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Non-synaptic interactions between
olfactory receptor neurons, a
possible key-feature in insect odor
inspection

Mario Pannunzi'* and Thomas Nowotny'

1School of Engineering and Informatics, University of Sussex, Brighton, UK

Abstract When flies explore their environment, they encounter odors in complex, highly
intermittent plumes. To navigate a plume and, for example, find food, flies must solve several
tasks, including reliably identifying mixtures of odorants and discriminating odorant mixtures
emanating from a single source from odorants emitted from separate sources and mixing in the
air. Lateral inhibition in the antennal lobe is commonly understood to help solving these two
tasks. With a computational model of the Drosophila olfactory system, we analyze the utility of an
alternative mechanism for solving them: Non-synaptic ("ephaptic") interactions (NSIs) between
olfactory receptor neurons that are stereotypically co-housed in the same sensilla. For both tasks,
NSlIs improve the insect olfactory system and outperform the standard lateral inhibition
mechanism in the antennal lobe. These results shed light, from an evolutionary perspective, on
the role of NSlIs, which are normally avoided between neurons, for instance by myelination.

Introduction

Flies, as most other insects, rely primarily on olfaction to find food, mates, and oviposition sites.
During these search behaviours, they encounter complex plumes with highly intermittent odor
signals: Odor whiffs are infrequent and odor concentration varies largely between whiffs (Yee et al.,
1993, 1995; Mylne and Mason, 1991). To navigate a plume and successfully reach their objectives,
flies must decipher these complex odor signals which includes several tasks: Identifying odors,
whether mono-molecular or a mixture; Identifying odor intensity; Discriminating odorant mixtures
emanating from a single source from those emanating from separate sources; identifying source
locations, etc. Early sensory processing is understood to play an important role for completing
these tasks. For instance, lateral inhibition in the antennal lobe is commonly understood to be
useful for decorrelating odor signals from co-activated receptor types. Here we investigate the
hypothesis that the early interactions between ORNSs in the sensilla are similarly, if not more, useful
for decoding information in odor plumes.

In both, vertebrates and invertebrates, odors are sensed by an array of numerous receptor
neurons, each typically expressing receptors of exactly one of a large family of olfactory receptor
(OR) types. Ininsects, olfactory receptor neurons (ORNSs) are housed in evaginated sensilla localized
on the antennae and maxillary palps (Wilson, 2013), each sensillum containing one to four ORNs
of different types (Todd and Baker, 1999; Wilson, 2013). The co-location of ORN types within the
sensilla is stereotypical, i.e. ORNSs of a given type “a” are always co-housed with ORNs of a specific
type “b". Furthermore, ORNs within the same sensillum can interact (Shimizu and Stopfer, 2012;
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Figure 1. a) NSl interaction Theoretical and experimental studies have proposed that the non-synaptic
interaction (NSI) between ORNs is mediated by a direct electrical field interaction between such closely
apposed neurons. b) Hypothesis n.1: An inhibitory mechanism can increase the dynamic range of the ORNs
and help to correctly encode the ratio between odorants even at high concentration. At low concentration,
the ratio of two odorants (A1 and B1) can be encoded by ORNs, with and w/o NSI; when concentration is high
(A2 and B2), the ORNs response without NSl is flatted on similar values and the ratio cannot be encoded.
Hypothesis n.2: If a single source emits an odorant mixture (c), odorants will arrive in close synchronization,
NSIs will take effect and the response in both ORNSs is affected. If separate sources emit the odorants (d), they
will arrive in a less correlated way (Erskine, 2018), and NSIs have almost no effect, resulting in larger ORN
responses. ORN response data shown is based on a preliminary model.

Su et al., 2012; Todd and Baker, 1999; Xu et al., 2019; Zhang et al., 2019) without making synaptic
connections (see Figure 1a). While the interactions are sometimes called "ephaptic", referring to
their possible electronic nature, we here prefer to call them non-synaptic interactions (NSIs), for the
sake of generality. Whether stereotypical co-location of - and NSIs between - ORNs have functions
in olfactory processing and what these functions might be remains unknown, even though several
non-exclusive hypotheses have been formulated (see e.g. Todd and Baker (1999) and references
therein).

Here, we investigate two hypotheses: First, NSIs could help the olfactory system to identify ra-
tios of odorant concentrations in mixtures more faithfully by enhancing the dynamic range of ORN
responses (see Figure 1, panel b). Second, NSlIs could help improve the spatiotemporal resolution
of odor recognition in complex plumes (see Figure 1, panels c-d). In both hypotheses, the NSI mech-
anism has to compete with lateral inhibition in the antennal lobe, which is commonly recognized to
fulfill these roles, even though, of course, the two mechanisms are not mutually exclusive. Indi-
rect support for the first hypothesis is found in the context of moths’ pheromone communication.

2 of 25


https://doi.org/10.1101/2020.07.23.217216
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprmt doi: https://doi. org/lO 1101/2020 07.23.217216; this version posted July 24, 2020. The copyrlght holder for this preprlnt (which

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

20

91

92

93

94

95

926

97

98

929

101

102

103

[ us p A i tu Lz

In some moth species, pheromone mixture ratio discrimination is critical for survival and there-
fore even slight changes in pheromone component ratios of 1-3% can cause significant changes in
behavior. In these species, the ORNs responding to pheromone components are more likely to be
co-housed. Meanwhile, when mixture ratios are not as critical for behavior, i.e., significant changes
in behavior only occur if pheromone component ratios change 10% or more, ORNs are less likely
to be paired in the same sensilla (see Todd and Baker (1999) and reference therein). The idea of
extending dynamic range is a cornerstone for signal processing and metrology and we can find
evidence for extended dynamics range in several senses, including olfaction (see e.g. Vermeulen
and Rospars (2004); Reddy et al. (2018); Singh et al. (2019)): When a quantity of interest is encoded
by neuronal activity through a sigmoid function (see Olsen et al. (2010) for an example for projec-
tory neuron (PN) activity), the encoding has a limited dynamic range (see Figure 1, panel b) that is
determined by the shape of the sigmoid and the maximum firing rate of the neurons. A common
neuronal strategy to increase the dynamic range in this situation is mutual inhibition between neu-
rons, like that one taking place between PNs inside the antennal lobe (AL) (see e.g. Wilson (2013).
We propose that NSIs in the sensilla implement such a mechanism and analyse how it improves
the encoding of the concentration ratio of odor mixtures in PNs.

The improvement of spatiotemporal resolution of the second hypothesis can be achieved by
decorrelating odor response profiles to improve odor recognition (see Figure 1, panels c-d), much
like lateral inhibition in the antennal lobe (AL), or centre-surround inhibition in the retina. Odor-
ants dissipate in the environment in complex, turbulent plumes of thin filaments of a wide range of
concentrations, intermixed with clean air. Odorants emanating from the same source presumably
travel together in the same filaments while odorants from separate sources are in separate strands
(see e.g., Erskine (2018) for empirical evidence for this intuitive idea). Insects are able to resolve
odorants in a blend and recognize whether odorants are present in a plume and whether or not
they belong to the same filaments (Fadamiro and Baker, 1997; Baker et al., 1998; Krofczik et al.,
2009; Szyszka et al., 2012). In the pheromone sub-system of moths, it is known that animals are
able to detect, based on fine plume structure, whether multiple odorants have been emitted from
the same source or not (Fadamiro and Baker, 1997; Baker et al., 1998; Andersson et al., 2010).
In the pheromone subsystem of Drosophila, ORNs responding to chemicals emitted by virgin fe-
males and ORNs responding to chemicals emitted by mated females are co-housed in the same
sensilla: The 'virgin females ORNs' promote male approach behavior, but the ‘mated females ORNs'
inhibit ‘'virgin females ORNS' (van Naters and Carlson, 2007). This inhibition could be implemented
through NSIs (Todd and Baker, 1999; van Naters and Carlson, 2007; Couto et al., 2005; Binyameen
etal., 2014).

