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Figure 5. Consequences of SNP calling errors. Estimated demographic history using MSMC2 under
a saw-tooth scenario with 10 replicates using four simulated sequences of 100 Mb. Recombination
and mutation rates are as in Figure 1 and the simulated demographic history is represented in black.
a) Demographic history simulated with ibsence of SNP calling issue (red). b) Demographic history
simulated with 5% (orange),10% (green) and 25% (blue) missing SNPs. c) Demographic history
simulated with 5% (orange), 10% (green) and 25% (blue) additional SNPs. d) Demographic history
simulated with 5% (orange),10% (green) and 25% (blue) of additional and missing SNPs .

As complementary analyses we analyze simulated sequences with a Minor Allele Frequency (MAF)
threshold. Results are shown in Supplementary Figure 25. The more SNPs are removed, the poorer the
estimations in recent time (Supplementary Figure 25), demonstrating the impact of severe ascertain-
ment bias.

Specific scaffold parameters

We simulate sequence data where scaffolds have either been simulated with the same recombination
and mutation rates or with different recombination and mutation rates. Data sets are then analyzed
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assuming scaffolds share or do not share the same recombination and mutation rates. We can see in Fig-
ure 6 (and Supplementary Table 5) that when scaffolds all share the same parameter values, estimated
demography is accurate both when the analysis assumed shared or differing mutation and recombi-
nation rates. However, when scaffolds are simulated with different parameter values, analyzing them
under the assumption that they have the same mutation and recombination rates leads to poor esti-
mations. Assuming scaffolds do not share recombination and mutation rates does improve the results
somewhat, but the estimations remain less accurate than when scaffolds all share with same parameter
values. If only the recombination rate changes from one scaffold to another, the demographic history is
only slightly biased, whereas, if the mutation rate changes from one scaffold to the other, demographic
history is poorly estimated.
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Figure 6. Estimating demographic history using scaffolds sharing or differing in mutation and
recombination rates Estimated demographic history using eSMC under a saw-tooth scenario with 10
replicates using twenty simulated scaffolds of two sequences of 2 Mb assuming scaffolds share (red)
or do not share recombination and mutation rates (orange). The simulated demographic history is
represented in black. a) Scaffolds share the same parameters, recombination and mutation rates are
setat 1.25 x 1073, b) Each scaffold is randomly assigned a recombination rate between 2.5 x 10~°
and 6.25 x 1078 and the mutation rate is 1.25 x 10~%, ¢) Each scaffold is randomly assigned a
mutation rate between 2.5 x 107 and 6.25 x 10~ and the recombination rate is 1.25 x 1078 and d)
Each scaffold is assigned a random mutation and an independently random recombination rate, both
being between 2.5 x 10~° and 6.25 x 1075,

Even if chromosomes are fully assembled, assuming we here have one scaffold of 40 Mb (chromo-
some fully assembled), there may be variations of the recombination rate along the sequence, however
this seems of little consequence when applying eSMC. As can be seen in Supplementary Figure 26, the
demographic scenario is well inferred, despite an increase in variance and a smooth "wave" shaped de-
mographic history when sequences simulated with varying recombination rates are compared to those
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with a fixed recombination rate throughout the genome. Overall we see that when recombination rate is
heterogeneous along the genome by a factor 5, it is not untypical to falsely estimate a two-fold variation
of Ne even though the true Ne is constant in time.

