3 consists of 8
Petri dishes prepared in the Hospital of Médecins Sans Frontières in Amman, Jordan. In the case
of this set, the plates were inoculated with microorganisms purchased from the American Type
Culture Collection (ATCC) and routinely used for quality control. Such strains are among the
main pathogens and have known inhibition diameters to various antibiotics. Species distribution,
preparation information and other details are reported in the Methods for all three sets.

1.4 Data acquisition

All plates in AST groups A1 and A2 were imaged with a smartphone camera (Honor 6x with a
resolution of 12megapixel). Since the App was still under development at the time these images
were taken, we used the default Android camera application for acquisition. Then the images were
analyzed with the App’s full automatic procedure (without manual intervention). As control inhi-
bition diameters for sets A1 and A2 we collected the measurements effectuated by the laboratory
technician using a commercial automatic reading system (SIRscan13, i2a, Montpellier, France).
The control diameters measured by the technicians with the SIRscan system were extracted ret-
rospectively from the hospital database, since these antibiograms were performed during routine
analysis in the hospital. The SIRscan system allows for correction on automatic measurements.
Nevertheless, for productivity reasons, the technician did not always adjust the diameters if the
adjustment did not yield a different categorization result, therefore diameters can be unadjusted
even if they give the right susceptibility categorization.
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Figure 3: A few problematic images have been identified in the dataset. They correspond to damaged plates
(a) and images with very poor visible contrast between the bacteria and the inhibition (b). Even by eye, it is
difficult to clearly identify all the inhibition zones in these cases. For comparison, a standard image looks
like (c). The coupled effect of bacteria pigmentation and variable illumination produces a considerable
variability in the bacteria-to-inhibition intensity contrast (a,b,c). The histogram in (d) shows the distribution
of image contrast for standard and problematic images in AST set A1 (the contrast is defined here as the
difference between the central intensity level of bacteria and inhibition): problematic images (in red) are a
small fraction of the total, mainly concentrated in the lower contrast region. Finally, (e) shows the observed
mean diameter difference versus contrast: low contrast images yield worse results.
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Among the pictures of AST groups A1 and A2, we selected standard and problematic pic-
tures according to the following criterion: if for more than two antibiotics in the picture we found
an absolute diameter difference between the App and control values of more than 20mm, we con-
sidered the picture problematic, otherwise it was considered standard. The problematic images are
often associated with plates with defects or show very low inhibition-to-bacteria intensity contrast
(due to low bacteria pigmentation and/or low illumination conditions). Nevertheless most of the
low contrast images in A1 and A2 where classified as standard (see Figure 3).

All plates in A3 were imaged with the App on a smartphone (Samsung A10, 12megapixel

camera) by eight different laboratory technicians to take into account inter-operator variability
(e.g. plate position, contrast and random noise, see Figure 6h,i,j). The resulting 64 images were
analyzed with the App ’s full automatic procedure. As a control, each AST was measured manually
with a ruler by the same eight lab technicians. In this way, each inhibition diameter was measured
eight times.

1.5 Benchmark

The diameters of the inhibition zones read with the App’s automatic procedure were compared
with the control diameters. For every diameter, we calculated the absolute difference with the cor-
responding control value. The susceptibility categorization (SIR) of the antibiotics was made for
both the App’s procedure and control, by comparing the inhibition diameter of each antibiotic to
the breakpoint defined in the EUCAST guidelines7. Antibiotics for which a breakpoint was not
provided are excluded. In order to evaluate the App’s performance, we compared the susceptibility
categorization of the automatic procedure to the control one. Following the same terminology pro-
posed by 17, 20, 21, we calculated the agreement as the rate of identical categorization; disagreement
is classified as very-major, major and minor. Very-major disagreement occurs when an antibiotic
is categorized S (Susceptible) while the control is R (Resistant), major error corresponds to a cate-
gorization of R with control S and minor disagreement is any other categorization error involving
the Intermediate value I (Intermediate). As a measure of agreement between the App and control,
we calculated the unweighted Cohen’s kappa-index24.
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2 Results

2.1 Image processing performance

The App’s IP procedure proved its reliability at each step. For each data-set, the photos were
automatically cropped to isolate the Petri dish. The automatic crop procedure never failed if the
image respected the acquisition protocol (see Supplementary 7.1). The automatic pellet detection
correctly found all antibiotic pellets in A1 and A2. In A3 0.5% of pellets where missed (false neg-
atives). Half of the missed pellet show visible flaws (see Figure 11) and should not be considered
in the analysis, according to experts advice. False positives never occurred (other objects wrongly
identified as pellets). In case a pellet was missed, the users can add it with the help of the graphical
interface.

The antibiotic labels were always correctly interpreted in A3, even if the image was not
perfectly focused or the text was damaged (by bad printing or by positioning it with tweezers). In
data-sets A1 and A2 the accuracy was 98%. Misclassification happened in cases of very poorly
printed labels or for pellets from non-supported providers, on which the ML model was not trained.
To overcome this problem, in the app we calculate a confidence value for each classification yielded
by the model in order to reject misclassified labels and ask the user to identify them by eye (see
Supplementary 7.3 for detailed results). Moreover, since the whole process is supervised by the
user, misclassifications can easily be corrected.

Furthermore, we demonstrate a proof of concept for the ML classification of resistance mech-
anisms. We examined two clinically-relevant resistance mechanisms that are traditionally detected
by the presence of non-circular inhibition zones. By training simple convolutional neural net-
work models on the relevant portions of AST images, we obtained encouraging results: Accuracy
higher than 99.7% in detecting induction (indicative of MLSb-inducible resistant Staphylococcus
aureus) and 98% in detecting synergy indicative of ESBL production (see Supplementary 7.5 and
7.6). However, due to user experience considerations in combination with concerns about model
transferability, we ultimately determined not to incorporate these resistance mechanism-detecting
models into the App. We do not exclude reconsidering this approach in future version of the ap-
plication if we can generalize it to a larger and diverse data-set. Instead, every time a resistance
mechanism can appear in a culture (given the bacteria species and the tested antibiotics) the ap-
plication will systematically ask the user to verify the presence of the associated shape, showing
illustrated examples (see Figure 2).