The experimental evidence for both hypotheses and for the general relevance of NSIs for olfac-
tory processing remains mixed and research is still at an early stage. Encouraged by the available
evidence, and without trying to rule out other hypotheses (for further analysis see Discussion), our
goal is to investigate, with a computational model, the viability of the hypothesized function of
NSIs between ORNs. Our computational approach helps experimental studies to refine hypothe-
ses about NSI and eventually answer the pertinent question why such a mechanism that appears
to duplicate what is already known to be implemented by local neurons in the AL (Todd and Baker,
1999) could nevertheless provide an evolutionary advantage.

A number of computational models have been developed to capture different aspects of the
olfactory system of insects. However, until recently, most modeling efforts were based on the as-
sumption of continuous constant stimuli, which are partially realistic only for non-turbulent fluid
dynamics regimes (see (Pannunzi and Nowotny, 2019), and reference therein). Most commonly
insects encounter turbulent regimes, in which odorant concentration fluctuates rapidly (see Fig-
ure 6-Figure Supplement 2).

To cope with these more realistic stimuli, Kim et al. (2011); Lazar and Yeh (2020); Gorur-Shandilya
et al. (2017); Jacob et al. (2017) have formulated new models of Drosophila ORNs, that are con-
strained by experimental data obtained with more rich, dynamic odor inputs, including a model
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Figure 2. The model consists of a subset of the early olfactory system of insects from ORNs to the AL using
only two groups of ORNs (ORN, and ORN,) and their respective PNs and LNs. Each ORN type, a and b, is tuned
to a specific set of odorants (e.g. individual pheromone component) and converges onto its corresponding
PNs. PNs impinge into their respective LNs, but receive inhibitory input from LNs of the other type.

simulating ORNs and PNs that are subject to input from simulated plumes (Jacob et al., 2017) with
statistical properties akin to those of naturalistic plumes (see more details in Model and methods
and Correlation detection in long realistic plumes).

Here, we present a network model with two groups of ORNSs, each tuned to a specific set of
odorants, connected to their corresponding glomeruli, formed by lateral neurons (LNs) and PNs,
following the path started by Av-Ron and Rospars (1995); Av-Ron and Vibert (1996), and subse-
quently by Getz and Lutz (1999); Serrano et al. (2013);, Zavada et al. (2071). We model the ORNs
in a similar approach as Kim et al. (2011); Lazar and Yeh (2020) with minor differences in the filter
properties and the adaptation (see Model and methods). We have tested the behavior of this net-
work in response to simple reductionist stimuli (as commonly used in the literature, see above),
and simulated naturalistic mixtures plumes (as described by the experiments in Mylne and Mason
(719917); Yee et al. (1995)). We then used this simple but well-supported model to investigate the
role of NSlIs for odor mixture recognition.

Results
To investigate the role of NSIs in olfactory sensilla, we have built a computational model of the
first two processing stages of the Drosophila olfactory system. In the first stage, ORN responses
are described by an odor transduction process and a spike generator (see Model and methods),
in line with previous experimental and theoretical studies (Kim et al., 2011, 2015; Martelli et al.,
2013; Lazar and Yeh, 2020). We simulated pairs of ORNs expressing different OR types, as they
are co-housed in sensilla. NSls between co-housed pairs effectively lead to their mutual inhibition
(see Figure 1a). The second stage of olfactory processing occurs in the AL, in which PNs receive
input from ORNs and form local circuits through LNs. ORNs of the same type all make excitatory
synapses onto the same associated PNs. PNs excite LNs which then inhibit PNs of other glomeruli
but not the PNs in the same glomerulus (see Figure 2 and Model and methods for further details).
For maximum clarity, we here focus on only one type of sensillum and hence two types of ORNs
that we denote as ORN, and ORN,. We further assume that odorants labeled A and B selectively
activate ORN, and ORN,, respectively (see Figure 2 and Figure 1a). This assumption is not only
sensible for a reductionist analysis of the role of NSls, but it is also based on experimental obser-
vations. For instance, pheromone receptors in moths and in Drosophila are highly selective, paired
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Figure 3. ORN responses to a 500ms single step stimulus. a) Stimulus waveform (continuous line) and
receptor activation r (dashed). b) Activity of the internal ORN variables x (continuous) and y (dashed) (see
Model and methods). ¢) Example spike raster of the spiking response of all 80 ORNSs. d) Spike density function
of the ORN population activity. The Shaded area represents the standard deviation across the ORNs of the
same type. Color code for panels c-d: green for ORN, and purple for ORN,. e) Stimulus waveforms for
different odorant concentrations. f) ORN activity normalized to the peak activity. odor concentration is
indicated with different shades of green. After normalization, the responses are almost identical to those
reported by Martelli et al. (2013).

Figure 3-Figure supplement 1. Model ORN response to a single step, a ramp, and a parabola as in (Lazar and
Yeh, 2020).
Figure 3-Figure supplement 2. Output of the model of Lazar and Yeh (Lazar and Yeh, 2020) for comparison.

in sensilla, and exhibit NSIs (Leal, 2013; Todd and Baker, 1999). In the general olfactory system of
Drosophila, neurons ab3A and ab3B in sensillum ab3 are selectively sensitive to 2-heptanone and
Methyl hexanoate, and when stimulated simultaneously they inhibit each other through NSIs (Su
etal., 2012).

Constraining the ORN model to biophysical evidence
In this investigation we are particularly interested in the complex time course of odorant responses
and have therefore focused on replicating realistic temporal dynamics of the response of ORNs at
multiple time scales. ORN responses were constrained with experimental data obtained with delta
inputs, i.e. inputs of very short duration and very high concentration, and random Gaussian pulses,
i.e. series of input pulses which durations and inter-stimulus-intervals were drawn from a Gaussian
distribution. We found that our model reproduces the data to a similar quality (relative error of
around 6%) as previous linear-nonlinear models (Kim et al., 2011, 2015; Martelli et al., 2013; Nagel
and Wilson, 2011; Lazar and Yeh, 2020), even though it has fewer free parameters (see Figure 3).
To further constrain the model, we compared its results to electrophysiological recordings from
ORNSs (Kim et al., 2011, 2015) responding to 2s long odor stimuli with shapes resembling steps,
ramps, and parabolas (see Figure 3-Figure Supplement 1 and Model and methods). The model
reproduces all key properties of the experimentally observed ORN responses. For the step stim-
uli, ORN activity peaks around 50ms after stimulus onset and the peak amplitude correlates with
the odor concentration (Figure 3-Figure Supplement 1b). After the peak, responses gradually de-
crease to a plateau. Furthermore, if normalised by the peak value, responses have the same shape
independently of the intensity of the stimulus (Martelli et al., 2013), see Figure 3e,f. For the ramp
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Figure 4. Network response to 500 ms step stimuli of a single odorant for the network as shown in Figure 2.
a) Step stimuli, shade of green indicates concentration. b)-d) corresponding activity of ORNs, PNs, and LNs.
Shades of green match the input concentrations. e) Average response of PNs over 500 ms against the
average activity of the corresponding ORNSs. The orange dashed line is the fit of the simulated data using
equation eq.1 as reported in (Olsen et al., 2010). f) Average values for PNs, ORNs, and LNs for different values
of concentration. Error bars show the SE over PNs.

Figure 4-Figure supplement 1. Similar results for shorter stimulation time (50 ms).
Figure 4-Figure supplement 2. Similar results for shorter stimulation time (100 ms).

stimuli, ORN responses plateau after an initial period of around 200 ms, encoding the steepness
of the ramp (Figure 3-Figure Supplement 1d). More generally, ORN responses seem to encode
the rate of change of the stimulus concentration (Kim et al., 2011, 2015; Nagel and Wilson, 2011).
Accordingly, ORN activity in response to the parabolic stimuli is like a ramp (Figure 3-Figure Sup-
plement 1f).

