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Abstract1

Many methods based on the Sequentially Markovian Coalescent (SMC)2

have been and are being developed. These methods make use of genome3

sequence data to uncover population demographic history. More recently,4

new methods even allow the simultaneous estimation of the demographic5

history and other biological variables, extending the original theoretical6

frameworks. Those methods can be applied to many different species,7

under different model assumptions, in hopes of unlocking the popula-8

tion/species evolutionary history. Although convergence proofs in par-9

ticular cases have been given using simulated data, a clear outline of the10

performance limits of these methods is lacking. We here explore the limits11

of this methodology, as well as present a tool that can be used to help12

users quantify what information can be confidently retrieved from given13

datasets. In addition, we study the consequences for inference accuracy14

of the violation of hypotheses and assumptions of SMC approaches, such15

as the presence of transposable elements, variable recombination and mu-16

tation rates along the sequence and SNP call errors. We also provide a17

new interpretation of the SMC through the use of the estimated transi-18

tion matrix and offer recommendations for the most efficient use of these19

methods under budget constraints, notably through the building of data20

sets that would be better adapted for the biological question at hand.21

Keywords— Hidden Markov Model, Ancestral Recombination Graph, Popu-22

lation Genetics23
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1 Introduction24

Recovering the demographic history of a population has become a central theme in evo-25

lutionary biology. The demographic history (the variation of effective population size26

over time) is linked to environmental and demographic changes that existing and/or27

extinct species have experienced (population expansion, colonization of new habitats,28

past bottlenecks) [14, 42, 4]. Current statistical tools to estimate the demographic29

history rely on genomic data [48] and these inferences are often linked to archaeolog-30

ical or climatic data, providing new insights on their consequent genomic signatures31

[67, 32, 43, 1, 12, 25, 24]. From these analyses, evidence for migration events have been32

uncovered [25, 5], as have genomic consequences of human activities on other species33

[9]. Linking demographic history to climate and environmental data greatly supports34

the field of conservation genetics [10, 17, 39]. Such analyses can help ecologist in de-35

tecting effective population size decrease [65], and thus serve as a guide in maintaining36

or avoiding the erosion of genetic diversity in endangered populations, and potentially37

predicting the consequences of climate change on genetic diversity [26]. In addition,38

studying the demographic histories of different species in relation to one another can39

unveil latent biological or environmental evolutionary forces [16], unveiling links and40

changes within entire ecosystems. With the increased accuracy of current methods,41

the availability of very large and diverse data sets and the development of new theoret-42

ical frameworks, the demographic history has become an information that is essential43

in the field of evolution [45, 6]. However, unbiased estimations and interpretations of44

the demographic history remain challenging [3, 8].45

The most sophisticated methods to infer demographic history make use of46

whole genome polymorphism data. Among the state of the art methods, some are47
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based on the theory of the Sequentially Markovian Coalescent (SMC) developed by48

[34] after the work of [66], corrected by [30] and first applied to whole genome se-49

quences by [25], who introduced the now well known Pairewise Sequentially Marko-50

vian Coalescent (PSMC) method. PSMC allows demographic inference of the whole51

population with unprecedented accuracy, while requiring only one sequenced diploid52

individual. This method uses the distribution of SNPs along the genome between53

the two sequences to account and infer recombination and demographic history of a54

given population, assuming neutrality and a panmictic population. Although PSMC55

was a breakthrough in demographic inference, it has limited power in inferring more56

recent events. In order to address this issue, PSMC has been extended to account57

for multiple sequences (i.e. more than two) into the method known as the Multiple58

Sequentially Markovian Coalescent (MSMC) [47]. By using more sequences, MSMC59

better infers recent events and also provides the possibility of inferring population60

splits using the cross-coalescent rate. MSMC, unlike PSMC, is not based on SMC61

theory [34] but on SMC’ theory [30], therefore MSMC applied to only 2 sequences has62

been defined as PSMC’. Methods developed after MSMC followed suit, with MSMC263

[29] extending PSMC by incorporating pairwise analysis, increasing efficiency and the64

number of sequences that can be inputted (up to a hundred), resulting in more accu-65

rate results. SMC++ [60] brings the SMC theory to another level by allowing the use66

of hundreds of unphased sequences (MSMC requires phased input data) and breaking67

the piece-wise constant population size hypothesis, while accounting for the sample68

frequency spectrum (SFS). Because SMC++ incorporates the SFS in the estimation69

of demographic history, it increases accuracy in recent time [60]. SMC++ is currently70

the state of the art SMC based method for big data sets (>20 sequences), but seems71

to be outperformed by PSMC when using smaller data sets [44]. In a similar vein,72
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the Ascertained Sequentially Markovian Coalescent (ASMC) [41] extends the SMC73

theory to estimate coalescence times at the locus scale from ascertained SNP array74

data, something that was made possible by the theory developed by [18].75

More recently, a second generation of SMC based methods have been developed.76

New features have been added to the initial SMC theory, extending their application77

beyond simply inferring past demography [1, 50, 63]. The development of C-PSMC78

[16] allows the interpretation of estimated demographic history in the light of coevo-79

lution, making the first link between demographic history estimated by PSMC and80

evolutionary forces (although biological interpretation remains limited). iSMC [1] ex-81

tends the PSMC theory to account and infer the variation of recombination rate along82

sequences, unlocking recombination map estimations. An impressive advancement is83

the development of IS-MSMC, which solves to some extent the population structure84

problem, allowing accurate and simultaneous inference of the demographic history and85

population admixture [63]. eSMC [50] incorporates common biological traits (such as86

self-fertilization and dormancy) and demonstrated the strong effect life history traits87

can have on demographic history estimations. Results which may not be explained88

under the initial SMC hypotheses can now be explained by the potential presence of89

measurable phenomena not present in the original PSMC.90

New methods have been developed since PSMC, that have been either strongly91

inspired by the SMC [51, 59] or that are completely dissociated from it [55, 2, 46, 20,92

