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Abstract When flies explore their environment, they encounter odors in complex, highly8

intermittent plumes. To navigate a plume and, for example, find food, flies must solve several9

tasks, including reliably identifying mixtures of odorants and discriminating odorant mixtures10

emanating from a single source from odorants emitted from separate sources and mixing in the11

air. Lateral inhibition in the antennal lobe is commonly understood to help solving these two12

tasks. With a computational model of the Drosophila olfactory system, we analyze the utility of an13

alternative mechanism for solving them: Non-synaptic ("ephaptic") interactions (NSIs) between14

olfactory receptor neurons that are stereotypically co-housed in the same sensilla. For both tasks,15

NSIs improve the insect olfactory system and outperform the standard lateral inhibition16

mechanism in the antennal lobe. These results shed light, from an evolutionary perspective, on17

the role of NSIs, which are normally avoided between neurons, for instance by myelination.18

19

Introduction20

Flies, as most other insects, rely primarily on olfaction to find food, mates, and oviposition sites.21

During these search behaviours, they encounter complex plumes with highly intermittent odor22

signals: Odorwhiffs are infrequent and odor concentration varies largely betweenwhiffs (Yee et al.,23

1993, 1995; Mylne and Mason, 1991). To navigate a plume and successfully reach their objectives,24

flies must decipher these complex odor signals which includes several tasks: Identifying odors,25

whethermono-molecular or amixture; Identifying odor intensity; Discriminating odorant mixtures26

emanating from a single source from those emanating from separate sources; identifying source27

locations, etc. Early sensory processing is understood to play an important role for completing28

these tasks. For instance, lateral inhibition in the antennal lobe is commonly understood to be29

useful for decorrelating odor signals from co-activated receptor types. Here we investigate the30

hypothesis that the early interactions betweenORNs in the sensilla are similarly, if notmore, useful31

for decoding information in odor plumes.32

In both, vertebrates and invertebrates, odors are sensed by an array of numerous receptor33

neurons, each typically expressing receptors of exactly one of a large family of olfactory receptor34

(OR) types. In insects, olfactory receptor neurons (ORNs) are housed in evaginated sensilla localized35

on the antennae and maxillary palps (Wilson, 2013), each sensillum containing one to four ORNs36

of different types (Todd and Baker, 1999; Wilson, 2013). The co-location of ORN types within the37

sensilla is stereotypical, i.e. ORNs of a given type “a” are always co-housed with ORNs of a specific38

type “b”. Furthermore, ORNs within the same sensillum can interact (Shimizu and Stopfer, 2012;39
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Figure 1. a) NSI interaction Theoretical and experimental studies have proposed that the non-synaptic
interaction (NSI) between ORNs is mediated by a direct electrical field interaction between such closely
apposed neurons. b) Hypothesis n.1: An inhibitory mechanism can increase the dynamic range of the ORNs
and help to correctly encode the ratio between odorants even at high concentration. At low concentration,
the ratio of two odorants (A1 and B1) can be encoded by ORNs, with and w/o NSI; when concentration is high
(A2 and B2), the ORNs response without NSI is flatted on similar values and the ratio cannot be encoded.
Hypothesis n.2: If a single source emits an odorant mixture (c), odorants will arrive in close synchronization,
NSIs will take effect and the response in both ORNs is affected. If separate sources emit the odorants (d), they
will arrive in a less correlated way (Erskine, 2018), and NSIs have almost no effect, resulting in larger ORN
responses. ORN response data shown is based on a preliminary model.

Su et al., 2012; Todd and Baker, 1999; Xu et al., 2019; Zhang et al., 2019) without making synaptic40

connections (see Figure 1a). While the interactions are sometimes called "ephaptic", referring to41

their possible electronic nature, we here prefer to call themnon-synaptic interactions (NSIs), for the42

sake of generality. Whether stereotypical co-location of - and NSIs between - ORNs have functions43

in olfactory processing and what these functions might be remains unknown, even though several44

non-exclusive hypotheses have been formulated (see e.g. Todd and Baker (1999) and references45

therein).46

Here, we investigate two hypotheses: First, NSIs could help the olfactory system to identify ra-47

tios of odorant concentrations in mixtures more faithfully by enhancing the dynamic range of ORN48

responses (see Figure 1, panel b). Second, NSIs could help improve the spatiotemporal resolution49

of odor recognition in complex plumes (see Figure 1, panels c-d). In both hypotheses, the NSImech-50

anism has to compete with lateral inhibition in the antennal lobe, which is commonly recognized to51

fulfill these roles, even though, of course, the twomechanisms are not mutually exclusive. Indi-52

rect support for the first hypothesis is found in the context of moths’ pheromone communication.53
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In some moth species, pheromone mixture ratio discrimination is critical for survival and there-54

fore even slight changes in pheromone component ratios of 1-3% can cause significant changes in55