Model behavior for an isolated stimulus

Without further constraining the model we then tested PN responses with a single constant step
stimulus. Olsen et al. (2010) reported that the response of PNs to such a stimulus is best described
by a sigmoid,

15
VORN

PR
where v, is the maximum firing rate of ORNs, s is a flttOeF:;i\‘ constant representing the level of ORN
input that drives half-maximum response, and vz and vpy, are the average firing rates of the ORNs
and the PN over the stimulation period (500 ms), respectively. Our model reproduces this behavior
as a direct consequence of the model structure without any further parameter tuning (Figure 4).
LNs follow the same behavior (see Figure 4f). Note that this result, i.e. the sigmoidal behavior,
generalizes to both, shorter stimulation times (50 and 100 ms, see Figure 4-Figure Supplement 1
and Figure 4-Figure Supplement 2) and to the peak activity instead of the time averaged activity
(data not shown).

With a model in place that demonstrates the correct response dynamics for a variety of stimuli,
we then analysed its predictions on whether NSIs can be beneficial for odor mixture processing. In
particular, we tested the following two hypotheses: 1. Do NSIs improve the encoding of concentra-
tion ratio in an odorant mixture (see section Odorant ratio in synchronous mixture stimuli) and 2.
Do NSls support differentiating mixture plumes from multiple versus single source scenarios (see
section Processing asynchronous odor mixtures)?

M

VPN = VYmax
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Figure 5. Time course of ORN (2nd column), and PN activity (3rd column) in response to a triangular pulse

(50 ms, 1st column) for the three models - control (top row), NSI (second row) and LN model (bottom row).
Green and purple lines are for glomerulus a and b, respectively. Input to the three models is identical, while
control and LN models have identical ORN activity, which is therefore not displayed twice. Peak PN activity for
the control-model is around 110 Hz (top row), and around 70 Hz for the NSI- and LN models. The lines show
the average response and the shaded area around the lines the standard deviation over 10 trials.

Odorant ratio in synchronous mixture stimuli
Airborne odors travel in complex plumes characterized by highly intermittent whiffs and highly
variable odor concentration (Mylne and Mason, 1991; Yee et al., 1995). To successfully navigate
such plumes and find for example food, flies must recognize relevant whiffs regardless of the over-
all odor concentration in them, i.e. perform concentration-independent odorant ratio recognition.
This is a difficult problem as 1. PN responses are sigmoidal with respect to concentration and 2.
the sigmoids are not the same for different odorants in a mixture and different receptor types. To
investigate this problem and understand whether NSIs may play a role in solving it, we stimulated
the model ORNs with binary mixtures, varying the overall concentration of the mixture, the concen-
tration ratio, and the onset time of the two odorants. As a first approximation we mimic the whiffs
in plumes (see e.g. Figure 6-Figure Supplement 2a) with simple triangular odorant concentration
profiles that have a symmetric linear increase and decrease (see Figure 5). We first analysed the
synchronous case where both odorants in the mixture arrive at the same time, which is typical
when a single source emits both odorants (see Figure 7-Figure Supplement 1 a, extracted from
Erskine (2018)). To assess the role of NSIs, we compared the model with NSIs (“NSI model”) to a
model with lateral inhibition between PNs mediated by LNs in the AL (“LN model”) and a control
model where the pathways for different OR types do not interact at all (“control model"”).

Figure 5 shows the typical effects of the two mechanisms on PN responses. For the purpose
of this figure we adjusted the NSI strength and LN synaptic conductance (see Table 1) in such a
way that the average PN responses to a synchronous mixture pulse were matched across the two
models. While the stimulus lasts only 50 ms, the effect on ORNs, PNs and LNs lasts more than twice
as long. We observed the same behavior for other stimulus durations (tested from 10 to 500 ms). In
the control model (Figure 5, top row), PN and LN responses are unaffected by lateral interactions
between OR-type specific pathways and because we have matched the sensory response strength
of the two odorants and OR types for simplicity, the responses of the PN in the two glomeruli are
very much the same. For the LN model the response of ORNs is unaltered by network effects and
synaptic inhibition of LNs is the only lateral interaction between pathways (Figure 5 bottom). For
the NSI model (Figure 5 middle row) ORN activity is directly affected by NSIs and the activity of PNs
is lower than in control conditions as a consequence of the lower ORN responses. As explained
above, NSI strength and synaptic conductance of LN inhibition were chosen in this example so
that the response of the PNs for both models is of similar magnitude (peak response for PNs for
independent glomeruli ~110Hz, for AL lateral inhibition and NSI mechanism ~70 Hz).

To investigate the effectiveness of the two mechanisms for ensuring faithful odorant ratio en-
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coding more systematically, we tested the three models with synchronous triangular odor pulses
of different overall concentration, different concentration ratios, and for different values of stimu-
lus duration (from 10 to 200 ms), which we selected to match the range of common whiff durations
observed experimentally (see Figure 6-Figure Supplement 2). Here, and throughout the study we
explored several values for the two strength parameters (1, 2, 3, 6,10, 13, 16 for wyg, and (0.2, 0.3,
0.4 for a; ,) and for each analysed task we report the results of the best performing NSI and LN
model, respectively.

The results are summarised in Figure 6. Due to the fundamentally sigmoidal PN responses for
increasing odorant concentration (see Figure 4e), the encoding of the ratio between two odorants
in a mixture is distorted in the absence of additional mechanisms (as seen in the control model,
Figure 6a,b. The encoding of odorant mixtures is indeed already disrupted at the level of the ORNs
(Figure 6a), not only on the level of PNs (Figure 6b). Once activated, inhibitory interactions between
PNs mediated by LNs improve ratio encoding (Figure 6c,d) but only for a very limited range of stimu-
lus concentrations: Essentially only for the concentration 0.6, the response ratio of PNs reasonably
follows the diagonal. For other concentration values, LN inhibition is either too strong (diverging
response ratio) or too weak (flat response ratio). We explored a wide range of values for «, 5, the
synaptic efficacy of LN to PN synapses, and found that different values of a, , lead to successful ra-
tio encoding for different individual concentration values but that the overall qualitative behavior
was unchanged. In other words, stronger or weaker LN inhibition does not improve ratio encod-
ing in PN activity across more than one input concentration value. The NSI mechanism instead
changes the ORN responses (Figure 6e), and as a consequence, PN responses change so that their
activity reflects the ratio of odor concentrations better for most of the tested concentration ratios
(Figure 6f).

The results in Figure 6 are all based on the ratio of peak activity R?N = vV /vPN (see Model
and methods) during the first 100ms after the stimulus onset. We also tested the ratio of average
activity over the duration of the stimuli and found very similar results (see Figure 6-Figure Supple-
ment 7). In the same vein, testing with longer stimuli also yielded qualitatively similar results.

Next, we tested the encoding of ratios - besides for different concentrations - also for differ-
ent whiff durations (Figure 6g). For very short stimuli (10ms), the sigmoidal dependence of PN
responses on concentration does not yet have pronounced effects, and therefore ratio encoding
is easier in the control model. However, the LN model over-compensates, leading to errors for
all concentrations. In the NSI model the coding is as good as in control. For short stimuli (20 ms),
the encoding in the control model begins to degrade, while the LN model improves for larger con-
centrations. The NSI model does best across all concentrations. For medium to very long stim-
uli (50ms,100 ms) encoding in the LN model begins to break down again for larger concentrations
while the NSI model exhibits constant coding quality. While very intuitive, encoding mixture ratios
linearly in PN firing rates is not the only option. To analyse encoding quality more generally, we
therefore repeated our analysis by calculating the mutual information (Ml) between the odorant
concentration and RPN. The results from the analysis of the Ml are qualitatively similar to the
results with the coding error (see Figure 6-Figure Supplement 3).

From this analysis it is evident that both NSI and AL inhibition lead to better ratio encoding
than the control model for medium to long stimuli of high concentration. However, for the LN
model this comes at the price of degraded ratio encoding at shorter stimulus durations and lower
concentrations. Only the NSI model, albeit not perfect, improves ratio encoding consistently across
all tested combinations for duration and concentration.

In the next section we will explore the effectiveness of the different models when the whiffs
arrive asynchronously.