2.2 Susceptibility categorization

Our new diameter measurement approach yielded good classification results over most of the avail-
able images, as showed in Table 2. Only a small fraction of the pictures, classified as problematic
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AST set Control Images Antibiotics % Agreement disagreement (%) kappa

very major major minor

A1
overall SIRscan 570 7334 90 54 (0.7) 428 (5.8) 270 (3.7) 0.77
standard SIRscan 561 7223 90 46 (0.6) 390 (5.4) 269 (3.7) 0.77
problematic SIRscan 9 111 58 8 (7.2) 38 (34.2) 1 (0.9) 0.12

A2
overall SIRscan 75 534 91 4 (0.7) 36 (6.7) 6 (1.1) 0.71
standard SIRscan 73 509 95 4 (0.8) 16 (3.1) 4 (0.8) 0.83
problematic SIRscan 2 25 12 0 (0) 20 (80.0) 2 (8.0) 0.01

A3
overall manual 64 776 95 3 (0.4) 7 (0.9) 27 (3.5) -
overall manual (av.) 64 97 98 1 (1.03) 0 (0.0) 1 (1.03) 0.96

Table 2: Categorization agreement between the App automatic procedure and control. The number of
antibiotic reported here is the number of those for which clinical breakpoints are provided by the EUCAST7.
The lines of this table present the agreement/disagreement for all antibiogram sets (A1, A2 and A3). For each
line we specify: the control of diameter values, the number of analyzed images and corresponding antibiotic
pellets, the agreement and disagreement (as defined in the text), the Cohen’s Kappa coefficient as another
measure of agreement. The label “overall” means that all pictures are considered, whereas “standard” and
“problematic” stand for the respective images subsets (see Benchmark section). The plates in sets A1 and
A3 were grown on standard Mueller-Hinton (MH) growth medium, whereas we used blood enriched MH
in A2. In the last line of the table, “av.” stands for average. In this line we used as control diameters the
average value across the measurements of all eight technicians.
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Figure 4: Visualization of the benchmark results on data-set A3. The histograms (a,b) show the distribution
of the absolute diameter differences between the App’s automatic procedure (auto) and the manual measure-
ment with ruler (a) as well as with the diameter adjusted on the smartphone by the technicians (assisted, b).
On the right, the heat-maps show the average absolute measurement difference among the eight technicians
(given 2 readers i and j, square i, j represents the difference between them) measuring with the ruler (c) and
in assisted mode with the App (d). The assisted measure seems to reduce inter-operator variability.

in Table 2 (1.5%, 2.6% and 0 in A1, A2 and A3 respectively), produced major discrepancies.
Details, metrics and a discussion on image contrast can be found in Methods, and in the sup-
plementary material (Table 4 and Radial profiles). Overall, diameter measurements allowed a
susceptibility categorization agreement of at least 90% for all three antibiogram sets (all images
included). The categorization results are reported in Table 2.

The actual distribution of the diameter differences among manual, automatic and assisted
(corrected by the user) readings of A3 are shown in Figure 4. In general, we observe that the
manual measurements (done with a ruler) are on average slightly larger than the automatic and
assisted ones. The assisted measurements are done by the technicians directly on a smartphone.
The graphical interface displays a circle centered on the antibiotic disk that the user can adjust in
diameter until it fits the zone of inhibition. With this kind of visualization, the measurement is
easier and more accurate than the one done with a segment (which is the case of the ruler). We
argue that most of the diameter difference between automatic reading and control are due to the
difficulty of measuring with a ruler the diameter of inhibition zones which are not perfectly circular
(see Figure 11 and Figure 6). Instead, more accurate measurements are obtained by adjusting a
circular guide as in the App. The positive effect of measuring with the App is also visible in
Figure 4, which displays the inter-operator average diameter difference. As expected, we observe
that using the App lowered inter-operator variability.

The choices we made in building the App and the acquisition setup are made in order to facil-
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itate its adoption in the laboratory routine in low-resource settings. The counterpart of this choice
is a certain difficulty in obtaining a constant image quality (notably because of the intrinsic vari-
ability of smartphone hardware and software). The acquisition setup and GUI assistance are there
to limit this variability, but can not standardize the image acquisition at the level of commercial
systems with dedicated hardware. Nevertheless the data in this study display a certain variability
(especially in contrast, as shown in Figure 3) with which the application’s IP could easily cope.
Strong light reflections and other important issues will result in evident wrong readings, which are
easily detectable by eye with the App’s user interface. We remarked that, even without training,
users can easily notice such problems and adapt the acquisition setup in order to eliminate them in
future acquisitions.

Finally, we compared the App to other existing systems. The categorization agreement and
errors observed in this studies among the App’s automatic procedure and control are similar to
those of other systems (free and commercial) found in the literature (see Supplementary Table 5).
The image treatment has been designed to perform on mobile devices, and does not require the
user’s intervention to optimize image features (e.g. contrast). We obtained consistent results even
by down-scaling the antibiogram pictures up to a resolution of 1megapixel (see Supplementary
Table 6). The whole reading of one antibiogram (12megapixel picture, 16 antibiotic disks) takes
less than 1 s on a PC using one 2.3GHz Intel Core i5 processor, 1.5 s on a high-end smartphone
(Pixel 3 released in 2018) and 6.6 s on a low-end smartphone (Samsung A10), still much faster
than manual reading.