How transposable elements bias inference

Transposable elements (TEs) are present in most species, and are (if detected) taken into account as
missing data by SMC methods (Schiffels and Durbin, 2014)). Depending on how TEs affect the data set,
we find that methods are more or less sensitive to TEs. If TEs are unmapped/removed from the data
set, there does not appear to be any bias in the estimated demographic history when using eSMC (see
Figure 7 and Supplementary Table 6), but there is an overestimation of £ (see Table 3). We find that,
the higher the proportion of sequences removed, the more £ is over-estimated. For a fixed amount
of missing/removed data, the smaller the sequences that are removed, the more £ is over-estimated
(Table 3). If TEs are present but unmasked in the data set (and thus not accounted for missing data
by the model (Schiffels and Durbin, 2014) ), we find that this is equivalent to a faulty calling of SNPs, in
which SNPs are missing, hence resulting in demographic history estimations by eSMC similar to those
observed in Figure 5a. However, if the size of unmasked TEs increases, different results are obtained
(see Supplementary Figures 27 and 28). Indeed, in recent times there is a strong underestimation of
population size and the model fails to capture the correct demographic history. The longer the TEs are,
the stronger the effect on the estimated demographic history. Similar results are obtained with MSMC
(Supplementary Figures 29, 30 and 31) and MSMC2 (Supplementary Figures 32, 33 and 34). However,
when TEs are detected and correctly masked, there is no effect on demographic inferences (Supplemen-
tary Figures 35 and 36).
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Figure 7. Consequences of masking or removing transposable elements (TEs) from data sets.
Estimated demographic history by eSMC under a saw-tooth scenario with 10 replicates using four
simulated sequences of 20 Mb. The recombination and mutation rates are as in Figure 1 and the

simulated demographic history is represented in black. Here the TEs are of length 1kbp. a)
Demographic history simulated with no TEs. b) Demographic history simulated where TEts are
removed. c) Demographic history simulated where TEs are masked. d) Demographic history simulated
where half of the TEs are removed and SNPs on the other half are removed. Proportion of the genome
made up by TEs is set to 0% (red), 5% (orange), 10% (green), 25 % (blue) and 50 % (purple).

Peer Community In Evolutionary Biology

23 0f 34


https://doi.org/10.1101/2020.07.23.217091
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.217091; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

TE length | method | real 4 | 5" and 5% TEs | £" and 10% TEs | 5" and 25% TEs | £ and 50% TEs

eSMC 1 0.95(0.021) 0.99 (0.022) 1.16 (0.10) 1.77 (0.36)

1 kb MSMC 1 1.31(0.098) 1.35(0.11) 1.50 (0.088) 1.91(0.11)
MSMC2 1 0.87(0.047) 0.88 (0.049) 1.0(0.036) 1.35(0.035)

eSMC 1 0.96 (0.053) 0.98 (0.066) 1.10(0.18) 1.36(0.41)

10 kb MSMC 1 1.38(0.074) 1.41 (0.0.090) 1.54(0.11) 1.68 (0.13)
MSMC2 1 0.87 (0.064) 0.89(0.067) .99 (0.15) 1.13(0.30)

eSMC 1 0.95(0.047) 0.95(0.051) 0.98 (0.070) 1.0(0.12)

100kb | MSMC 1 1.36 (0.048) 1.36 (0.062) 1.40 (0.093) 1.49 (0.12)
MSMC2 1 0.87 (0.056) 0.88 (0.050) 0.91(0.079) 0.91 (0.073)

Table 3. Average estimated values for the recombination over mutation ratio £ over ten
repetitions. The coefficient of variation is indicated in brackets. TEs are of length 1kb, 10kb
or 100 kb and are completely removed and the proportion of the genome made up by TEs is
5%,10% ,25% and 50%.

Discussion

Throughout this work we have outlined the limits of PSMC’ and MSMC methodologies, which had, until
now, not been clearly defined. We find that, in most cases, if enough genealogies (i.e. data) are inputted
then the demographic history is accurately estimated, tending to results obtained previously (Chikhi
et al., 2018; Gattepaille et al., 2016), however, we find that the amount of data required for an accurate
fit depends on the underlying demographic scenario. The differences with previous works stems from
estimations being made using the actual series of coalescence times (Chikhi et al., 2018; Gattepaille et
al., 2016), whereas we use the series of hidden states built from the discretization of time summarized
in a simple matrix. We also find that some scenarios are better retrieved when using either MSMC or
methods based on PSMC, indicating that there are complementary convergence properties between
these methodologies.