Processing asynchronous odor mixtures
When odorants are released from separate sources, they form a plume in which the whiffs of dif-
ferent odorants typically are encountered at distinct onset times. To the contrary, when a mixture
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Figure 6. Encoding concentration ratio with peak PN activity. ORN (a,c,e) and PN (b,d,f) responses ratio
(RORN = JORN / ORN and RPN = v/N /vPN) to a single synchronous triangular pulse of 50 ms duration applied
to both ORN groups. The graphs show response ratios versus concentration ratio of the two odorants for
four different overall concentrations (colours, see legend in f). The peak PN responses would be a perfect
reflection of the odorant concentration if they followed the black dashed diagonal for all concentrations.
Error bars represent the semi inter-quartile range calculated over 50 trials. g) Analysis of the coding error for
different values of stimulus duration (from 10 to 200ms) and concentration values (0.2 to 1.4). The coding
error is calculated as the squared relative distance (see Model and methods).

Figure 6-Figure supplement 1. Encoding ratio with the average PN activity.
Figure 6-Figure supplement 2. Plume statistics of natural plumes.
Figure 6-Figure supplement 3. Encoding ratio analysis with MI.
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of odorants is released from a single source they form a plume where the odorants typically ar-
rive together (Figure 7-Figure Supplement 7). We hypothesise that if lateral inhibition (via LNs or
NSIs) only takes effect in the synchronous case but not in asynchronous case, it will help distin-
guishing single source and multi-source plumes. For instance, in the case of pheromone receptor
neurons that are co-housed with receptor neurons for an antagonist odorant, the response to the
pheromone would be suppressed by NSI when both odorants arrive in synchrony (same source)
and notwhen arriving with delays (the pheromone source is separate from the antagonistic source).
This is thought to underlie the ability of male moths to identify a compatible female, where the an-
tagonist odorant is a component of the pheromone of a related but incompatible species Baker
et al. (1998). To test whether this idea is consistent with the effect of NSIs as described by our
model, we calculated the predicted responses of PNs to asynchronous whiffs of two odorants in
our three models - control, with LN inhibition, and with NSI.

Figure 7a shows the responses in the models for the example of two 50 ms triangular odor
pulses of the same amplitude and at 100 ms delay. We chose stimuli that excite the two ORN types
with the same strength to simplify the analysis and focus on the differences between models with
respect to asynchronous input rather than differing input ratios that we analyzed above. In the
control model, responses are very similar between ORN, and ORN,, as well as, PN, and PN, as
expected in the absence of interactions and for identical stimulus strength.

The situation is very different when LN inhibition is present (Figure 7a, bottom). Even for the
comparatively large delay of 100 ms - the second stimulus starts 50 ms after the first one ends - the
excitatory input to PN, (purple) cannot overcome the inhibition coming through the LNs activated
by PN, (green). This is a consequence of PN and LN responses outlasting the stimuli as observed
above. In contrast, while an inhibitory effect is present in the NSI model, it is much weaker, with
only small effects at the PNs (Figure 7, middle row).

To quantify the differences between the three models across different typical conditions, we
calculated the ratio between the PN responses of the two glomeruli R”Y = v/~ /vPN, both for the
peak activity and for the average activity over the stimulation time. Figure 7b shows the results
for stimulus durations between 10 and 200 ms and delays from 0 to 500 ms. The whiff durations
and delays were selected to match the range of values commonly observed in experiments (see
Figure 6-Figure Supplement 2).

As expected, the value of R?¥ is close to 1 (pink lines) for the control model with independent
ORNs and PNs and all explored parameters. In contrast, the NSI model and the LN model ex-
hibit clear effects of their lateral interactions. In the LN model the response of the second PN, is
strongly suppressed by the response to the first stimulus for all tested whiff durations and delays.
The NSI model also shows suppression but the effects are smaller and only present for very long
whiffs (200 ms) and commensurate or shorter delays (<250 ms). This is a clear advantage over the
LN model. The results are very similar whether measured in terms of the peak activity (Figure 7b)
or the average activity over the stimulus duration (Figure 7-Figure Supplement 2).

Correlation detection in long realistic plumes

So far we have seen that NSIs are beneficial for ratio coding in synchronous mixtures and that
they distort responses less than LN inhibition in the case of asynchronous mixtures. In this final
section, we investigated and compared the effects of the two mechanisms when the system is
stimulated with more realistic signals of fluctuating concentrations that have statistical features
resembling odor plumes in an open field (see Figure 6-Figure Supplement 2). The statistics of the
plumes and how we simulated them are described in detail in the Model and methods; in brief,
we replicated the statistical distribution of the duration of whiffs and clean air and the distribution
of the odorant concentration which were reported in the literature (Mylne and Mason, 1991; Yee
et al., 1995). Similarly to Jacob et al. (2017), we simulated plumes as pairs of odorant concentration
time series, with a varying degree of correlation to emulate plumes of odors emitted from a single
or from two separate sources (see Erskine (2018) and Figure 7-Figure Supplement 7). Similar to the
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Figure 7. Asynchronous mixture encoding. a) Stimulus concentration ("Input”, first column), and the response
of ORNSs (second column) and PNs (third column). The lines are the average response, and the shaded areas
mark the standard deviation calculated over 10 trials. The PN peak activity for the control-model (top row) is
~150Hz for both glomeruli, for the LN model (bottom row) ~50Hz for the second glomerulus and for the NSI
model (middle row) ~130 Hz for the second glomerulus. b) Median ratio of the peak PN responses of the two
glomeruli RPN = vlf’N/va in the three models: control model (dot dashed pink), LN model (orange
continuous), and NSI model (dashed cyan) for different stimulus durations as marked on the top. Error bars
represent the semi inter-quartile ranges.

Figure 7-Figure supplement 1. Example concentration fluctuation time series for two odorants emitted by a
single source or two separate sources

Figure 7-Figure supplement 2. Results for the average PN response over the stimulus duration.
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Figure 8. a) Time course of stimulus concentration (Input ORN, first column), and response of ORNs (second
column), PNs (third column) to two 4 s long realistic plumes with statistical properties as described in the text;
first row: control model, second row: NSI model, third row: LN model. Lines are the mean and shaded areas
around the lines the standard deviation over 10 trials. b) Response of ORNs, and c) response of PNs averaged
over 200s for the three models: control model (dot dashed pink), LN model (orange continuous), and NSI
model (dashed cyan). The observation from the LN model is not shown in panel b as it overlaps with the dot
dashed pink lines (ctrl-model). d) Total PN activity above 150 Hz, for 3 ms maximum whiff durations.

Figure 8-Figure supplement 1. Statistical properties of simulated natural plumes
Figure 8-Figure supplement 2. Similar results of panel d with different thresholds (50, 100, 150 Hz)

previous section, the stimuliwere applied to the models and we analyzed the PN responses in order
to understand the ability of the early olfactory system to encode the signal. PN responses are very
complex time series (see Figure 8) and many different decoding algorithms (Huerta et al., 2004;
Nowotny et al., 2005; Jortner et al., 2007; Lin et al., 2007, 2014), could be present in higher brain
areas to interpret them. However, as before, we applied the simple measure of peak PN activity in
terms of the total firing rate above a given threshold to analyze the quality of the encoding.

In order to analyze the discrimination of plumes with odorants coming from a single source
- highly correlated stimuli - from separate sources - poorly correlated stimuli - we developed a
method to generate plumes of a prescribed correlation between concentration time series while
keeping other properties such as intermittency and average odorant concentration constant (see
Model and methods and Figure 8-Figure Supplement 1). Using this method, we then explored
plumes with correlation O to very close to 1. We simulated the model for 200s duration (a few
times the maximal timescale in plumes, i.e. 50s) and preset correlations between the odorant con-
centration time series, and first inspected the average activity of neuron types over the stimulation
period. By construction, the ORN activity for the LN model is the same as in the absence of inhibi-
tion (Figure 8a-b), while the average ORN activity for the NSI model is lower and depends on the
correlation between odor signals (Figure 8a-b). These effects are approximately the same for the
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whole range of the tested NSI strengths w, ¢, (data not shown).