For the matter of hardware compatibility, as of now, we have tested three smartphone models
(Google Pixel 3A, Honor 6x, Samsung A10) ranging from high- to low-end. We thoroughly tested
the most affordable and available model (Samsung A10) and can recommend it as a trusted device.
In the future, we will maintain a list of recommended devices associated with the App.

3 Discussions

In this paper we have presented the first fully-offline smartphone application capable of analyzing
disk-diffusion antibiograms. The App assists the user in taking a picture of an disk diffusion AST
plate, measuring and categorizing zones of inhibition, and interpreting the results. The analysis is
performed entirely on the same device used to acquire the picture of the antibiogram.

The App shows performances similar to other existing automatic reading systems. In par-
ticular, the automatic inhibition zone diameter reading is consistent with manual reading (gold
standard). The observed accuracy is therefore considered satisfactory for usage in an AST reading
system assistant. A user-friendly interface makes it easy for the user to adjust the automatic re-
sults if needed. We tested the App on antibiograms prepared with standard Mueller-Hinton (MH)
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growth medium as well as with MH supplemented with blood, used for fastidious organisms and
obtained similar results.

We built and trained two ML-based image classification models to identify resistance mech-
anisms. The accuracy results are encouraging, but given the relatively small training sets, we
consider the risk of over-fitting too high for the scope of such a medical device. Nevertheless,
these cases are handled by the integrated Expert System, which asks the user to confirm/exclude
the presence of such shapes, when likely to happen.

The App aims to encourage the implementation of disk diffusion AST in resources-limited
hospitals and laboratories where antibiograms are not routinely used or poorly interpreted. It does
this by simplifying the measurement task and by providing an interpretation tool, offline, on a
simple smartphone with camera. The App is part of the mobile-Health25 (mHealth) revolution,
which aims to increase patients’ access to testing, to aid in their treatment and to decrease the
digital gap in the world. Our hope is that, the App could help fill the digital gap and increase
patients’ access to AST worldwide.

Further clinical investigations using the App in MSF hospitals will estimate the patient ben-
efit enabled by AI-based antibiotic resistance testing. Pending the results, the mobile application
will be released and open-sourced to the public under the name of AntigbioGo. The App will
support selective reporting of antibiotic sensitivity26, an important component of the an antibiotic
stewardship strategy. It will offer the option of contributing data to global AMR surveillance with
institutional bodies in place such as the WHO program GLASS IV (Global Antimicrobial Resis-
tance Surveillance System) and/or WHOnet V in order to facilitate the collection of epidemiological
data on antimicrobial resistances.

4 Data Availability

The datasets analysed during the current study are available at this URL: http://stat.genopole.
cnrs.fr/ast.zip. The data used for training the ESBL and D-SHAPE proof-of-principle
models are available from The MSF Foundation upon reasonable request.

IVG.L.A.S.S. https://www.who.int/glass/en
VWHOnet https://whonet.org
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5 Code Availability

The image processing library described in this paper is distributed as open-source softwareVI. As
of today, The App and its source code are available for research purposes upon request VII. We plan
to release the App as open-source software after approval of the CE authority as a clinical device.
Fondation Médecins sans Frontières sees the CE mark of its app solution (as a self-certified IVD
SW) as a means to demonstrate and communicate on the quality and robustness of this digital
tool for a non-profit. Waiting to comply to the IVDD Directive 98/79, they do not want to grant
open access until they get this certification, as it could imply legal pursuit in France for the legal
manufacturer (Fondation MSF) distributing a medical device without certification.
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Figure 5: Distribution of species in the AST groups used for benchmarking.

6 Methods

6.1 Detail of the AST sets

In this section we give a detailed description of the AST data-sets used for benchmark. The specific
characteristics of each data set are summarized in Table 1. The bacterial species appearing in this
study are reported in Figure 5.

The plates were inoculated with 0.5 McFarland of a pure culture of the studied organism.
Then antibiotic disks were positioned onto the plates with a dispenser gun (A1 and A2) or by hand
(A3) and the plates were incubated 16 to 24h under aerobic or 5% CO2 conditions depending on
the species.

• Data-sets A1 and A2: More than 91% of the plates in these data-sets were square; the re-
maining 9% were circular. The antibiotic disks were bought from i2a (Montpellier, France)
and positioned onto the plate with a dispenser gun. Antibiograms were performed accord-
ing to the EUCAST10 recommendations. Standard Mueller-Hinton agar was used in A1
whereas in A2 we used MH-F agar (blood-agar) for fastidious organisms (Biorad, Marnes-
la-Coquette, France). The bacteriology laboratory of Créteil University Hospital is accred-
ited under ISO15189 (Accreditation certificate N°8-3372 rév.9) therefore antibiotic disks
and culture media are routinely quality checked.

• Data-set A3: This data-set consists of 8 Petri dishes, all circular. The antibiotic pellets were
produced by Liofilchem and positioned by hand with metallic tweezers. Specifically, the
Petri dishes have been inoculated with the following ATCC dried microorganisms:

– Pseudomonas aeruginosa (ATCC 27583)
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– Klebsiella pneumoniae carbapenemase producer (ATCC 700603)

– Klebsiella pneumoniae SHV-18-ESBL-producer (ATCC 700603)

– Fluoroquinolone susceptible Escherichia coli reference strains (ATCC 25922)

– Methicillin-Resistant Staphylococcus aureus (NCTC 12493)

– Vancomycin-sensitive Enterococcus faecalis (ATCC 29212)

– Gentamicin-resistant Enterococcus faecalis (ATCC 49532)

6.2 Image processing procedure

6.2.1 The custom IP library

The IP module of the App consists of a custom C++ library and it is endowed with a Python
wrapper module and a quick-start documentationVIII. We have deliberately developed the IP as
an standalone module in order to facilitate its use in other projects involving, for example, batch-
processing of many images, or the integration in a Desktop application with the development of
dedicated image acquisition hardware. Our aim for the App is to keep the hardware and setup
as simple as possible, which is why we adopted the smartphone strategy. Nevertheless, in other
projects, the mobile phone could be replaced with a small cost device like a Raspberry Pi with a
camera still using our IP library.