behavior. In these species, the ORNs responding to pheromone components are more likely to be56

co-housed. Meanwhile, whenmixture ratios are not as critical for behavior, i.e., significant changes57

in behavior only occur if pheromone component ratios change 10% or more, ORNs are less likely58

to be paired in the same sensilla (see Todd and Baker (1999) and reference therein). The idea of59

extending dynamic range is a cornerstone for signal processing and metrology and we can find60

evidence for extended dynamics range in several senses, including olfaction (see e.g. Vermeulen61

and Rospars (2004); Reddy et al. (2018); Singh et al. (2019)): When a quantity of interest is encoded62

by neuronal activity through a sigmoid function (see Olsen et al. (2010) for an example for projec-63

tory neuron (PN) activity), the encoding has a limited dynamic range (see Figure 1, panel b) that is64

determined by the shape of the sigmoid and the maximum firing rate of the neurons. A common65

neuronal strategy to increase the dynamic range in this situation is mutual inhibition between neu-66

rons, like that one taking place between PNs inside the antennal lobe (AL) (see e.g. Wilson (2013).67

We propose that NSIs in the sensilla implement such a mechanism and analyse how it improves68

the encoding of the concentration ratio of odor mixtures in PNs.69

The improvement of spatiotemporal resolution of the second hypothesis can be achieved by70

decorrelating odor response profiles to improve odor recognition (see Figure 1, panels c-d), much71

like lateral inhibition in the antennal lobe (AL), or centre-surround inhibition in the retina. Odor-72

ants dissipate in the environment in complex, turbulent plumes of thin filaments of a wide range of73

concentrations, intermixed with clean air. Odorants emanating from the same source presumably74

travel together in the same filamentswhile odorants from separate sources are in separate strands75

(see e.g., Erskine (2018) for empirical evidence for this intuitive idea). Insects are able to resolve76

odorants in a blend and recognize whether odorants are present in a plume and whether or not77

they belong to the same filaments (Fadamiro and Baker, 1997; Baker et al., 1998; Krofczik et al.,78

2009; Szyszka et al., 2012). In the pheromone sub-system of moths, it is known that animals are79

able to detect, based on fine plume structure, whether multiple odorants have been emitted from80

the same source or not (Fadamiro and Baker, 1997; Baker et al., 1998; Andersson et al., 2010).81

In the pheromone subsystem of Drosophila, ORNs responding to chemicals emitted by virgin fe-82

males and ORNs responding to chemicals emitted by mated females are co-housed in the same83

sensilla: The ‘virgin females ORNs’ promotemale approach behavior, but the ‘mated females ORNs’84

inhibit ‘virgin females ORNs’ (van Naters and Carlson, 2007). This inhibition could be implemented85

through NSIs (Todd and Baker, 1999; van Naters and Carlson, 2007; Couto et al., 2005; Binyameen86

et al., 2014).87

The experimental evidence for both hypotheses and for the general relevance of NSIs for olfac-88

tory processing remains mixed and research is still at an early stage. Encouraged by the available89

evidence, and without trying to rule out other hypotheses (for further analysis see Discussion), our90

goal is to investigate, with a computational model, the viability of the hypothesized function of91

NSIs between ORNs. Our computational approach helps experimental studies to refine hypothe-92

ses about NSI and eventually answer the pertinent question why such a mechanism that appears93

to duplicate what is already known to be implemented by local neurons in the AL (Todd and Baker,94

1999) could nevertheless provide an evolutionary advantage.95

A number of computational models have been developed to capture different aspects of the96

olfactory system of insects. However, until recently, most modeling efforts were based on the as-97

sumption of continuous constant stimuli, which are partially realistic only for non-turbulent fluid98

dynamics regimes (see (Pannunzi and Nowotny, 2019), and reference therein). Most commonly99

insects encounter turbulent regimes, in which odorant concentration fluctuates rapidly (see Fig-100

ure 6–Figure Supplement 2).101

To copewith thesemore realistic stimuli, Kimet al. (2011); Lazar and Yeh (2020);Gorur-Shandilya102

et al. (2017); Jacob et al. (2017) have formulated new models of Drosophila ORNs, that are con-103

strained by experimental data obtained with more rich, dynamic odor inputs, including a model104

3 of 25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.217216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217216
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Figure 2. The model consists of a subset of the early olfactory system of insects from ORNs to the AL using
only two groups of ORNs (ORNa and ORNb) and their respective PNs and LNs. Each ORN type, a and b, is tuned
to a specific set of odorants (e.g. individual pheromone component) and converges onto its corresponding
PNs. PNs impinge into their respective LNs, but receive inhibitory input from LNs of the other type.