The situation is different for the average PN activity. The average PN response in the NSI model
is almost the same as in the control model and only weakly, if at all, dependent on input correlation
(see Figure 8c). It, therefore, does not encode input correlation well. To the contrary, the average
PN responses in the LN inhibition network are lower than in the control model, and a bit more
clearly dependent on input correlation (Figure 8c). Hence, LN inhibition is useful for encoding
input correlation with the average PN activity. All reported effects remain approximately the same
for the entire range of explored parameters (wy s, and a, 5) (data not shown).

We next analysed instead of the average PN response the “peak PN” response, defined as the
integrated PN activity over time windows where the PN firing rate is above a given threshold (e.g. 50,
100, or 150 ms). Figure 8d shows peak PN for 150 Hz threshold (see Figure 8-Figure Supplement 2 for
plots with other underlying thresholds). For the LN model and the NSI model, peak PN responses
depend on the plume correlation. Within the values we investigated, the highest peak threshold of
150 Hz recovers the most information about input correlation and for high peak thresholds the NSI
mechanism leads to more informative responses than than LN inhibition. We conclude that most
of the information about input correlations is contained in the first part of the response before
adaptation takes place and that therefore the average activity over the entire response is not a
good proxy for encoding the correlations in the input signals.

So far we have used simulated plumes corresponding to 60 m distance from the source. At
different distances the maximum whiff durations will vary (Pannunzi and Nowotny, 2019). We
therefore asked whether and how the efficiency of the two mechanisms depends on maximum
whiff duration and hence distance from the source. To address this question, we generated plumes
with different maximum whiff duration, w,,,. Figure 9a shows a plot for each tested value of w,,,,
(from 0.01 to 50 m) for peak threshold 150 Hz (see Figure 9-Figure Supplement 1 and Figure 9-Figure
Supplement 2 for results with peak thresholds of 50, and 100Hz). The choice of maximum whiff
durations reflects typical experimental observations (Yee et al., 1995).

There are two effects that are evident: 1. At zero correlation between the stimuli, PN responses
in the NSI model are quite similar to those in the control model while those in the LN model differ
more, and 2. The PN responses in the NSI model depend more strongly on the input correlations of
the stimuli than the PN activities in the LN model, especially for short (<3s) whiffs (Figure 9a) which
constitute more than 90% of all typical whiff durations. This second effect is important because
ideally we would like the PN responses to differ maximally between highly correlated plumes and
independent plumes in order to discern the two conditions.

To quantify these effects we measured the following distances: 1. The distance between peak
PN of the NSI model (or LN model) and of the control model at zero correlation, defined as p° , —p°
with x € (NSI,.LN) (Figure 9b) and 2. the distance between peak PN of NSI model (or LN model) at
0 correlation and at correlation (very close to) 1, defined as p® — p; with x € (NSI,LN) (Figure 9c).
These figures show the clear advantage of using an NSI mechanism instead of LN inhibition when
encoding the correlation between stimuli that resemble a naturalistic plume: p° is always
always smaller than p° | and p° is consistently larger than p° — p} .

ot — Pst
- pLN - pNSI
Discussion

“Thought experiment is in any case a necessary precondition for physical experiment. Every experimenter
and inventor must have the planned arrangement in his head before translating it into fact.” E. Mach
(1905)

We have implemented a model of the early olfactory system comprising ORNs of two receptor
types, their NSIs in the sensillum, and two corresponding glomeruli in the AL, containing PNs and
LNs in roughly the numbers that have been observed for Drosophila. Our objective was to inves-
tigate two potential roles of NSls in insects’ olfactory processing: Concentration invariant mixture
ratio recognition, vital for insects to identify the type or state of an odor source (see e.g. ((Visser
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Figure 9. a) Peak PN for threshold 150 Hz, and for different subsets of whiff durations (from 0.01 to 50s) for
the three models: control model (dot dashed pink), LN model (orange continuous), and NSI model (dashed
cyan). Note that the horizontal axis has a log-scale. b) Distance between the PN activity of the control model
and the NSI model (or LN model), at 0 correlation, pgm —pg with x € (NSI,LN). c) Distance between the PN
activity of NSI model (or LN model) at 0 correlation and at correlation 1,p2 - p)‘C with x € (NSI,LN).

Figure 9-Figure supplement 1. Similar results using threshold 50 Hz

Figure 9-Figure supplement 2. Similar results using threshold 100 Hz
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and Avé, 1978; Christensen et al., 1989; Natale et al., 2003; Bruce et al., 2005; Najar-Rodriguez
et al., 2010) and references therein) and odor source separation, which can be critical for insects,
e.g. in the context of finding mates Baker et al. (1998); Fadamiro and Baker (1997); van Naters and
Carlson (2007). This second function requires high spatiotemporal resolution of odor recognition
in complex plumes.

By comparing our model with NSIs to a control model without lateral interactions between
pathways for different receptor types, we found evidence that NSIs should be beneficial for con-
centration invariant mixture processing: NSls lead to more faithful representation of odor mixtures
by PNs in the sense that the ratio of PN activity is closer to the ratio of input concentrations when
NSlIs are present. Similarly, the mutual information between the ratio of input concentrations and
the ratio of PN activity is higher for the NSI model. While we admittedly do not know how exactly
odor information is represented in PN activity, responses that differ systematically with input ratio
must be superior to responses that saturate and hence do not inform about the input ratio, as
seen in the control model.

Furthermore, using a model variant with no NSIs but LN inhibition between glomeruli in the
AL we found that 1. For synchronous individual whiffs, both models, the one with NSI mechanism
and the one with LN inhibition, are better than the control model in several conditions (Figure 6
g); moreover, the NSI mechanism is typically more effective than LN inhibition. This is especially
true for very short stimuli (<100ms). 2. For asynchronous individual whiffs, PN responses to the
later whiff are strongly altered by the response to the first whiff when LN inhibition is present. In
contrast, with NSIs the PN responses to the second whiffs are only mildly affected by the activity
triggered by the first whiff, indicating that with NSIs there is less of a trade-off between benefits in
encoding synchronous mixtures and distortions when odorants from separate sources mix.

These results further support the hypothesis that the NSI mechanism offers an evolutionary
advantage by enabling more precise odor coding for these simple stimuli. Similar conclusions
can be drawn when analyzing the capacity of the insect olfactory systems to encode the correla-
tion between two odorants in a more realistic setting of an odor plume. We found that, when
analysing peak PN activity (the integrated PN firing rate over windows during which it is above a
given threshold), the model with NSI mechanism outperforms the LN inhibition model and both
are better when considering peak activity than when considering average PN activity. Besides sup-
porting the benefits of NSls this also adds further evidence in favor of using peak activity to encode
important features of a signal, in this case stimulus correlations, as hypothesized in earlier work
(see e.g. Krofczik et al. (2009); Wilson et al. (2017)).

The model and its limitations
“A good model should not copy reality, it should help to explain it”, Segev (1992).

As in every modelling work the level of description must match the purpose of the investigation.
In terms of Marr's categorisation of models (Marr and Poggio, 1976), our model is somewhere
between the algorithmic level - as both our models implement a form of lateral inhibition - and
the implementation level - albeit we are not yet able to capture the underlying physics of the NSI
mechanism. Because of our hypotheses that the role of NSls is to improve processing of temporally
complex stimuli, we focused on a description which included temporal dynamics but was otherwise
as simple as possible. We therefore have simplified 1. the cellular dynamics of odor transduction
(Kaissling, 2001, 2009, 2014, 2019; Gu and Rospars, 2011; Gorur-Shandilya et al., 2017) and only
heuristically describe the macroscopic effects at the receptor neuron level, an approach similar
to (Lazar and Yeh, 2020); 2. the complexity of the full receptor repertoire in the insect olfactory
system, e.g. about 60 ORN types in Drosophila, and instead focused on a single sensillum with two
co-housed ORNSs; 3. the true complexity of the many different LN types and transmitters in the
AL (Silbering et al., 2008), using only GABA,-like LNs. 4. the spatial distribution of the sensilla on
the surface of the antenna or the maxillary palp; 5. the complexity of odor stimuli delivered by
stimulation devices in the experiments we are mimicking for the single pulse investigation (see the
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corresponding Model and methods section, (Pannunzi and Nowotny, 2019)), 6. the asymmetry of
NSIs where there is some evidence that the strength of the NSls is proportional to the size of the
ORN that is exerting the interaction onto another neuron Zhang et al. (2079). By making these
simplifications we were able to reduce the number of free parameters in the model, reasonably
constrain most parameters and scan the few remaining parameters, such as the strength of LN
inhibition, across a reasonable range. This increases our confidence that the observed benefits of
NSls for olfactory information processing are not artefacts of particular parameter choices in the
model(s).