6.2.2 Plate cropping

The first raw input to IP is an AST picture, which consists of a plate (Petri dish) to be cropped
out from the remaining background (see Figure 1). Cropping is accomplished with the GrabCut
algorithm27, with the assumption that the plate is approximately centered in the image (i.e lies
within the frame displayed on the camera screen). From the cropped plate image, we extract the
dominant color, to distinguish the type of growth media (MH or blood enriched HM), and the shape
of the plate (round or square). Finally, the image is converted to gray-scale for further processing.

6.2.3 Detection of antibiotic disks

The image of a plate (Figure 1a) contains three main distinct components: the bacteria-free growth
medium, the bacteria-covered growth medium, and the antibiotic disks. The latter are white round
cellulose disks of known constant diameter (usually 6mm). The precision of the whole automatic
analysis depends on the accuracy of measuring their position and diameter in the image. Since the

VIIIhttps://mpascucci.github.io/AST-image-processing
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disk radius is known as 6mm, the average disk radius in pixels is used to calculate the picture scale
(pixel-to-mm ratio). Then, the inhibition diameters are measured from the disk center. The App
features a fully-automatic method to measure antibiotic disks’ positions and diameters based on
intensity and shape, followed by user-assisted correction. (see Supplementary 7.2)

Each pellet is printed with the acronym of the antibiotic it contains. There are only a few
dozen antibiotics used in AST. Nevertheless, the acronym and the print features (font, shape, size,
contrast, etc.) depend on the manufacturer of the antibiotic disks. The acronym of each antibiotic
disk in the analyzed antibiogram must be read in order to retrieve the corresponding breakpoint for
susceptibility categorization. Previously-proposed methods for reading these acronyms compared
the image moment invariants 20 or used ORB (Oriented FAST and rotated BRIEF) descriptors21, 28.
For this task, we chose ML and trained a Convolutional Neural Network (CNN) model with
Tensorflow23 (see Supplementary 7.3 for details). We trained the model on a total of 18,000 images
of antibiotic disks from two different manufacturers (resulting in 65 unique labels) and achieved
99.97%. In order to limit the out-of-distribution error (wrong classifications of disks on which
the model was not trained), we used an ensemble of 10 models and set a threshold on the output
entropy. (see Supplementary 7.3 for details). The ML model showed to work also on poorly-
printed disks and out-of-focus or low-resolution images. Interestingly we observed that even if
the the printed text is damaged when the disks are placed manually (using metal tweezers), the
classification is always correct.

6.2.4 Inhibition disk diameter measurement

The inhibition zone diameter is the diameter of the largest circle centered on the antibiotic disk
that does not include any bacteria; that is, the largest circle that can be drawn in the inhibition
zone without touching any bacteria. In the easiest case, the inhibition forms a disk-shaped halo
around the antibiotic pellet, but sometimes the disk is not well-defined, for example because of
the overlap of several inhibition zones or because the antibiotic disk lies close to the plate borders
(see Figure 6g). The bacteria-to-inhibition intensity contrast in the image depends on the bacteria
species. Also, illumination can vary both among different images and within the same image. The
observable effect is a visible difference of contrast in the AST images (see Figure 6h,i), especially
when taken with a mobile phone where the illumination conditions cannot be controlled.

The new algorithm for automatic diameter measurement, presented here, is referenced as
SWITCH (Spatial Weighted Intensity Threshold CHangepoint). SWITCH operates a k-means
clustering of the pixel intensity locally (around each antibiotic pellet) to classify inhibition and
bacteria pixels (k=2). Successively, in order to find the inhibition zone boundary, it calculates and
segments a radial profile I(r) measured in the surroundings of the antibiotic disk (up to the closest
neighboring disk). For each value of r all pixels at distance r from the pellet center are considered.
The value of I(r) is determined by the portion of pixels belonging to bacteria colonies (see details
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Figure 6: Variability in antibiogram pictures. Examples of difficult cases for diameter reading (a-h). Non-
circular inhibition shape (a). Total or no inhibition (b). Light reflections (c). Colonies within the zone of
inhibition (d). Double inhibition zones (e). Hazy borders (f). Inhibition zone overlap and plate borders (g).
Low contrast (h) defined as the difference between the inhibition and bacteria intensity value, compared to
a high contrast (i) image observed in A1. The histograms in (j) show the contrast variability observed in
the benchmark data-sets (contrast is defined as the difference between the central gray levels of bacteria and
inhibition, and normalized to the maximum available gray level). Observed variability in dominant hue (k).

in Supplementary 7.4). Although SWITCH operates on a radial profile, the latter is calculated is a
way that does not assume any preferential direction in the analysis of the image, which is important
especially if the antibiotic disks are positioned by hand on the plate. Moreover it partially takes
into account the texture of the colony, thereby increasing robustness to noise.

6.3 Susceptibility categorization and Interpretation

In this study, the susceptibility categorization of the tested antibiotics (S/I/R) is done by comparing
the measured inhibition zone diameters to the EUCAST clinical breakpoints7. The breakpoint
values are stored offline in the application, within the expert system knowledge base. This base,
which contains also the expert rules and other expert system resources, is maintained and updated
yearly by i2a13, 15 (Montpelier, France).

In the context of AI, an Expert System is a program capable of taking reasoned conclusions
from a given input, thereby simulating a human expert. Expert Systems have long been success-
fully used in microbiology29 and most commercial systems use them today. An Expert System
consists of an “inference engine’ which takes reasoned conclusions on input information, based on
a ”set of rules“ written by human experts.