28, 19, 54, 62]. Though there are alternative approaches, methods based on the SMC93

are still considered state of the art, and remain widely used [31, 3, 56], notably in94

human evolution studies [56, 44]. However, each described method has its specificity,95

designed to solve a specific problem using specific data based on different hypothesis.96
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Although all these methods allow a new and different interpretation of genomic data,97

none of these methods guarantees unbiased inference, and their limitations have rather98

underlined how crucial and challenging demographic inference is, highlighting the com-99

plementarity and usefulness to use several inference methods on a given dataset.100

SMC based methods display very good fits when using simulates data, espe-101

cially when using simple single population model based on typical human data param-102

eters [60, 47, 50, 63]. However, the SMC makes a large number of hypotheses [25, 47]103

that are often violated in data obtained from natural populations. When inputting104

data from natural populations, extracting information or correctly interpreting the105

results can become troublesome [8, 61, 3] and several studies address the consequences106

of hypothesis violation [15, 8, 46, 33, 49]. They bring to light how strongly population107

structure or introgression influence demographic history estimation if not correctly ac-108

counted for [15, 8]. Furthermore, most SMC based methods require phased data (such109

as MSMC and IS-MSMC), and phasing errors can lead to strong overestimation of110

population size in recent time [60]. The effect of coverage during sequencing has also111

been tested in [36], showing the importance of high coverage in order to obtain trust-112

worthy results, and yet, SMC methods seem robust to genome quality [44]. Selection,113

if not accounted for, can result in a bottleneck signature [49], and there is currently no114

solution to this issue within the SMC theory, though it could be addressed using differ-115

ent theoretical frameworks that are being developed [52, 37]. More problematic, is the116

ratio of effective recombination over effective mutation rates ρ
θ
. If the ratio is greater117

than one, biases in estimations are to be expected [60, 1, 50]. It is also important to118

keep in mind that there can be deviations between ρ
θ
and the ratio of recombination119

rate over mutation rates measured experimentally ( r
µ
), as the former can be greatly120
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influenced by life-history and this can lead to issues when interpreting results (e.g.121

[50]). It is thus necessary to keep in mind that the accuracy of SMC based methods122

depends on which of the many underlying hypothesis are prone to being violated by123

the data sets being used.124

In an attempt to complement previous works, we here offer to study the limits125

and the convergences properties of methods based on the Sequentially Markovian Coa-126

lescence. We first define the limits of SMC based methods ( i.e. how well they perform127

theoretically), which we will call the theoretical convergence, using a similar approach128

to [13, 40, 19] by giving the simulated genealogy as input. We test several scenarios129

to check whether there are instances, where even without violating the underlying hy-130

potheses of the methodology, the demographic scenarios cannot be retrieved because131

of theoretical limits (and not issues linked with data). We then compare simulation132

results obtained with the genealogy given as input to results obtained from sequences133

simulated under the same genealogy, so as to study the convergence properties linked134

to data sets in the absence of hypothesis violation. We also study the effect of the135

optimization function (or composite likelihood) and the time window of the analysis136

on the estimations of different variables. Lastly, we test the effect of commonly vi-137

olated hypotheses, such as the effect of the variation of recombination and mutation138

rates along the sequence and between scaffolds, errors in SNP calls and the presence139

of transposable elements and link abnormal results to specific hypothesis violations.140

Through this work, our aim is to provide guidelines concerning the interpretation of141

results when applying this methodology on data sets that may violate the underlying142

hypotheses of the SMC framework.143
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2 Materials and Methods144

In this study we use four different SMC-based methods: MSMC, MSMC2, SMC++145

and eSMC. All methods are Hidden Markov Models and use whole genome sequence146

polymorphism data. The hidden states of these methods are the coalescence times147

(or genealogies) of the sample. In order to have a finite number of hidden state (and148

parameters), the hidden states are grouped into x driscretized bins (x being the number149

of hidden states). The reasons for our model choices are as follows. MSMC, unlike150

any other method, focuses on the first coalescent event of a sample of size n, and thus151

exhibits different convergence properties [47]. MSMC2 computes coalescent times of all152

pairwise analysis from a sample of size n, and can deal with a large range of data sets153

[55]. SMC++ [60] is the most advanced and efficient SMC method which can make use154

of hundreds sequences, enabling the use of the SFS along the sequence. Lastly, eSMC155

[50] is a re-implementation of PSMC’ (similar to MSMC2), which will contribute to156

highlighting the importance of algorithmic translations as it is very flexible in its use157

and outputs intermediate results necessary for this study.158

2.1 SMC methods159

2.1.1 PSMC’, MSMC2 and eSMC160

PSMC’ and methods that stem from it (such as MSMC2 [29] and eSMC [50]) focus on161

the coalescence events between only two individuals (or sequences in practice), and,162

as a result, does not require phased data. The algorithm goes along the sequence163

and estimates the coalescence time at each position. In order to do this, it checks164

whether the two sequences are similar or different at each position. If the two sequences165

are different, this indicates a mutation took place, and, as mutations are considered166
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uncommon, that the common ancestor is far in the past. An absence of mutation167

(the two sequences are identical) suggests a recent common ancestor. In the event168

of recombination, there is a break in the current genealogy and the coalescence time169

consequently takes a new value. A detailed description of the algorithm can be found170

in [47, 63, 50].171

2.1.2 MSMC172

MSMC is mathematically and conceptually very similar to the PSMC’ method. Un-173

like other SMC methods, it simultaneously analyses multiple sequences and because174

of this, MSMC requires the data to be phased. In combination with a second HMM,175

to estimate the external branch length of the genealogy, it can follow the distribution176

of the first coalescence event in the sample along sequences. However, MSMC can-177

not analyze more than 10 sequences simultaneously (due to computational load). A178

detailed description of MSMC can be found in [47].179

2.1.3 SMC++180

SMC++ is slightly more complex than MSMC or PSMC, though it is conceptually181

very similar to PSMC’, mathematically it is quite different. SMC++ has a different182

emission matrix compared to previous methods because it calculates the sample fre-183

quency spectrum of sample size n + 2, conditioned on the coalescence time of two184