For the sake of simplicity we chose to work with a specific animal model in mind and because
of the large amount of information available in the literature, we chose Drosophila. 1t will be inter-
esting to see whether and how much our results can be generalized to other insect such as bees,
mosquitoes or moths.

Comparison with related modelling works
“If I have seen further it is by standing on the shoulders of Giants.” 1. Newton (1675).

Our work builds on ideas in previous models (e.g., Chan et al. (2018); Rospars et al. (2008); Ver-
meulen and Rospars (2004)) and concurrent approaches (e.g. Lazar and Yeh (2020)). While earlier
modeling works focused on the oscillatory and patterned dynamics of activity in the antennal lobe
(Bazhenov et al., 2001a,b; Linster et al., 1993, Linster and Smith, 1997, Linster et al., 2005), it was
soon realized that the recognition of odorants and their mixtures across different concentrations
posed a particularly difficult question. One school of models explored the idea of winnerless com-
petition as a dynamical systems paradigm for concentration invariant coding (Laurent et al., 2007;
Kwok, 2007) while others explored more direct gain control mechanism mediated by local neurons
inthe AL (Getz and Lutz, 1999; Schmuker et al., 2011; Serrano et al., 2013). The task becomes even
more difficult when the exact ratio of mixtures needs to be recognised, and a network model for
mixture ratio detection for very selective pheromone receptors has been formulated in (Zavada
et al., 2017). However, generally, odors already interact at the level of individual ORs due to com-
petitive and non-competitive mechanisms which can be recapitulated in models, see e.g. (Rospars
et al., 2008) for vertebrates and (Chan et al., 2018) for invertebrates.

However, our model also makes a clear departure from the large number of models that have
been built on assumptions and data based on long, essentially constant, odor step stimuli. While
these kind of stimuli are not impossible, they can be considered as the exception more than the
rule; for instance, even at more than 60m from the source, around 90% of whiffs last less than
200ms (Justus et al., 2002; Yee et al., 1993), see (Pannunzi and Nowotny, 2019) for review. This
insight is particularly difficult to reconcile with models that emphasize and depend on intrinsically
generated oscillations in the antennal lobe (Bazhenov et al., 2001a,b; Linster et al., 2005, 1993;
Linster and Smith, 1997), and models that depend on comparatively slow, intrinsically generated
dynamics such as the models based on the winnerless competition mechanism (Rabinovich et al.,
2001; Laurent et al., 2007). The original interpretation of these models, how they use intrinsic
neural dynamics to process essentially constant stimuli, is disrupted when stimuli have their own
fast dynamics. How to reconcile the idea of intrinsic neural dynamics for information processing
with natural odor stimuli that have very rich temporal dynamics of their own remains an open
problem.

In building our model, we followed the main ideas developed by Vermeulen and Rospars (2004)
but went beyond the assumption of constant stimuli and also added the important element of
adaptation in ORNs and PNs, a widely accepted feature that is important in the context of dynamic
stimuli; and while Vermeulen and Rospars (2004) already were interested in possible evolutionary
advantages of NSIs, we here added the comparison with lateral inhibition in the AL that has been
described as a competing mechanism, from an experimental (e.g. Todd and Baker (1999)) and
a theoretical point of view (e.g., Getz and Lutz (1999); Zavada et al. (2011); Serrano et al. (2013).
Finally an important addition in this study are the mixture stimuli: Many, though not all, earlier
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works focused on the response of the network to mono-molecular odors, whereas we analyse the
network response to two-odorant mixtures.

A previous study with very similar motivation relating to mixture ratio recognition is the analysis
of pheromone ratio recognition of Zavada et al. (2011). However, this earlier work still assumed
constant stimuli, no adaptation in ORNSs, a fixed target input ratio and only LN inhibition.

Further hypotheses about NSIs
“there is always a well-known solution to every human problem—neat, plausible, and wrong.” H. L.
Mencken 1920 “Prejudices: Second Series”

At this early stage, our knowledge and underdstanding of NSls is still full of gaps. For example,
while suggestive our results cannot prove beyond doubt whether NSIs are effectively useful to the
olfactory system, or if they are an evolutionary spandrel. We also do not know their evolutionary
history. One interesting idea would be that the complex function of improved odor mixture encod-
ing could have arisen as a side effect from a simpler function, e.g. of saving space, but we do not
have any evidence to support this.

Researchers in the past 20 years have suggested a number of non exclusive explanations for
the functions of NSIs. We have analyzed two of them - improved odor ratio representation and
detecting plume correlations. Other typical hypotheses are: 1. NSIs may be useful to generally
enhance the dynamic range of ORN responses. Based on an electrical circuit model Vermeulen and
Rospars (2004) showed an increased dynamic range of responses in the more strongly activated
ORN in a sensillum. While the model does not include established experimental insights, e.g. ORN
adaptation Kim et al. (2011); Martelli et al. (2013), its main assumptions remain plausible. 2. NSIs
could facilitate novelty detection for odor signals on the background of other odors Todd and Baker
(7999), if newly arriving “foreground odors” suppress the ongoing response to an already present
“background odor”.

The improvement of dynamic range by NSIs sits alongside work that showed that syntopic in-
teractions at the receptor level and masking interactions at a cellular level achieve similar effects
Reddy et al. (2018); Singh et al. (20719) as well as improving mixture representations. Similarly,
Chan et al. (2018) showed that syntopic interactions improve concentration invariant mixture rep-
resentation in particular for odors with many components. How these receptor-level and cell-level
mechanisms interact with sensillum-level NSls is an interesting future research question.

With regards to separating foreground odors from background odors, Todd and Baker (1999)
noticed early on that NSIs duplicate the role of LNs in the AL even though (Wilson, 2013) pointed
out later that LN networks take effect later and mainly decorrelate PN activities and normalize
them with respect to the average input from ORNs. Here we have added to the discussion by show-
ing that NSIs have advantages with respect to their faster timescale that led to less disruption of
asynchronous odor whiffs.

Moreover, NSIs have two additional key advantages with respect to LN inhibition in the AL or
processes in later brain areas: 1. NSIs take effect without the need to generate spikes and reduce
the number of necessary spikes which makes them energetically advantageous (Hasenstaub et al.,
2010; Laughlin, 2001, 1998; Lennie, 2003; Sarpeshkar, 1998). 2. NSls take place at the level of the
single sensillum and hence a few spikes and synapses earlier than any AL or later interactions
(Todd and Baker, 1999; Wilson, 2013). In the AL the information from ORNs of the same type is
likely pooled and information about the activity of individual ORNs is not retained (see e.g. Kazama
and Wilson (2009); Nagel and Wilson (2011)). Therefore, while interactions within the sensillum are
precise in space and time, interactions in the AL will be global (averaged over input from many
sensilla) and information channels will interact in an averaged fashion. Similar local interactions in
the very early stages of sensory perception were already discussed for the retina (Klaassen et al.,
2016; Thoreson and Mangel, 2012).
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Conclusions

In conclusion, we have demonstrated in a model of the early olfactory system that NSIs have ad-
vantages over LN inhibition in the AL with respect to faithful mixture ratio recognition and plume
separation. In our future work we seek to confirm the behavioral relevance of NSls in Drosophila.
Other interesting future directions include the relationship of NSIs and syntopic effects/masking,
as well as the differential roles of NSIs and LN inhibition when both are present at the same time.