The Expert System integrated in the App takes as input the diameter of the inhibition zones of
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Figure 7: Characteristic shapes of inhibition zones due to resistance mechanisms.

the observed plate. It categorizes the susceptibility of the bacteria to the tested antibiotics and runs
a coherence check and a final interpretation. The coherence check examines the input information
and alerts the user if incoherent data are found (for example if an antibiotic is not coherent with
the entered species, or if a natural resistance is not observed). The interpretation extrapolates the
results classes of antibiotics and produces final alerts for important resistance mechanisms.

6.4 Auto-detection of resistance mechanisms

Certain resistance mechanisms to antibiotics can be detected by disk diffusion AST because they
often produce inhibition zones with characteristic shapes30, 31 (see Figure 7). These shapes appear
between specific antibiotic disks. If the disks are close enough, the antibiotic molecules they
diffuse can interact and produce a synergy effect against the bacteria or an induction of resistance.
We used ML models to automatically recognize two particular shapes associated with two specific
resistance mechanisms: synergy and induction, which can happen with Extended-Spectrum β-
lactamase (ESBL) production32 and Macrolide-inducible resistance to Clindamycin respectively.

For each of the two tests, we trained a neural network model to classify positive vs. negative
images. The models to recognize Clindamycin-inducible resistance and ESBL reach an accuracy
of 99.7% and 98%, respectively (see Supplementary 7.5 and 7.6 for details). However, the models
have not been proven to perform well on a wide variety of images (varying in pellet arrangement,
bacteria texture, etc). Also, since classification errors can have very serious consequences in AST
interpretation and patient treatment, the App would need to ask the user for confirmation when
automatically detecting a resistance mechanism. So, in the best case, including the resistance
mechanism models in the App would bring only modest clinical improvements. Therefore, a
ML-based automatic detection procedure was not included in the current version of the mobile
application. Nevertheless, the App asks users if they see such shapes wherever they are likely to
appear, and shows them examples for comparison (Figure 2).
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Figure 8: Numerically generated AST picture which can be printed and photographed to check if a smart-
phone camera is suited for analyzing antibiograms (right).

7 Supplementary Information

7.1 Acquisition conditions

The precision of automatic measurements depends on image quality. In order to obtain the best
possible results on images acquired with a smartphone camera, we designed a simple protocol and
acquisition setupIX. First of all, the environmental illumination should be homogeneous and strong
enough to comfortably read a printed text (e.g. the pictures should not be taken in a dark room nor
close to a window or table lamp). The Petri dish should be placed uncovered on a flat, black, non-
reflecting surface (e.g. a piece of black felt). A dark background enhances the bacteria/inhibition
contrast and is a standard recommendation in the EUCAST guidelines for antibiogram reading10.
Place on top of the Petri dish a sheet of black cardboard held by two objects of equal height. A
hole the size of the phone camera is pierced in the middle of the cardboard and the pictures are
taken through the hole with the phone lying on the cardboard. The distance between the Petri dish
and the smartphone (i.e. the stand height) is determined by the camera’s field of view. It should be
adjusted so that the Petri dish is well-fitted in the frame displayed by the camera.

The optics of smartphone cameras are not conceived for quantitative measurements, there-
fore small optical distortions are tolerated in production. However, initial exploration with standard
calibration patters captured with several Android phones (Samsung A10, Huawei Y6, Pixel 3) sug-
gested that optical distortion does not significantly impact measured diameters. In order for a
smartphone camera to be suited for the AST measurements, the distortion it introduces should not
impact the measurement more than the test sensibility (i.e. 1mm). In order to validate the smart-
phone camera, we generated and printed a fake antibiogram (see Figure 8). The ratio between the
antibiotic disk and inhibition diameters in this picture is 25/6, so the App should measure a con-

IXhttps://mpascucci.github.io/ASTapp-protocol
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stant diameter of 25mm for each pellet. This simple test allows a rapid validation of smartphones
cameras before using them for AST analysis.

7.2 Pellet localization and extraction.

If the antibiotic disks are placed on the antibiogram with a dispenser, their relative position is
known in advance and can be exploited20. Unfortunately, dispensers are not always available and
placing the antibiotic disks by hand remains a common practice in many laboratories, especially in
resource-limited settings. Therefore, we decided not to rely on any assumptions regarding pellet
position.

The detection procedure is based on the hypothesis that the pellets are white disks: their
shape is approximately circular, and the intensity levels of the associated pixels in the digitized
image are high. The blue channel is taken from the cropped image of the Petri dish: we observed
that in pellets usually have higher contrast from the rest of the image in the blue channel. Contrast
is enhanced by histogram normalization, then an intensity threshold is applied to distinguish pellets
from non-pellet pixels. The threshold is 0.97 times the maximum allowed intensity level (white).

The image is de-noised with standard mathematical morphology operations. Then, the con-
tours of the connected components are extracted 33 and filtered according to their relative size in
the image and to their thinness t:

t =
l2

4πA
where l is the length of the contour andA is the enclosed area. By construction, t ' 1 for a contour
close in shape to a circle.

This eventually allows to discard bright objects such as light speckles. The contours are
considered to belong to antibiotic disks if their diameter is within 1/30 and 1/4 of the image largest
size and th < 1.05.

If an antibiotic pellet is not detected automatically, the user needs to add it manually in order
to continue the analysis. The detection precision influences the further analysis results. For this
task we implemented a semi-automatic procedure that takes as input the approximate coordinates
of the pellet center (e.g. the user clicks on the pellet) and then accurately finds the pellet center and
diameter with a Hough circle transform 34. The previously collected information of average pellet
size in the image is used to filter in the transform space.