"distinguished" haploids and n "undistinguished" haploids. In addition SMC++ of-185

fers features like a cubic spline to estimate demographic history (i.e. not a piece-wise186

constant population size). The SMC++ algorithm is fully described in [60].187
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2.1.4 Theoretical convergence188

Using sequence simulators such as msprime [21] or scrm [57], one can simulate the189

Ancestral Recombination Graph (ARG) of a sample. Usually the ARG is given through190

a sequence of genealogies (e.g. a sequence of trees in Newick format). From this ARG,191

one can find what state of the HMM the sample is in at each position. Hence, one192

can build the series of states along the genomes, and build the transition matrix.193

The transition matrix, is a square matrix (of dimension x defined as the number of194

hidden states) counting the number of transitions from one of the x state to another195

(it also counts the number of transitions from one state to the same state). Using the196

transition matrix built directly from the exact ARG, one can estimate parameters using197

PSMC’ or MSMC as if they could perfectly infer the hidden states. Hence estimations198

using the exact transition matrix represents the upper bound of performance for those199

methods. We choose to call this upper bound the theoretical convergence (since it200

can never be reached in practice). For this study’s purpose, a second version of the R201

package eSMC [50] was developed. This package enables the building of the transition202

matrix (for PSMC’ or MSMC), and can then use it to infer the demographic history.203

The package is mathematically identical to the previous version, but includes extra204

functions, features and new outputs necessary for this study. The package and its205

description can be found at https://github.com/TPPSellinger/eSMC2.206

2.1.5 Baum-Welch algorithm207

SMC based method can use different optimization functions to infer the demographic208

parameters ( i.e. likelihood or composite likelihood). The four studied methods use209

the Baum-Welch algorithm to maximize the likelihood. MSMC2 and SMC++ imple-210

ment the original Baum-Welch algorithm (which we call the complete Baum-Welch211
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algorithm), whereas PSMC’ and MSMC compute the expected composite likelihood212

Q(θ|θt) based only on the transition matrix (which we call the incomplete Baum-213

Welch algorithm). The use of the complete Baum-Welch algorithm or the incomplete214

one can be specified in the eSMC package. The composite likelihood for SMC++ and215

MSMC2 is given by equations 1 and the composite likelihood for PSMC’ and MSMC216

by equation 2:217

Q(θ|θt) = νθt log(P (X1|θ))+
∑
X,Y

E(X,Z|θt)log(P (X|Z, θ))+
∑
X,Y

E(Y,X|θt)log(P (Y |X, θ))

(1)

and :218

Q(θ|θt) =
∑
X,Y

E(X,Z|θt)log(P (X|Z, θ)), (2)

with:219

• νθ : The equilibrium probability conditional to the set of parameters θ220

• P (X1|θ) : The probability of the first hidden state conditional to the set of221

parameters θ222

• E(X,Z|θt) : The expected number of transitions of X from Z conditional to the223

observation and set of parameters θt224

• P (X|Z, θ) : The transition Probability from state Z to state X, conditional to225

the set of parameters θ226

• E(Y,X|θt) The expected number of observations of type Y that occurred during227

state X conditional to observation and set of parameters θt228

• P (Y |X, θ) : The emission probability conditional to the set of parameters θ229
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2.1.6 Time window230

Each tested SMC based method has its own specific time window in which estimations231

are made. As for example, the original PSMC has a time window wider than PSMC’.232

To measure the effect of the time window we analyze the same data with 4 different233

time windows. The first time window is the one of PSMC’ defined in [47]. The second234

time window is the one of MSMC2 [63] (similar to the one of the original PSMC [25]),235

which we call "big" since it goes further in the past and in more recent time than the236

one of PSMC’. We then define a time window equivalent to the first one (i.e. PSMC’)237

shifted by a factor 5 in the past (first time window multiplied by 5 ). The last window238

is a time window equivalent to the first one shifted by a factor 5 in recent time (first239

time window divided by 5 ).240

2.2 Simulated Sequence data241

Throughout this paper we simulate different demographic scenarios using either the242

coalescence simulation program scrm [57] or msprime [21]. We use scrm for the the-243

oretical convergence as it can output the genealogies in a Newick formart (which we244

use as input). We use msprime to simulate data for SMC++ since msprime is more245

efficient than scrm for big sample sizes [21] and can directly output .vcf files (which is246

the input format of SMC++).247

2.2.1 Absence of hypothesis violation248

We simulate four demographic scenarios: saw-tooth (successions of population size249

expansion and decrease), bottleneck, expansion and decrease. Each scenario is tested250

under four amplitude parameters (i.e. by how many fold the population size varies:251

2, 5, 10, 50). For each analysis we simulate four different sequence lengths (107,252

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.217091doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217091
http://creativecommons.org/licenses/by/4.0/


108, 109 and 1010 bp) and choose the per site mutation and recombination rates253

recommended for human on the guide to MSMC, respectively 1.25×10−8 and 1×10−8
254