We develop a method to indicate if the amount of data is enough to retrieve a specific scenario,
notably by calculating the coefficient of variation of the transition matrix using either real or simulated
data, and therefore offer guidelines to build appropriate data sets (see also Supplementary Figure 8).
Our approach can also be used to infer demographic history given an ARG (using trees in Newick format
or sequences of coalescence events), independently of how the ARG has been estimated. Our results
suggest that whole genome polymorphism data can be summarized in a transition matrix based on
the SMC theory to estimate demographic history of panmitic populations. As new methods can infer
genealogies better and faster (Kelleher, Wong, et al., 2019; Mirzaei and Wu, 2017; Palamara et al., 2018;
Speidel et al., 2019), the estimated transition matrix could become a powerful summary statistic in
the future. HMM can be a computational burden depending on the model and model parameters,
and estimating genealogy through more efficient methods would still allow the use of SMC theory for
parameter estimation or hypothesis testing (as in Gattepaille et al. (2016), Johndrow and Palacios (2019),
and P Wang et al. (2018)). In addition, using the work of K Wang et al. (2020), one could (to some extent
Kim et al. (2020)) extend our approach to account for population structure and migration.

We have also demonstrated that the power of PSMC', MSMC, and other SMC-based methods, rely
on their ability to correctly infer the genealogies along the sequence (i.e. the Ancestral Recombination
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Graph or ARG). The accuracy of ARG inference by SMC methods, however, depends on the ratio of the
recombination over the mutation rate (5). As this rate increases, estimations lose accuracy. Specifically,
increasing £ leads to an over-estimation of transitions on the diagonal, which explains the underestima-
tion of the recombination rate and inaccurate demographic history estimations, as shown in Sellinger
et al. (2020) and Terhorst, Kamm, et al. (2017). As a way around this issue, in some cases it is possi-
ble to obtain better results by increasing the number of iterations. MSMC's demographic inference is
more sensitive to £ but the quality of the estimation of the ratio itself is less affected. This once again
shows the complementarity of PSMC' and MSMC. If the variable of interest is £, then MSMC should be
used, but if the demographic history is of greater importance, PSMC'-based methods should be used.
The amplitude of population size variation also influences the estimation of hidden states along the
sequences, with high amplitudes leading to a poor estimation of the transition matrix, distorting the
inferred demography. We find that increasing the size of the time window increases the variance of the
estimations, despite using the same number of parameters, as this results in a small under-estimation
of £. In addition the complete and incomplete Baum-Welch algorithms lead to identical results, demon-
strating that all the information required for the inference is in the estimated transition matrix.

Finally, we explored how imperfect data sets (due to errors in SNP calling, the presence of transpos-
able elements and existing variation in recombination and mutation rates) could affect the inferences
obtained using SMC-based methods. We show that a data set with more than 10% of spurious SNPs
will lead to poor estimations of the demographic history, whereas randomly removed SNPs (i.e. missing
SNPs) have a lesser effect on inferences. It is thus better to be stringent during SNP calling, as SNPs
is worse than missing SNPs. Note, however, that this consideration is valid for demographic inference
under a neutral model of evolution, while biases in SNP calling also affect the inference of selection (es-
pecially for conserved genes under purifying selection). However, if missing SNPs are structured along
the sequence (as would be the case with unmasked TEs), there is a strong effect on inference. If TEs
are correctly detected and masked, there is no effect on demographic inferences. It is therefore rec-
ommended that checks should be run to detect regions with abnormal distributions of SNPs along the
genome. Surprisingly, simulation results suggest that removing random pieces of sequences have no
impact on the estimated demographic history. Taking this into account, when seeking to infer demo-
graphic history, it seems better to remove sections of sequences than to introduce sequences with SNP
call errors or abnormal SNP distributions. However, removing sequences leads to an over-estimation
of £, which seems to depend on the number and size of the removed sections. The removal of a few,
albeit long sequences, will have almost no impact, whereas removing many short sections of the se-
quences will lead to a large overestimation of £. This consequence could provide an explanation for
the frequent overestimation of £ when compared to empirical measures of the ratio of recombination
and mutation rates ﬁ This implies, that in some cases, despite an inferred £ > 1, the inferred demo-
graphic history can surprisingly be trusted. Note also that as discussed in Sellinger et al. (2020), the
discrepancy between £ and ﬁ can be due to life history traits such as selfing or dormancy.