7.3 Antibiotic disk label reading by ML

Antibiotic name recognition is treated as a multi-class problem because there are as many codes
to be recognized as there are antibiotics. This supervised learning problem is tackled via a con-
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layer type kernel size output size activation

2D convolution 8 32 relu
2D convolution 4 64 relu
2D convolution 2 64 relu

Table 3: Convolution layers in the CNN model used to classify the antibiotic disk labels

volutional neural network (CNN) trained using 18000 images of antibiotic disks captured with a
smartphone camera. More precisely, the images were split in two sets: a training set of 14000
images and a test set of 4000 images used also for validation.

The set contains 65 different labels corresponding to the pellets of two manufacturers (Li-
ofilchem and i2a). We estimate that across the major disks manufacturers, there are over ' 200

different labels. Our model should eventually be able to identify all of those labels.

The input images are first converted to gray-scale and resized to 64x64 pixels. Then, the
intensity value of each pixel is normalized by subtracting the mean intensity and dividing by the
intensity standard deviation. The model takes a standardized pellet image as input and returns an
array of 65 values between 0 and 1 normalized to 1. These values are interpreted as the probability
of belonging to a specific class (i.e. label for a given antibiotic).

The model is a CNN with three convolution layers described in Table 3. Each convolution
layer is followed by max-pooling with a down-scaling factor of 2. The classification output is
obtained with a random 50% dropout and a final dense layer of 65 units. We used cross-entropy as
loss function.

The model is evaluated primarily on its accuracy. Since the data set doesn’t cover all the
antibiotic codes that could be encountered in a real use case, a second metric was introduced to
evaluate the model behavior on unknown labels (hereafter “outliers”). To simulate this behavior, 5
classes (each class corresponds to a label) are held out from the dataset and the model is trained on
the remaining 60. After defining a threshold on the model output, we evaluate:

• for the 60 classes from the test data

– the accuracy on the predictions above the threshold (”accuracy on known labels”)

– the percentage of samples that fell below the threshold (”false negative rate on known
labels”)

• for the 5 classes held out and taken from the test data

– the percentage of samples that fell above the threshold (”false positive rate on outliers”)
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A single model showed good accuracy, but a simple threshold on the output values was not
good enough to minimize classification errors of outliers. Therefore, we developed an ensemble
model with an entropy threshold to achieve a better trade-off between accuracy and outlier classi-
fication error. We trained ten identical instances of this model with same hyper-parameters, same
training data, but different random initialization. The models were trained using Tensorflow23 in
Python.

Classification is obtained by feeding the same pre-processed antibiotic disk image to each
model of the ensemble, the ten classification outputs are averaged, and the information entropy
of the average is calculated. If the entropy is larger than a fixed threshold, the argmax of the
output average determines which classes the label belongs to. Otherwise, the label is considered
as unknown. The threshold is chosen to optimize the trade-off between optimizing accuracy and
minimizing out-of-distribution error. From the user point of view, if a disk is classified as unknown,
the users must provide the label based on visual inspection. The list of possible labels are sorted
according to their output prediction value, which usually brings to the top the best candidates in
case of false negatives (known pellets classified as unknown).

The ensemble model achieves 99.97% accuracy on the test set. Using an ensemble of 10
models and an entropy threshold, we achieved: 100% in-distribution accuracy, 5% in-distribution
false negative rate and 1% out-of-distribution false positive rate.

Additionally, the pictures of antibiogram set A1 can also be considered as a true test set
because the model never saw them during training. The model reaches 100% accuracy on this test
set, as discussed in Results.

7.4 Inhibition disk diameter measurement

Diameter measurement consists of three steps: image pre-processing, intensity radial profile ex-
traction and segmentation.

7.4.1 Pre-processing

The growth medium of the Petri dish is automatically determined based on the saturation, hue and
intensity of the Petri dish image. First, we calculate the mean saturation, hue and intensity over the
50% most saturated pixels in the image, then we use these values to classify the growth medium.
The classifier is built with a logistic regression on more than 600 labeled images (see Figure 9) and
achieves 100% accuracy on this data set. If a red growth medium (HM-F) is detected, we use only
the blue and green channels of the image when converting it to gray scale, in order to enhance the
output contrast. Otherwise all three channels are used.
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Figure 9: distribution of the mean HUE and saturation values of the AST pictures in data sets A1 and A2.
Each point represents one image.

Successively the image is pre-processed for the diameter measurement. The Petri dish image
is down-scaled to a fixed resolution of 10 pixel/mm, which provides a reasonable trade off between
precision and measurement speed. Then, all the pixels belonging to the plate borders are masked.
This eliminates disturbing light reflections (due to surface tension, the agar is not flat close to the
plate’s borders). The plate image is segmented in Regions Of Interest (ROIs), rectangular sub-
images centered on each antibiotic disk. Each ROI includes the area surrounding the disk up to the
first-neighboring disks.

For the whole image first and then for each region of interest, a k-means classification of
the pixel intensity is performed with k=2 (inhibition and bacteria) and the center values are stored.
Since the k-means classification with k=2 is not optimal for very large inhibition zones or zones
with no inhibition at all, in this case the k-means centers calculated on the whole image are used.

7.4.2 Radial profiles

The intensity of the pixels around the antibiotic disk is observed for each ROI in order to calculate
a radial intensity profile I(r). The profile extraction procedure takes into account both the intensity
and the amount of bacteria at a given r. Without considering any privileged direction, all pixels
at a given distance r from the antibiotic disk center are considered. Then I(r) is given a score
between 0 and 1 depending on the number nb of ”bacteria pixels”. ”Bacteria pixels” are defined
as those pixels which have an intensity above the threshold Ith. The bacteria intensity threshold is
calculated as:

Ith = k0 + (k1 − k0)(1− s),
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Figure 10: Radial intensity profile extraction. The region of interest of an antibiotic pellet is displayed in
(a). Different radial profiles are plotted in (b) by taking the max or mean intensity value at distance r. The
blue profile is calculated by the SWITCH algorithm proposed here. The peak of the signal in the inhibition
zone is due to light reflection on the agar, but the segmentation correctly ignores it. In the mean profile,
since the borders of the inhibition zone are not flat, the signal ramps up smoothly, introducing uncertainty in
the change-point location, then the signal drops down because of inhibition zone overlap. These problems
do not affect SWITCH.

where k0 and k1 are the local k-means centers for inhibition and bacteria pixel intensities. s is
defined as the reading sensibility. It can be fixed between 0 and 1 or automatically determined
based on the image local and global contrast cl. Contrast is defined as (c = k1− k0), local contrast
is based on local k-means (over the antibiotic disk ROI) and global contrast on global k-means
(whole image).