(https://github.com/stschiff/msmc/blob/master/guide.md), all the command lines to255

simulate data can be found in S1 of the Appendix. For each simulated data set, as256

previously mentioned, four different algorithms are used to estimate the demographic257

history and the recombination rate: eSMC, MSMC and MSMC2 and SMC++ (the258

command lines to launch the analyses can be found in S2 of the Appendix).259

2.2.2 Presence of hypothesis violation260

SNP calling: In practice, SNP calling from next generation sequencing can yield261

different numbers and frequencies of SNPs depending on the chosen parameters for262

the different steps of analysis (read trimming, quality check, read mapping, and SNP263

calling) as well as the quality of the reference genome, data coverage and depth of264

sequencing, species ploidy and many more. Therefore, based on raw sequence data,265

stringent filters can exclude SNPs (false negatives) or include surious SNPs (false266

positives). When dealing with complex genomes or ancient DNA [53, 7], SNPs can be267

simultaneously missed and added. We thus simulate sequences under a "saw-tooth"268

scenario and then a certain percentage (5,10 and 25 % ) of SNPs is randomly added269

to and/or deleted from the simulated sequences. We then analyse the variation and270

bias in SNP call on the accuracy of demographic parameter estimations.271

Changes in mutation and recombination rates along the sequence:272

Because the recombination rate and the mutation rate can change along the sequence[1],273

and chromosomes are not always fully assembled in the reference genome (which con-274

sists of possibly many scaffolds), we simulate short sequences where the recombination275
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and/or mutation rate randomly changes between the different scaffolds around an276

average value of 1.25 × 10−8 per generation per base pair (between 2.5 × 10−9and277

6.25 × 10−8). We chose to simulate 20 scaffolds of size 2 Mb, as this can represents278

the best available assembly for non-model organisms [27, 58]. We then analyze the279

simulated sequences to study the effect of assuming scaffolds sharing same mutation280

and recombination rates. In addition, we simulate sequences of 40 Mb (assuming281

genome fully assembled) where the recombination rate along the sequence randomly282

changes every 2 Mbp (up to five-fold) around an average value of 1.25 × 10−8 (the283

mutation rate being fixed at 1.25× 10−8 per generation per bp) to study the effect of284

the assumption of a constant recombination rate along the sequence.285

Transposable elements (TEs): Genomes can contain transposable elements286

which dynamics violate the classic infinite site mutational model for SNPs, and thus287

potentially affecting the estimation of different parameters. Although methods have288

been developed to detect [38] and simulate them [23], understanding how their pres-289

ence/absence affect the demographic estimations remains unclear. TEs are usually290

masked in the reference genome and thus not taken into account in the mapped indi-291

viduals due to the redundancy of read mapping for TEs. To best capture and mimic292

the effect of TEs in data, we altered simulated sequence data in two different ways.293

Due to the repetitive nature of TEs, it can be difficult using short reads to correctly294

detect and assemble them, as well as to assess their presence/absence polymorphism295

across individuals of a population [11]. One way to simulate the effect of TEs is to as-296

sume they exhibit presence/absence polymorphism thus creating gaps in the sequence.297

For each individual, we therefore randomly remove small pieces from the original sim-298

ulated sequence, thus shortening and fragmenting the whole sequence to be analyzed.299
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The second way, would be to assume that TEs are masked, a process which we simulate300

by randomly selecting small pieces of sequence from the original simulated sequence,301

and removing all the SNPs found in those regions (i.e. removing mutations from TEs302

which could be used for inference but actually are judged to be non-reliable). In the303

latter, the removed SNPs are structured in many small regions along the genome, and304

not randomly missing throughout it. We also test the consequences of simultaneously305

having both removed and masked TEs in the data set.306

3 Results307

We first study the theoretical accuracy and convergence properties of PSMC’ and308

MSMC methodologies using the sequence exact genealogies. We then analyze the309

simulated sequences themselves and compare results between different SMC based310

methods. Lastly, we analyze simulated sequences for which hypotheses made in the311

SMC framework are violated, so as to study their impact on the accuracy of inference.312

3.1 Theoretical convergence313

Results of the theoretical convergence of PSMC’ under the saw-tooth demographic314

history are displayed in Figure 1. Increasing the sequence length increases accuracy315

and reduces variability, leading to a perfect fit (see Figures 1a-c). However, when the316

amplitude of population size variation is too great (here for 50 fold), the demographic317

history cannot be retrieved, even when using very large data sets (see Figure 1d).318

Similar results are obtained for the three other demographic scenarios (bottleneck,319

expansion and decrease, respectively displayed in Supplementary Figures 1, 2 and 3).320

The bottleneck scenario seems especially difficult to infer, requiring large amounts of321
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data, and the stronger the bottleneck, the harder it is to detect it, even with sequence322

lengths equivalent to 1010bp. In Supplementary Figure 4, we show that even when323

changing the number of hidden states (i.e. number of inferred parameters), some324

scenarios with very strong variation of population size are badly inferred when using325

PSMC’ based methods.326
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Fig. 1. Theoretical convergence of PSMC’ Estimated demographic history

using simulated genealogy over sequences of 10,100,1000,10000 Mb (respectively in

red,orange, green and blue) under a saw-tooth scenario (black) with 10 replicates for

different amplitudes of size change: a) 2-fold, b) 5-fold, c) 10-fold, and d) 50-fold. The

recombination rate is set to 1× 10−8 per generation per bp and the mutation rate to

1.25× 10−8 per generation per bp.

In Supplementary Figures 5, 6, 7 and 8, we show the theoretical convergence327
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of MSMC with four genome sequences and generally find that these analyses present328

a higher variance than PSMC’. However, MSMC shows better fits in recent times329

than PSMC’ and is better able to retrieve population size variation than PSMC’ (see330

Supplementary Figure 5d). Scenarios with strong variation of population size (i.e. with331

large amplitudes) still pose a problem (see Supplementary Figure 9), and no matter332

the number of estimated parameters, such scenarios cannot be correctly inferred using333

MSMC.334

To better understand these results, we examine the coefficient of variation335

obtained from the distribution of the transition matrix. We can see that increasing the336

sequence length reduces the coefficient of variation (the ratio of the standard deviation337

to the mean, hence indicating convergence when equal to 0, see Supplementary Figure338

10), but that for scenarios with a large amplitude of population size variation, some339

hidden state transitions are not at all observed because of a lack of coalescence events340

occurring in those specific time windows. This results in matrices displaying higher341

coefficients of variation or no specific transition observed leading to a matrix that342

is partially empty (Figure 2). This explains the increase of variability of the inferred343

scenarios, as well as the incapacity of SMC methods to correctly infer the demographic344

history with strong population size variation in specific time window.345
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Fig. 2. Estimated transition matrix in sharp saw-tooth scenario Estimated

coefficient of variation of the transition matrix using simulated genealogy over se-

quences of 10000 Mb under a saw-tooth scenario of amplitude 2, 5,10 and 50 (respec-

tively in a, b, c and d) each with 10 replicates with recombination and mutation rates

are as in Figure 1. White squares indicate absence of observed transition (i.e. no

data).
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3.2 Simulated sequence results346