Model and methods

Model topology

We model the electrical activity of the early olfactory system of Drosophila melanogaster. The model
encompasses ORNs on the antenna, and the matching glomeruli in the AL, containing PNs and LNs.
For simplicity, ORNs are housed in sensilla in pairs, and each neuron in a pair expresses a different
OR type. The paired neurons interact through NSls, effectively leading to mutual inhibition (see
Figure 1 a). There are multiple sensilla of the same type on each antenna. We here model 40
sensilla per type (Kazama and Wilson, 2009). ORNs of the same type all project exclusively to the
same glomerulus in the AL, making excitatory synapses onto the associated PNs. In addition to the
inputs from ORNSs, PNs also receive global excitation from PNs associated with other glomeruliand
from other parts of the brain. They are inhibited by the LNs of other glomeruli but not by LN in the
same glomerulus (see Figure 2). The model simulates one type of sensillum and hence two types
of ORNs, ORN, and ORN,. We assume that ORN, and ORN, are selectively activated by odorants A
and B, respectively (see Figure 2 and Figure 1 a).

Olfactory Receptor Neurons

We describe ORN activity in terms of an odorant transduction process combined with a biophysical
spike generator (Lazar and Yeh, 2020). During transduction, odorants bind and unbind at olfactory
receptors according to simple rate equations. As we are not interested in the competition of differ-
ent odorants for the same receptors, we simplify the customary two-stages binding and activation
model (Rospars et al., 2008; Nowotny et al., 2013; Chan et al., 2018) to a single binding rate equa-
tion for the fraction r of receptors bound to an odorant,

F=bC"(1—-r)—d,r (2)

x =ar—cyl+dx)—bx
) X Xy( X ) X (3)
y =ax-—by
where x is the ‘activation’ of the ORN and y an internal adaptation variable. The firing v of the
ORN is then obtained by a sigmoid filter applied to x,
V,

_ max (4)
1+ exp(_arect(x - Crect))

The parameters (a,, b, a,, ¢,, d,, b)) are rate constants that are estimated together with b, and
d, to reproduce the data presented in Lazar and Yeh (2020); Martelli et al. (2013). The maximum
spike rate v,,,, and sigmoid shape parameters a,,, and c,,., are given in 1. The model is similar in
nature to the models presented in (De Palo et al., 2013; Lazar and Yeh, 2020) albeit simplified and
formulated in more tangible rate equations. As we will demonstrate below, this simplified model
can reproduce experimental data equally well as the previous models. In order to simulate the
spiking output of a population of ORNs of a given type, we simulate the odor binding dynamics
once to obtain the firing rate v and then sample from N, = 40 Poisson processes with rate v. Us-
ing Poisson processes is very common for the sake of simplicity, and it is also close to experimental
observations (see e.g. Kaissling (2014)). However, ORN firing of homotypic ipsi-lateral ORNs has
been observed to have specific correlations (Kazama and Wilson, 2009) that are not automatically

rect
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reproduced by independent Poisson spike trains. To replicate the experimentally observed corre-
lations - correlation for homotypic ipsi-lateral without stimulation around 0.14 and for homotypic
ipsi-lateral under stimulation is around 0.2 - we extracted the random numbers for the generation
of the Poissonian spike trains of the ORNs from a multivariate normal distribution with a covari-
ance matrix of this shape: 1 in the diagonal, c,,, for the elements connecting homotypic neurons
(see 1) and 0 all the others.

Non-synaptic interactions

To simulate experimentally observed NSlIs, we assume a simple linear model with respect to the

output variable of the transduction model, as the exact biochemical mechanism for NSIs is of yet

unclear. We do this with a multiplicative term (x, x,) to reflect that presumably the driving force

for x, (x,) is removed, rather than ORN, (ORN,) being directly hyperpolarized.
Xa =ayr, — cxya(l + dxxa) - bxxa — WNs X Xp (5)

x, =ar,—cy,(+dx,)—bx, —ongX,x,

The full set of parameters used for the simulations are reported in Table1.

The antennal lobe

We here reduce the antennal lobe (AL) to two glomeruli, a and b (see Fig. Topology) in order to
focus on the effects of NSIs of the corresponding ORN types. The numbers of PNs and LNs per
glomerulus are as reported in literature (De Bruyne et al., 2007; Kazama and Wilson, 2009; Stocker,
1994; Vosshall et al., 1999).

The competing LNs are inhibitory whereas the PN is excitatory. For simplicity, we do not model
multiple kinds of LNs or PNs that have been observed in the AL. Similar models are being used
extensively in the analysis of the insect AL (Chan et al., 2018; Schmuker et al., 2011; Serrano et al.,
2013; Zavada et al., 2017) and are well suited for replicating the competition dynamics that we seek
to evaluate.

Each ORN spike (width sp,,,.,, and height sp,,.,) from the N, is summed into a variable,
Upry- PN and LN spikes have the same width sp,,,.., and height sp,,,.,, and per each (impinging)
neuron, PN or LN, they are summed into the variables u,, and u,,, respectively. u,zy together
with u, y drives the activity of the corresponding PN:

VvV =N V) +sWN V)

rest rev
7.5 =aogyUorn (I =) =x)(1 =y) == ©6)
T, X =a,uggy (1 —x)—x
ny =ayunl-y -

where V is the PN membrane potential, s represents the combined action of synaptic inputs, x
is an adaptation variable, and y is the inhibitory variable impinging into PNs. Each one of these
variables has its time constant - z,, 7, 7,, and z,. The multiplicative factors a, y, aygy reflects the
amount of released vesicles per each spike from an ORN and LN, respectively and they can be
considered synaptic strength. In the second equation, the term (1-y) reflects the inhibition from
LNs, implementing a pre-synaptic type of inhibition proportional to the low-pass filtered activity of
the LNs. When V>0, the PN fires a spike and Vis resetto V,,,,.
LNs receive excitatory input from PNs and are otherwise described by a similar model but with-

out adaptation,

WV ==V sl =)

758 = apyupy (1 = 5) = fins
where V is the LN membrane potential, s represents the synaptic input, and «,, reflects the rate
of transmitter release, or synaptic strength, for incoming synapses from a PN. When V>0, the LN
fires a spike and V is reset to V,,,. The refractory period, z,,,, for PNs and LNs lasts 2 ms. All the
parameters used for the simulations are reported in 1. The comparative analysis between the LN

(7)
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inhibition and NSI mechanism has been carried out through the exploration of the two parameters
a; v and the strength of the NSIs, w ;.

Odor stimuli
To compare the model response with the neurophysiological results in the literature and with pre-
vious models (Lazar and Yeh, 2020), we analyzed its activity with different stimuli: step stimuli, Ugyepr

ramp stimuli u,,,,,, and parabolic stimuli u,,,

ramp

¢, 1 <t<t,
u 1) = 8
step(!) { 0, otherwise (®)
c(ﬁ)2 H<t<t,—-6

D) = (1 = =222 1,5 <1<, 9)

0, otherwise.

1—1y _
P t <t1<t,—26

uramp(t)=<c(l—%), 12—25SIS12 (10)

0, otherwise

where t1=0.5s, t2=2.5s, and 6= 0.1s (see Figure 3-Figure Supplement 1).

Table 1. Model parameters. To fit the experimental data, we used the following 38 parameters: Transduction
(3), ORNs (10), ORNSs, PNs and LNs (18), and Network (7) parameters. We fitted ORN, PN and LN parameters in
order to reproduce the time course shown in e-phys experiments (e.g. Kim et al. (2011); Martelli et al. (2013));
we fit the correlation parameters to obtain similar correlated values as those reported in (Kazama and Wilson,
2009); Network parameters are not fitted, but extracted from the literature (e.g. (Kazama and Wilson, 2009;
Stocker, 1994; Vosshall et al., 1999)). NS strength and synaptic strength of LNs are not fitted, but their values
were changed to explore the network behavior.