If automatically determined, s is equal to 0.05 for very low contrast images (contrast≤25)
where the signal/noise ratio is low, otherwise

s =
1

2

(cg − cl
cg

)3

+ 1

 .
If the local and global contrast values are similar s ' 1/2. Otherwise, it is adapted according to
the ratio cl/cg in order to compensate noise and local intensity variability in the image.

The critical number of bacteria pixels nb represents a spatial threshold that allows detecting
the presence of bacteria at distance r even if the shape of the inhibition zone is not circular (e.g.
inhibition overlap and plate borders). We choose nb = 1mm in the image scale.

Finally, I(r) is segmented using a least-square fit of a step function with one degree of
freedom: the change-point, which is interpreted as the inhibition zone radius in pixels. A maximum
inhibition diameter can be specified by the user, in this case the reported diameters would be capped
by that maximum (40mm by default).

The absolute diameter difference between automatic measurements and control on the test
antibiotics sets are reported in Table 4. The larger absolute diameter difference in A1 and A2 can
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AST set control images antibiotics a.d.d. quantiles [mm]

25% 50% 75%

A1
overall SIRscan 572 8168 0.8 1.8 3.0
standard SIRscan 561 8042 0.8 1.8 3.0
problematic SIRscan 9 126 2.4 6.3 20.8

A2
overall SIRscan 75 649 0.6 1.4 2.8
standard SIRscan 73 620 0.6 1.4 2.6
problematic SIRscan 2 29 11.0 17.0 22.0

A3
overall manual 64 784 0.0 0.8 1.4
overall manual av. 64 98 0.1 0.6 1.3

Table 4: Absolute diameter difference (a.a.d.) between automatic measurement and control.

be attributed to the fact that the control diameter (measured by a commercial automatic system)
was not systematically adjusted if adjustment did not have an effect on the categorization.

7.4.3 Published algorithms for measuring diameters

Among the different algorithms for this specific task we could find in the literature17, 18 do not prove
to be resilient to the common problems of non-homogeneous or non-circular inhibition zones.
Same for 19, which takes into account both intensity and texture with a Student’s t-test, but is
sensitive to noise and assumes that the inhibition and bacteria have homogeneous textures. A recent
work20 calculates a threshold for segmentation only along 4 segments centered on the antibiotic
pellet, with the risk of losing information.

7.5 Resistance mechanisms: D-shape (MLSb inducible resistant Staphylo-
coccus aureus)

The raw input to the training pipeline consists of photos of entire Petri dishes used for AST. Photos
were taken using a smartphone camera at an MSF field hospital in Amman, Jordan during the
course of regular AST processing. As a result, the photos represent similar conditions to those
under which the App will eventually be used. Only relevant examples (those containing adjacent
pairs of Clindamycin and Erythromycin pellets) are considered. The training data includes 69
positive and 143 negative examples, each image is labeled as “D-Zone or “not D-Zone.

First, the photos are preprocessed. The first four preprocessing steps aim to standardize input
characteristics across examples (see Figure 12):
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system licence control readings agreement (%) disagreement (%)
very major major minor

the App free SIRscan (A1-2) 7868 90.0 0.7 5.8 3.5
the App free manual (A3) 776 95.0 0.4 0.9 3.5
the App free manual av. (A3) 97 98.0 1.0 0 1.0

RPAA17 free manual 2552 95.5 0.3 0.4 2.7
AIA20 free manual 756 88.0 1.0 2.0 3.0
AntibiogramJ21 free manual 720 87.0 2.0 5.0 6.0
Aura12 commercial manual 4098 82.4 4.9 16.0 4.9
Osiris14 commercial manual 1592 91.6 3.8 0.9 3.0
Adagio35 commercial manual 1548 94.8 0.8 3.3 1.4

Table 5: Comparison of categorization agreement/disagreement of the App’s performance shown in this
paper versus similar studies concerning other automatic systems. This comparison should be taken with
caution because the datasets used in these studies are different under many aspects (e.g. species distribution,
manual measurement procedure, image acquisition and outliers dropout).

a.d.d. quantiles [mm] disagreement

resolution [megapixel] missed atb disks unread labels 25% 50% 75% very major major minor

original (12.8) 0 0 0.12 0.60 1.27 1 0 1
9.0 0 0 0.13 0.55 1.25 1 0 1
6.0 0 1 0.15 0.53 1.25 1 0 1
3.0 0 0 0.15 0.57 1.19 1 0 1
1.0 6 2 0.31 0.53 1.18 1 0 1

Table 6: Effect of resolution degradation on dataset A3 (averaged). The results are substantially the same
up to resolution = 3 Megapixel. At resolution = 1megapixel, 6 antibiotic disks are missed out of the total
98, but the classification error remains constant.
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Figure 11: Automatic reading mistakes. Cases of large mistakes in inhibition diameters happen sometimes
when the bacteria-inhibition contrast is low (a). Smaller diameter differences between the App and refer-
ence are probably due to the intrinsic measurement method: by visualizing a circle the App increases the
measurement precision. Figure (c) shows some examples of pellets we were not able to automatically find.
The three last pellets have broken the agar, hence should not be read anyways.

Figure 12: D-Zone prediction workflow.
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1. Identify the Clindamycin and Erythromycin pellets using the pellet label recognition strategy
described above.