3.2.1 Scenario effect347

In the previous section, we explored the theoretical performance limitations of PSMC’348

and MSMC using trees in Newick format as input. In this section, we evaluate how349

these methods perform when inputting sequence data simulated under the same sce-350

narios and parameters as above. Results for the saw-tooth scenario are displayed in351

Figure 3, where the different models display a good fit, but are not as good as expected352

from the theoretical convergence given the same amount of data (Figure 1 (orange line)353

vs Figure 3 (red line)). As predicted by Figures 1 and 2, the case with the greatest354

amplitude of population size variation (Figure 1d) is the least well fitted. All estima-355

tions display low variance and a relatively good fit in the bottleneck and expansion356

scenarios for small population size variation (see Supplementary Figures 11a and 12a357

). However, the strengths of expansions and bottlenecks are not fully retrieved in358

scenarios with population size variation equal to or higher than tenfold the current359

population size (Supplementary Figures 11c-d,and 12c-d). To study the origin of dif-360

ferences between simulation results and theoretical results, we measure the difference361

between the transition matrix estimated by eSMC and the one built from the actual362

genealogy. Results show that hidden states are harder to find in scenarios which strong363

population size variation, explaining the high variance (see Supplementary Figure 13).364

365
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Fig. 3. Estimated demography using simulated sequences as input. Es-

timated demographic history (black) under a saw-tooth scenario with 10 replicates

using simulated sequences for different amplitude of population size change: a) 2, b)

5, c) 10 and d) 50. Two sequences of 100 Mb for eSMC and MSMC2 (respectively in

red and green ). Four sequences of 100 Mb for MSMC (orange) and 20 sequences of 10

Mb for SMC++ (blue). Recombination and mutation rates are as in previous figures.

Increasing the time window results in an increased variance of the inferences366
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(Supplementary Figure 14). In addition, shifting the window towards more recent time367

leads to poor demographic estimation, but shifting it further in the past does not seem368

to bias the demographic estimation (there are however consequences on estimations of369

the recombination rates, see Table 1 for more details). Concerning the optimization370

function, we find that the complete Baum-Welch algorithm gives similar results to the371

incomplete one.372

Optimization function Scenario real ρ
θ normal window ρ

θ
∗ Big Window ρ

θ
∗ Old window ρ

θ
∗ Recent window ρ

θ
∗

Incomplete Baum-Welch Saw-tooth 0.8 0.79 (0.036) 0.72 (0.039) 0.72 (0.042) 0.94 (0.005)

Complete Baum-Welch Saw-tooth 0.8 .79 (0.044) 0.72 (0.039) 0.72 (0.042) 1.56 (0.087)

Incomplete Baum-Welch Constant 0.8 0.86 (0.019) 0.85 (0.020) 0.84 (0.019) 0.98 (0.002)

Complete Baum-Welch Constant 0.8 0.86 (0.019) 0.85 (0.020) 0.84 (0.019) 1.06 (0.02)

Table 1: Average estimated values for the recombination over mutation ratio

ρ
θ over ten repetitions for different size of the time window. The coefficient of

variation is indicated in brackets. four sequences of 50 Mb simulated with a

recombination rate set to 1 × 10−8 per generation per bp and a mutation rate

to 1.25× 10−8 per generation per bp.

3.2.2 Effect of the ratio of the recombination over the mutation rate373

The ratio of the effective recombination over effective mutation rates ( ρ
θ
) can influence374

the ability of SMC-based methods to retrieve the coalescence time between two points375

along the genome [60]. Intuitively, if recombination occurs at a higher rate compared376

to mutation, then it renders it more difficult to detect any recombination events that377

may have taken place before the introduction of a new mutation, and thus bias the378

estimation of the coalescence time [50, 60]. Under the bottleneck scenario, we find379

that the lower ρ
θ
, the better the fit of the inferred demography, but also the higher380
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the variance of the inferences (see Figure 4). SMC++ seems especially sensitive to381

ρ
θ
. When calculating the difference between the transition matrix estimated by eSMC382

(i.e. PSMC’) and the one built from the actual genealogy (using Newick trees), we find383

that, unsurprisingly, changes in hidden states are harder to detect when ρ
θ
increases,384

leading to an overestimation of hidden states on the diagonal (see Supplementary385

Figures 15,16 and 17).386
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Fig. 4. Effect of ρ
θ
on inference of demographic history. Estimated demo-

graphic history under a bottleneck scenario with 10 replicates using simulated se-

quences. Two sequences of 100 Mb for eSMC and MSMC2 (respectively in a and b).

We use four sequences of 100 Mb for MSMC (c) and twenty sequences of 100 Mb for

SMC++ (d). The mutation rate is set to 1.25 × 10−8 per generation per bp and the

recombination rates are 1.25 × 10−9,1.25 × 10−8 and 1.25 × 10−7 per generation per

bp, giving ρ
θ

= 0.1, 1 and 2 and the inferred demographies are in red, orange and

green respectively. The demographic history is simulated under a bottleneck scenario

of amplitude 10 and is represented in black.
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It is, in some instances, possible to compensate for a ρ
θ
ratio that is not ideal,387

by increasing the number of iterations. Indeed, for eSMC, the demographic history is388

better inferred (see Supplementary Figure 18), although the correct recombination rate389

cannot be retrieved (Table 2). MSMC is able to retrieve the correct recombination390

rate despite a high ρ
θ
, but poorly estimates the demographic history. The results391

obtained using MSMC2 and SMC++ are not improved when increasing the number392

of iterations (see Supplementary Figure 18 and Table 2).393

method real ρ
θ set 1 , ρ

θ
∗ set 2 , ρ

θ
∗ set 3 , ρ

θ
∗ set 4 , ρ

θ
∗ set 5 , ρ

θ
∗

eSMC 10 1.35 (0.026) 1.76 (0.047) 1.29 (0.027) 1.74 (0.048) 1.80 (0.041)