Simulation results suggest that any variation of the recombination rate along the sequence does
not strongly bias demographic inference but slightly increases the variance of the results and leads
to small waves in the demographic history (as a consequence of erroneously estimated hidden state
transition events because of the non constant recombination rate along the sequence), as expected
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from previous works (H Li and Durbin, 2011). However, unlike Li and Durbin’s results (H Li and Durbin,
2011), if scaffolds do not share similar rates of mutation and recombination, but are analyzed together
assuming that they do, estimations will be very poor. This could be due to the variation of mutation
rate being within a scaffold in their study and the discrepancy between out and their results could
suggest analyses based on longer scaffolds to be more robust. However, this problem can be avoided if
each scaffold is assumed to have its own parameter values, although this would increase computation
time, it could provide useful insight in unveiling any variation in molecular forces along the genome,
albeit in a coarser way than in Barroso et al. (2019). As we found that non-accounted variation of the
recombination rate along the sequence can lead to a spurious two-fold variation of population size, we
here provide guidelines to test if small detected variations of population size are to be trusted. Since the
consequecnes of a varying recombination rate might depend on the topology of the recombination map,
one first needs estimate the recombination map (e.g. using iISMC (Barroso et al., 2019)). If problematic
regions are found they can be removed with almost no negative impact on the estimated demography
(Figure 7). Otherwise,the recombination map can be used to simulate sequences e.g. using scrm (Staab
et al., 2015)), which can be compared to results obtained for a constant recombination rate. Analyses
can be run on both data sets to quantify the effect of the recombination map.

Guidelines when applying SMC-based methods

Our aim through this work is to provide guidelines to optimize the use of SMC-based methods for infer-
ence. First, if the data setis not yet built, but there is some intuition concerning the demographic history
and knowledge of some genomic properties of a species (e.g. recombination and mutation rates), we
recommend simulating a data set corresponding to the potential scenarios. From these simulations,
the transition matrix for PSMC’' or MSMC-based methods can be built using the R package eSMC2. The
results obtained can guide users when it comes to the amount and quality of data needed (sequence
size and copy number) for a good inference. Beyond being used to guide the building of data sets, it
is possible to assess trustworthiness of results obtained using SMC-based methods on existing data
sets. If the estimated transition matrix is empty in some places (i.e. no observed transition event be-
tween two specific hidden states; white squares in Figure 2), it could suggest a lack of data and/or strong
variation of the population size somewhere in time. In order to test the accuracy of the inferred demog-
raphy, the estimated demographic history can be retrieved and used to simulate a data set with more
sequences and/or simulate a demographic history with a higher amplitude than the estimated one. The
SMC method can then be run on the simulated data in order to check whether using more data results
in a matching scenario or if a higher amplitude of population size can indeed be inferred, in which cases
the initial results are most probably trustworthy.

As mentioned above, it is better to sequence fewer individuals, but to have data of better quality. It
is also important to note, that more data is not necessarily always better, especially if there is a risk of
spurious SNPs (see Figure 5). In some cases, methods are limited by their own theoretical framework,
hence no given data set will ever allow a correct demographic inference. In such cases, other methods
based on a different theoretical frameworks (e.g. SFS and ABC) might perform better (Beichman et al.,
2017; Schraiber and Akey, 2015).
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Concluding remarks

Here we present a simple method to help assess how accurate inferences obtained using PSMC' and
MSMC would be when applied to data sets with suspected flaws or limitations. We also provide new
interpretations of results obtained when hypotheses are known to be violated, and thus offer an ex-
planation as to why results sometimes deviate from expectations (e.g. when the estimated ratio of
recombination over mutation is larger than the one measured experimentally). We propose guidelines
for building/evaluating data sets when using SMC-based models, as well as a method which can be used
to estimate the demographic history and recombination rate given a genealogy (in the same spirit as
Popsicle (Gattepaille et al., 2016)). The estimated transition matrix is introduced as a summary statistic,
which can be used to recover demographic history (more precisely the Inverse Instantaneous Coales-
cence Rate interpretation of population size variation, when assuming a panmictic population (Chikhi
et al., 2018; Rodriguez et al., 2018)). This statistic could, in future, be used in scenarios with migration,
without the computational load of Hidden Markov models. When faced with complex demographic
histories, or £ > 1, we show that there are strategies that would allow those wishing to use SMC
methodology to make the best use of their data.

Supplementary material

Scripts and codes are available online:
https://www.biorxiv.org/content/10.1101/2020.07.23.217091v2.supplementary-material
https://github.com/TPPSellinger/eSMC2
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