2. Rotate the image such that Erythromycin and Clindamycin are aligned along the x-axis, with
Erythromycin on the left.

3. Crop out the biggest region surrounding Clindamycin that does not include other pellets.

4. Overlay the Clindamycin pellet with a 6mm white circle in order to mask the printed text,
which has no interest in the classification problem. In the interest of a small, lightweight
model, the final two steps simply reduce input size without loss of model accuracy. As a
result, the numerical input to the machine learning model is simply a 32x32 integer matrix,
where each entry is a value between 0 (black) and 255 (white).

5. Convert the image from color to gray-scale

6. Downsize the image to 32 pixel× 32 pixel.

We report the model’s train and test accuracy, i.e. the proportion of examples for which the
model correctly predicts the known label. Since the data-set is small, a 70/30 split results in 148
training samples and 64 test samples, therefore we evaluate model structures by retraining the same
model structure on multiple different train/test splits. However, the model is never tested on the
same images as it was trained. This approach allows us to compare different model architectures,
whereas a single train/test split would result in ties.

Models were trained using TensorFlow in Python. After experimenting with multiple neural
network architectures, the architecture with the best performance has the following characteristics:

• Input size of 32 pixel× 32 pixel,

• 73,309 total trainable parameters,

• Binary cross-entropy loss function

• Adam optimization,

• input size of 32 pixel× 32 pixel,

• layers: 3x 2-D convolution layers rectified linear unit activation, with 32, 64, and 128-
dimensional outputs respectively,

• Dropout layer to avoid over-fitting,

• Densely-connected layer of size 50 with sigmoid activation (for binary classification).
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Data-set name D1 D2
acquisition device smartphone camera SIRscan system
Number of ESBL
positive examples

241 1344

Number of ESBL
negative examples

181 818

Center pellet Amoxicillin/Clavulanic acid 30 µg Amoxicillin/Clavulanic acid 30 µg
or Ticarillin/Clavulanic acid
75+10 µg

Table 7: Training data-sets for the synergy model.

Across 30 randomly-chosen train/test splits, the best model achieves on average 100% training
accuracy and 99.74% test accuracy. Other metrics give similar results (F1 99.65% and AUC 1.0),
as expected given the high accuracy score.

D-Zone detection is a relatively easy ML problem, obtaining 99.74% test accuracy with only
212 training images. The D-Zone model has not been evaluated on out-of-distribution images.

7.6 Resistance mechanisms: ESBL

For the ESBL problem, we have access to two distinct data-sets (see Table 7. Each data-set consists
of images of AST plates. Each image contains pellets arranged to perform a Double Disk Synergy
test and each is labeled as “ESBL” or “not ESBL”. The two data-sets differ highly in different
aspects such as image quality and intensity contrast, bacteria culture texture, pellet arrangement,
specific antibiotics used.

Before training a neural network on the images, we preprocess them to standardize across
images and extract relevant regions:

1. Crop out a 35mm region surrounding amoxicillin-clavulanate. In both our data-sets, 35mm is
sufficiently large to encompass amoxicillin-clavulanate and the surrounding 3rd-generation
cephalosporins.

2. Convert the image to gray scale.

3. Normalize image contrast such that the intensity threshold is similar across all images.

4. Overlay the amoxicillin-clavulanate pellet with a pure black circle.

Alternative preprocessing approaches did not introduce significant improvement of the pre-
diction accuracy. For example we tested: 1. blur the image to eliminate unnecessary details such
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train set (%) test set (%) preprocessing accuracy (%) F1 AUC

D1 D2 D1 D2 train test

70 - 30 - light 99.83 98.04 98.89 99.84
- 70 - 30 light 98.89 97.98 99.06 99.70

100 - - 100 light 99.93 66.77 76.90 67.17
- 100 100 - light 99.75 69.23 62.09 64.75

100 - - 100 heavy 99.97 58.96 NA NA
- 100 100 - heavy 99.59 59.16 NA NA

Table 8: ESBL model accuracy results.

as bacteria streaks or 2. classify each pixel as bacteria vs. inhibition using an intensity threshold
computed by k-means clustering (we will refer to this strategy as ”heavy preprocessing” in this
section).

As in the case of D-Zone, train and test accuracy is reported. However, since in the ESBL
case we have access to two distinct data-sets, we also examine model transferability. Therefore,
we examine train and test accuracy within each of the following setups:

• Train and test on disjoint sets of images drawn from the same data-set

• Train and test on disjoint sets of images, where both the test and train sets are drawn from
the combination of both data-sets

• Train on one data-set and test on the other

The model is over 97% accurate when its test set is drawn from the same distribution as its
training set. However, when the training and test sets are of different origin, the model performs
no better than random. Out-of-distribution examples are of interest because we cannot control
the quality of images that the app will eventually be used to analyze. Specifically to address
this problem, we tested the ”heavy” preprocessing approach but did not improve cross-data-set
accuracy. As more training examples are added, model accuracy increases only until 300 training
examples are used. Additionally, augmenting the training data-set by transforming (e.g., rotating)
images did not improve validation accuracy. Therefore, obtaining more similar data is not expected
to improve results. The results obtained with other metrics (F1 and ROC AUC) justified by the
unbalanced data classes, confirm good performance for intra-dataset models and a much lower
performance for inter-dataset models.

ESBL classification is a much more difficult machine learning problem than D-Zone clas-
sification (see Supplementary 7.5). This difficulty might be due to the very large variability in
the ESBL-positive examples (see Figure 13). While D-Zone examples are all very similar to each
other, ESBL-positive examples may show different shapes, depending on the relative position and
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Figure 13: Examples of ESBL positive and negative images. The shapes of the inhibition zone can be very
different.

distance of the involved antibiotic disks, on the texture of the bacteria and on the quality of the
picture.
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