MSMC 10 2.70 (0.011) 6.58 (0.031) 2.68 (0.011) 6.57 (0.032) 6.62 (0.030)

MSMC2 10 1.27 (0.055) 1.65 (0.13) 1.26 (0.060) 1.75 (0.060) 1.60 (0.29)

SMC++ 10 0.69 (0.34) 0.60 (0.45) 0.54 (0.15) 0.12 (066) 0.77 (.40)

Table 2: Average estimated values for the recombination over mutation ratio ρ
θ

over ten repetitions. The coefficient of variation is indicated in brackets. For

eSMC,MSMC and MSMC2 we have : set 1 : 20 hidden states; set 2 : 200 iterations

; set3 : 60 hidden states ; set 4 : 60 hidden states and 200 iterations and set 5 :

20 hidden states and 200 iterations. For SMC++; set 1 : 16 knots ; set 2 : 200

iterations ; set 3 : 4 knots in green; set 4: regularization penalty set to 3 and set 5 :

regularization-penalty set to 12 .

3.3 Simulation results under hypothesis violation394

3.3.1 Imperfect SNP calling395

We analyze simulated sequences that have been modified by removing and/or adding396

SNPs using the different SMC methods. We find that, when using MSMC2, eSMC and397

MSMC, having more than 10 % of spurious SNPs can lead to a strong over-estimation398
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of population size in recent time but that missing SNPs have no effects on inferences399

in the far past and only mild effects on inferences of recent time (see Figure 5 for400

MSMC2 and Supplementary Figures 19 and 20 for eSMC and MSMC respectively).401
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Fig. 5. Consequences of SNP calling errors. Estimated demographic history

using MSMC2 under a saw-tooth scenario with 10 replicates using four simulated se-

quences of 100 Mb. Recombination and mutation rates are as in Figure 1 and the

simulated demographic history is represented in black. a) Demographic history simu-

lated with 5% (orange),10% (green) and 25% (blue) missing SNPs. b) Demographic

history simulated with 5% (orange),10% (green) and 25% (blue) additional SNPs.

c) Demographic history simulated with 5% (orange),10% (green) and 25% (blue) of

additional and missing SNPs . d) Demographic history simulated with no SNP call

error.
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3.3.2 Specific scaffold parameters402

We here analyze simulated sequence data where scaffolds either have or do not have403

the same recombination and mutation rates, and are analyzed assuming scaffolds do404

share or do not share recombination and mutation rates. We can see on Figure 6 that405

when scaffolds all share the same parameter values, estimated demography is accurate406

both when the analysis assumed shared or differing mutation and recombination rates.407

However, when scaffolds are simulated with different parameter values, analyzing them408

under the assumption that they have the same mutation and recombination rates leads409

to poor estimations. Assuming scaffolds do not share recombination and mutation410

rates does improve the results somewhat, but the estimations remain less accurate than411

when scaffolds all share with same parameter values. If only the recombination rate412

changes from one scaffold to another, the demographic history is only slightly biased,413

whereas, if the mutation rate changes from one scaffold to the other, demographic414

history is poorly estimated.415
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Fig. 6. Estimating demographic history using scaffolds sharing or differing

in mutation and recombination rates Estimated demographic history using eSMC

under a saw-tooth scenario with 10 replicates using twenty simulated scaffolds of two

sequences of 2 Mb assuming scaffolds share (red) or do not share recombination and

mutation rate (orange). The simulated demographic history is represented in black,

for a) scaffolds share the same parameters, recombination and mutation rates are set

at 1.25×10−8 , for b) each scaffold is randomly assigned a recombination rate between

2.5× 10−9 and 6.25× 10−8 and the mutation rate is 1.25× 10−8, for c) each scaffold

is randomly assigned a mutation rate between 2.5 × 10−9 and 6.25 × 10−8 and the

recombination rate is 1.25×10−8 and for d) each scaffold is assigned a random mutation

and an independently random recombination rate, both being between 2.5× 10−9 and

6.25× 10−8.
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Even if chromosomes are fully assembled, assuming we here have one scaffold416

of 40 Mb (chromosome fully assembled), there may be variations of the recombination417

rate along the sequence, however this seems of little consequence when applying eSMC418

(i.e PSMC’). As can be seen in Supplementary Figure 21, the demographic scenario is419

well inferred, despite an increase in variance and a smooth "wave" shaped demographic420

history when sequences simulated with varying recombination rates are compared to421

those with a fixed recombination rate throughout the genome.422

3.3.3 How transposable elements bias inference423

Transposable elements (TEs) are present in most species, and are (if detected) only424

taken into account as missing data by SMC methods [47]). Depending on how TEs425

affect the data set, we find that methods are more or less sensitive to them. If TEs426

are removed from the data set, there does not appear to be any bias in the estimated427

demographic history when using eSMC (see Figure 7), but there is an overestimation of428

ρ
θ
(see Table 3). We find that, the higher the proportion of sequences removed, the more429

ρ
θ
is over-estimated. The smaller the sequences that are removed, the more ρ

θ
is over-430

estimated (Tables 4 and 5). If TEs are considered to be masked in the data set (and431

not accounted for missing data by the model), we find that this is equivalent to faulty432

calling of SNPs, in which SNPs are missing, hence resulting in demographic history433

estimation by eSMC similar to that observed in Figure 5a. However, if longer parts of434

the sequences are masked by TEs, different results are obtained (see Supplementary435

Figures 22 and 23). Indeed, there is a strong underestimation of population size and436

the model fails to capture the correct demographic history in recent times. The longer437

the masked parts are, the stronger the effect on the estimated demographic history.438