Transduction Network LNs
n 1 Npwpn 18 VIN 3 my
b, 0.01 Npwgo 40 VIN 15 mV
d, 0.009 N,et0 5 o N 10

Ny to 3 T, 600 ms

ORNSs Ny, 2 apy 25

a, 0.25 Chom 0.4 Yino 0.025
b, 0.002 Vonmoise 250 Hz
c, 0.0028 PNs
b, 0.2 LN, ORN, and PN tory 2.5
d, 1 T, 10 ms VPN 65 mV
a, 1 T, 05 ms VEN 15 mV
Onsy 0.2 SPiengsn 4 MS oy 2

C) 1 T, 600 ms
Rectification function SPheigy 03 © Xpnyo ~ 0.48
Crect 1 Tref 2 ms
G 33
v 250 Hz

max
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Simulation of realistic plumes

In a realistic scenario, odorants are mixed together in complex plumes that follow the laws of
fluid dynamics. For these conditions, even odorants coming from different sources are sometimes
mixed together, and one difficult task for insects is to recognize when two intermingled odorants
are coming from the same source or from separate sources. Of course it is not possible to distin-
guish these two possibilities from a single, instantaneous sampling, but on average the odorants
coming from the same source are more correlated than odorants coming from separate sources
(see panel a of Figure 7-Figure Supplement T). To test the function of NSIs for odor source separa-
tion, we adopted long stimuli (>3 s), with statistical properties that resemble the filaments observed
downwind from an odor source in an open environment (Mylne and Mason, 1991; Pannunzi and
Nowotny, 2019; Yee et al., 1993, 1995) at zero crosswind distance. For these conditions, the distri-
butions of whiff and clean air durations follow a power law with exponent -3/2 (see, e.g., Yee et al.
(7993)), and the cumulative distribution function (CDF) for the normalized concentration values will
follow an exponential distribution and we fitted the CDF as a piecewise linear function, as follows

core < | 33 0<x<03 an
T 1 -10"@*i0)  otherwise

where x is the normalized concentration C/C, and a1 and b1 are free parameters, which values
were determined by fitting and are reported below in 1 (Mylne and Mason, 19917). We analysed
stimuli with different ‘intermittency factor, defined here as the proportion of time where odor
concentration is non-zero (even though there are different definitions in use). To simulate the
arrival of plumes of two odors with the aforementioned properties, we need to generate a time
series of whiffs and blanks with the correct statistics for each odorant (like in (Jacob et al., 2017))
and the correct correlation between odorants. We achieved this by the following procedure:

1. We drew two correlated pseudo random numbers from a Gaussian distribution, with a given
correlation

2. We mapped the two numbers into two uniform random variables

3. The uniform random variables are mapped into the desired power law distributions; blank
and whiff durations have different distributions depending on the distance from the source
(see Figure 6-Figure Supplement 2).

Analysis and simulation
We used the PNs spiking activity as the output of the networks and we analysed it to estimate
the ability of the three networks to encode odorants mixture ratio and spatio-temporal analysis.
We assumed for simplicity that the relevant information is present in the firing rate and therefore
analyse the average activity and peak activity, defined below and in the main text.

For the analysis of the ratio encoding (see Figure 6), The concentration ratio is ratio between
the weak and the strong concentration values, R, = ¢, /c,; while the PN ratiois R, = v,,/v,.

We defined the coding error as the square relative distance between the ratio of the PN activity
and the ratio of the odorant concentrations. The relative distance is therefore: ((R,—R,)/(R,+R,))*.

Spike density function Firing rates were obtained from the convolution of the spike trains with
the kernel: k(7)) = fexp(—i/7). Where i =1 —1,,,, + 7, SO that the maximum of & is situated at the
occurrence of the spike, ¢ The timescale of the kernel was chosen as r=20ms (Nawrot et al.,
1999).

The model was simulated with custom Python code, as well as the analysis of the simulations.
All code is publicly available on github, https://github.com/mariopan/flynose.
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Figure 3-Figure supplement 1. Model ORN response to a single step (a,b), ramp (c,d), and
parabola (e,f). a, ¢, e: Stimulus waveforms, i.e. odorant concentration profiles, as in Kim et al.
(2015). b, d, f: Model ORN firing rates visualized as a spike density function (SDF).
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Figure 3-Figure supplement 2. Output of the model of Lazar and Yeh (Lazar and Yeh, 2020) for
the Or59b receptor neuron in response to the corresponding stimulus waveforms (experimental
data reported in Kim et al. (2015)).

Input ORN
[
S
(=]
0]
=
(=]

,JFH—‘H"

" )
b ;Z_, .
/N\ bl
£ 200 R
z %
o) 0L ”*
0 — 0 50 100 150 200
c ORN (Hz)
200 f
T 200 | === ORNs
; . = PNs
2150 =—f= LNs =
’ f -
8
d £100
=200 a
N c
L = 50
=
)
0 0
—200  —100 0 00 200 300 0 2 4 6
Time (ms) concentration [au]

Figure 4-Figure supplement 1. a) 50 ms step stimuli, shade of green indicates concentration. b)-d)
corresponding activity of ORNs, PNs, and LNs. Shades of green match the input concentrations. e)
Average response of PNs over 50 ms against the average activity of the corresponding ORNs. The
orange dashed line is the fit of the simulated data using equation eq.1 as reported in (Olsen et al.,
2010). f) Average values for PNs, ORNs, and LNs for different values of concentration. Error bars
show the SE over PNs.
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Figure 4-Figure supplement 2. a) 10 ms step stimuli, shade of green indicates concentration. b)-d)
corresponding activity of ORNs, PNs, and LNs. Shades of green match the input concentrations. e)
Average response of PNs over 10 ms against the average activity of the corresponding ORNs. The
orange dashed line is the fit of the simulated data using equation eq.1 as reported in (Olsen et al.,
2010). f) Average values for PNs, ORNs, and LNs for different values of concentration. Error bars
show the SE over PNs.
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Figure 6-Figure supplement 1. Encoding ratio with the average PN activity. ORN (a,c,e) and PN
(b,d,f) responses to a single synchronous triangular pulse of 50 ms duration applied to both ORN
groups. The graphs show average responses ratio (R°®N and RFN), respectively, versus concentra-
tion ratio of the two odorants for four different overall concentrations (colours, see legend in f). The
average PN responses would be a perfect reflection of the odorant concentration if they followed
the black dashed diagonal for all concentrations. Error bars represent the semi inter-quartile range
calculated over 50 trials. g) Analysis of the coding error for different values of stimulus duration
(from 10 to 200ms) and concentration values (0.2 to 1.4).
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Figure 6-Figure supplement 2. a) Probability distribution of the whiff durations for odorants emit-
ted at distances larger than 60 m Yee et al. (1995). b) Probability distribution of the blank durations
for odorants emitted at distances larger than 60m Yee et al. (1995). c) Probability distribution of
the normalized concentration for odorants emitted at 75 m distance from the source Mylne and
Mason (1991).
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Figure 6-Figure supplement 3. Analysis of the coding error with mutual information for different
values of stimulus duration (from 10 to 200ms) and concentration values (0.2 to 1.4). The coding
error is calculated as the Ml between odorant concentration and R?V (see Model and methods).
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Figure 7-Figure supplement 1. Example concentration fluctuation time series of natural plumes
for two odorants emitted by a single source or two separate sources (Erskine, 2018).
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Figure 7-Figure supplement 2. Median ratio of the average PN responses of the two glomeruli
RPN = v,fN/va in the three models: control model (dot dashed pink), LN model (orange contin-
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bars represent the semi inter-quartile ranges.
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Figure 8-Figure supplement 1. Observed properties of the simulated plumes as a function of the
intended correlation between plumes averaged over 200s. Intermittency and average input plots
show the values for the two plumes (green and purple).
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Figure 8-Figure supplement 2. Panels a-c) show the total PN activity above 50, 100, 150 Hz, respec-
tively, for 3 ms maximum whiff durations.
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Figure 9-Figure supplement 1. a) peak PN threshold 50Hz for different subsets of whiff dura-
tions (from 0.01 to 50s) for the three models: control model (dot dashed pink), LN model (orange
continuous), and NSI model (dashed cyan). Note that the horizontal axis has a log-scale.
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Figure 9-Figure supplement 2. a) peak PN threshold 100Hz for different subsets of whiff dura-
tions (from 0.01 to 50s) for the three models: control model (dot dashed pink), LN model (orange
continuous), and NSI model (dashed cyan). Note that the horizontal axis has a log-scale.
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