Similar results are obtained with MSMC (Supplementary Figures 24, 25 and 26) and439
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MSMC2 (Supplementary Figures 27, 28 and 29).440
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Fig. 7. Consequences of masking or removing transposable elements (TEs)

from data sets. Estimated demographic history by eSMC under a saw-tooth scenario

with 10 replicates using four simulated sequences of 20 Mb. The recombination and

mutation rates are as in Figure 1 and the simulated demographic history is represented

in black. Here the tansposable elements are of length 1kbp. a) Demographic history

simulated with no transposable elements. b) Demographic history simulated where

transposable elements are removed. c) Demographic history simulated where TEs are

masked. d) Demographic history simulated where half of transposable are removed

and SNPs on the other half are removed. Proportion of transposable element of the

genome set to 0% (red), 5% (orange), 10% (green), 25 % (blue) and 50 % (purple).31
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method real ρ
θ

ρ
θ
∗ and 5% TEs ρ

θ
∗ and 10% TEs ρ

θ
∗ and 25% TEs ρ

θ
∗ and 50% TEs

eSMC 1 0.95 (0.021) 0.99 (0.022) 1.16 (0.10) 1.77 (0.36)

MSMC 1 1.31 (0.098) 1.35 (0.11) 1.50 (0.088) 1.91 (0.11)

MSMC2 1 0.87 (0.047) 0.88 (0.049) 1.0 (0.036) 1.35 (0.035)

Table 3: Average estimated values for the recombination over mutation ratio ρ
θ

over ten repetitions. The coefficient of variation is indicated in brackets. TEs

are removed and of length 1kb. The proportion of TEs is 5%,10% ,25% and

50%, the results are respectively displayed in column 3 to 6.

method real ρ
θ

ρ
θ
∗ and 5% TEs ρ

θ
∗ and 10% TEs ρ

θ
∗ and 25% TEs ρ

θ
∗ and 50% TEs

eSMC 1 0.96 (0.053) 0.98 (0.066) 1.10 (0.18) 1.36 (0.41)

MSMC 1 1.38 (0.074) 1.41 (0.0.090) 1.54 (0.11) 1.68 (0.13)

MSMC2 1 0.87 (0.064) 0.89 (0.067) .99 (0.15) 1.13 (0.30)

Table 4: Average estimated values for the recombination over mutation ratio ρ
θ

over ten repetitions. The coefficient of variation is indicated in brackets. TEs

are removed and of length 10kb. The proportion of TEs is 5%,10% ,25% and

50%.

method real ρ
θ

ρ
θ
∗ and 5% TEs ρ

θ
∗ and 10% TEs ρ

θ
∗ and 25% TEs ρ

θ
∗ and 50% TEs

eSMC 1 0.95 (0.047) 0.95 (0.051) 0.98 (0.070) 1.0 (0.12)

MSMC 1 1.36 (0.048) 1.36 (0.062) 1.40 (0.093) 1.49 (0.12)

MSMC2 1 0.87 (0.056) 0.88 (0.050) 0.91 (0.079) 0.91 (0.073)

Table 5: Average estimated values for the recombination over mutation ratio ρ
θ

over ten repetitions. The coefficient of variation is indicated in brackets. TEs

are removed and of length 100kb. The proportion of TEs is 5%,10% ,25% and

50%.
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4 Discussion441

Throughout this work we have outlined the limits of PSMC’ and MSMC methodolo-442

gies, which had, until now, not been clearly defined. We find that, in most cases, if443

enough genealogies (i.e. data) are inputted then the demographic history is perfectly444

estimated, tending to results obtained by [13] or [8]. In [13] and [8] they use the445

actual series of coalescence time for estimation whereas we use the series of hidden446

states build from the discretization of time summarized in a simple matrix. However,447

we find that the amount of data required for a perfect fit depends on the underlying448

demographic scenario. In addition, some scenarios are better retrieved either with449

MSMC or PSMC’, indicating complementary convergence properties of MSMC and450

PSMC’ methodologies.451

We develop a method to indicate if the amount of data is enough to retrieve452

a specific scenario, notably by calculating the coefficient of variation of the transition453

matrix using either real or simulated data, and therefore offer guidelines to build454

appropriate data sets (see also Supplementary Figure 8). Our approach can also be455

used to infer demographic history given a sequence of genealogies (using trees in Newick456

format or sequences of coalescence events), independently of how the genealogy has457

been estimated. Our results suggest that whole genome polymorphism data can be458

summarized in a transition matrix based on the SMC theory to estimate demographic459

history. As new methods can infer genealogy better and faster [55, 22, 35, 41], the460

estimated transition matrix could become a powerful summary statistic in the future.461

HMM can be a computational burden depending on the model and model parameters,462

and estimating genealogy through more efficient methods would still allow the use of463

SMC theory for parameter estimation or hypothesis testing (as in [64, 13, 19]). In464
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addition, using the work of [63], one could potentially extend our approach to account465

for population structure.466

We have also demonstrated that the power of PSMC’, MSMC, and other SMC467

based methods, rely on their ability to correctly infer the genealogy along the sequence468

(i.e. the ancestral recombination graph). The accuracy of the ARG inference by SMC469

methods, however, depends on the ratio of the recombination over the mutation rate470

( ρ
θ
). As this rate increases, estimations lose accuracy. Specifically, increasing ρ

θ
leads471

to an over-estimation of hidden states on the diagonal, which explains the underesti-472

mation of the recombination rate and inaccurate demographic history estimations, as473

shown in [60, 50]. As a way around this issue, in some cases it is possible to obtain474

better results by increasing the number of iterations. MSMC’s demographic inference475

is more sensitive to ρ
θ
but the quality of the estimation of the ratio itself is not greatly476

affected. This once again shows the complementarity of PSMC’ and MSMC. If the477

variable of interest is ρ
θ
, then MSMC should be used, but if the demographic his-478

tory is of greater importance, PSMC’-based methods should be used. The amplitude479

of population size variation also influences the estimation of hidden states along the480

sequences, with high amplitudes leading to a poor estimation of the transition ma-481

trix, distorting the inferred demography. We find that increasing the size of the time482

window increases the variance of the estimations, despite using the same number of483

parameters, as this results in a small under-estimation of ρ
θ
. In addition the complete484

and incomplete Baum-Welch algorithms lead to identical results, demonstrating that485

all the information required for the inference is in the estimated transition matrix.486

Finally, we explored how imperfect data sets (due to errors in SNP calling,487

the presence of transposable elements and existing variation in recombination and488
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mutation rates) could affect the inferences obtained using SMC based methods. We489

show that a data set with more than 10% of spurious SNPs will lead to poor estimations490

of the demographic history, whereas missing SNPs have a lesser effect. It is thus491

better to be stringent during SNP calling, as false data is worse than missing data.492

Note, however, that this consideration is valid for demographic inference under a493

neutral model of evolution, while biases in SNP calling also affect the inference of494

selection (especially for conserved genes under purifying selection). However, if missing495

SNPs are structured along the sequence (as would be the case with TEs), there is a496

strong effect on inference. It is therefore recommended that checks should be run to497

detect regions with abnormal distributions of SNPs along the genome. Surprisingly,498

simulation results suggest that removing random pieces of sequences have no impact499

on the estimated demographic history. Taking this into account, when seeking to infer500

demographic history, it seems better to remove sections of sequences than to introduce501

sequences with SNP call errors or abnormal SNP distributions. However, removing502

sequences leads to an over-estimation of ρ
θ
, which seems to depend on the number and503

size of the removed sections. The removal of a few, albeit long sequences, will have504

almost no impact, whereas removing many short sections of the sequences will lead505

to a large overestimation of ρ
θ
. This consequence could provide an explanation for506

the frequent overestimation of ρ
θ
when compared to empirical measures of the ratio507

of recombination and mutation rates r
µ
. This implies, that in some cases, despite an508

inferred ρ
θ
> 1, the inferred demographic history can surprisingly be trusted. Note509

also that as discussed in [50], the discrepancy between ρ
θ
and r

µ
can be due to life510

history traits such as selfing or dormancy.511

Simulation results suggest that any variation of the recombination rate along512
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the sequence does not bias demographic inference but slightly increases the variance513

of the results and leads to small waves in the demographic history (as consequences514

of erroneously estimated hidden state transition events because of the non constant515

recombination rate along the sequence). Those results are similar to the one obtained516

in [25]. On the other hand, if scaffolds do not share similar rates of mutation and517

recombination, but are analyzed together assuming that they do, estimations will be518

very poor. This results is surprisingly different than those obtained in [25] (although519

the variation of mutation rate was within a scaffold in their study). This discrepancy520

could suggest analyses based on longer scaffold to be more robust. However, this521

problem can be avoided if each scaffold is assumed to have its own parameter values,522

although this would increase computation time. In addition, it could provide useful523

insight in unveiling any variation in molecular forces along the genome, albeit in a524

coarser way than in [1].525

4.1 Guidelines when applying SMC-based methods526

Our aim through this work is to provide guidelines to optimize the use of SMC-based527

methods for inference. First, if the data set is not yet built, but there is some intuition528

concerning the demographic history and knowledge of some genomic properties of a529

species (e.g. recombination and mutation rates), we recommend simulating a data530

set corresponding to the potential scenarios. From these simulations, the transition531

matrix for PSMC’ or MSMC based methods can be built using the R package eSMC2.532

The results obtained can guide users when it comes to the amount and quality of data533

needed (sequence size and copy number) for a good inference. Beyond being used534

to guide the building of data sets, it is possible to asses trustworthiness of results535

obtained using SMC-based methods on existing data sets. If the estimated transition536
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matrix is empty in some places (i.e. no observed transition event between two specific537

hidden states; white squares in Figure 1), it could suggest a lack of data and/or strong538

variation of the population size somewhere in time. In order to test the accuracy of the539

inferred demography, the estimated demographic history can be retrieved and used to540

simulate a data set with more sequences and/or simulate a demographic history with541

a higher amplitude than the estimated one. The SMC method can then be run on542

the simulated data in order to check whether using more data results in a matching543

scenario or if a higher amplitude of population size can indeed be inferred, in which544

cases the initial results are most probably trustworthy.545

As mentioned above, it is better to sequence fewer individuals, but have data546

of better quality. It is also important to note, that more data is not necessarily always547

better, especially if there is a risk of spurious SNPs (see Figure 5). In some cases,548

methods are limited by their own theoretical framework, hence no given data set will549

ever allow a correct demographic inference. In such cases, other methods based on a550

different theoretical frameworks (e.g. SFS and ABC ) might perform better [3, 48].551

4.2 Concluding remarks552

Here we present a simple method to help assess how accurate inferences obtained us-553

ing PSMC’ and MSMC would be, when applied to data sets with suspected flaws or554

limitations. We also offer new interpretations of results obtained when hypotheses555

are known to be violated, and thus offer an explanation as to why results sometimes556

deviate from expectations (e.g. when the estimated ratio of recombination over mu-557

tation is larger than the one measured experimentally). We propose guidelines for558

building/evaluating data sets when using SMC-based models, as well as a method559
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which can be used to estimate the demographic history and recombination rate given560

a genealogy (in the same spirit as Popsicle [13]). The estimated transition matrix is561

introduced as a summary statistic, which can be used to recover demographic history562

(more precisely the Inverse Instantaneous Coalescence Rate interpretation of popula-563

tion size variation, when assuming panmictic population [8, 46]). This statistic could,564

in future, be used in more complex scenarios, without the computational load of Hid-565

den Markov models. When faced with complex demographic histories, or ρ
θ
> 1, we566

show that there are strategies that would allow those wishing to use SMC methodology567

to make the best use of their data.568
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