simulating ORNs and PNs that are subject to input from simulated plumes (Jacob et al., 2017) with105

statistical properties akin to those of naturalistic plumes (see more details in Model and methods106

and Correlation detection in long realistic plumes).107

Here, we present a network model with two groups of ORNs, each tuned to a specific set of108

odorants, connected to their corresponding glomeruli, formed by lateral neurons (LNs) and PNs,109

following the path started by Av-Ron and Rospars (1995); Av-Ron and Vibert (1996), and subse-110

quently by Getz and Lutz (1999); Serrano et al. (2013); Zavada et al. (2011). We model the ORNs111

in a similar approach as Kim et al. (2011); Lazar and Yeh (2020) with minor differences in the filter112

properties and the adaptation (see Model and methods). We have tested the behavior of this net-113

work in response to simple reductionist stimuli (as commonly used in the literature, see above),114

and simulated naturalistic mixtures plumes (as described by the experiments inMylne and Mason115

(1991); Yee et al. (1995)). We then used this simple but well-supported model to investigate the116

role of NSIs for odor mixture recognition.117

Results118

To investigate the role of NSIs in olfactory sensilla, we have built a computational model of the119

first two processing stages of the Drosophila olfactory system. In the first stage, ORN responses120

are described by an odor transduction process and a spike generator (see Model and methods),121

in line with previous experimental and theoretical studies (Kim et al., 2011, 2015; Martelli et al.,122

2013; Lazar and Yeh, 2020). We simulated pairs of ORNs expressing different OR types, as they123

are co-housed in sensilla. NSIs between co-housed pairs effectively lead to their mutual inhibition124

(see Figure 1a). The second stage of olfactory processing occurs in the AL, in which PNs receive125

input from ORNs and form local circuits through LNs. ORNs of the same type all make excitatory126

synapses onto the same associated PNs. PNs excite LNs which then inhibit PNs of other glomeruli127

but not the PNs in the same glomerulus (see Figure 2 and Model and methods for further details).128

Formaximum clarity, we here focus on only one type of sensillum and hence two types of ORNs129

that we denote as ORNa and ORNb. We further assume that odorants labeled A and B selectively130

activate ORNa and ORNb, respectively (see Figure 2 and Figure 1a). This assumption is not only131

sensible for a reductionist analysis of the role of NSIs, but it is also based on experimental obser-132

vations. For instance, pheromone receptors in moths and in Drosophila are highly selective, paired133
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Figure 3. ORN responses to a 500ms single step stimulus. a) Stimulus waveform (continuous line) and
receptor activation r (dashed). b) Activity of the internal ORN variables x (continuous) and y (dashed) (see
Model and methods). c) Example spike raster of the spiking response of all 80 ORNs. d) Spike density function
of the ORN population activity. The Shaded area represents the standard deviation across the ORNs of the
same type. Color code for panels c-d: green for ORNa and purple for ORNb. e) Stimulus waveforms for
different odorant concentrations. f) ORN activity normalized to the peak activity. odor concentration is
indicated with different shades of green. After normalization, the responses are almost identical to those
reported byMartelli et al. (2013).
Figure 3–Figure supplement 1. Model ORN response to a single step, a ramp, and a parabola as in (Lazar and
Yeh, 2020).
Figure 3–Figure supplement 2. Output of the model of Lazar and Yeh (Lazar and Yeh, 2020) for comparison.

in sensilla, and exhibit NSIs (Leal, 2013; Todd and Baker, 1999). In the general olfactory system of134

Drosophila, neurons ab3A and ab3B in sensillum ab3 are selectively sensitive to 2-heptanone and135

Methyl hexanoate, and when stimulated simultaneously they inhibit each other through NSIs (Su136

et al., 2012).137

Constraining the ORN model to biophysical evidence138

In this investigationwe are particularly interested in the complex time course of odorant responses139

and have therefore focused on replicating realistic temporal dynamics of the response of ORNs at140

multiple time scales. ORN responses were constrained with experimental data obtained with delta141

inputs, i.e. inputs of very short duration and very high concentration, and randomGaussian pulses,142

i.e. series of input pulseswhich durations and inter-stimulus-intervals were drawn fromaGaussian143

distribution. We found that our model reproduces the data to a similar quality (relative error of144

around 6%) as previous linear-nonlinear models (Kim et al., 2011, 2015;Martelli et al., 2013;Nagel145

and Wilson, 2011; Lazar and Yeh, 2020), even though it has fewer free parameters (see Figure 3).146

To further constrain themodel, we compared its results to electrophysiological recordings from147

ORNs (Kim et al., 2011, 2015) responding to 2 s long odor stimuli with shapes resembling steps,148

ramps, and parabolas (see Figure 3–Figure Supplement 1 and Model and methods). The model149

reproduces all key properties of the experimentally observed ORN responses. For the step stim-150

uli, ORN activity peaks around 50ms after stimulus onset and the peak amplitude correlates with151

the odor concentration (Figure 3–Figure Supplement 1b). After the peak, responses gradually de-152

crease to a plateau. Furthermore, if normalised by the peak value, responses have the same shape153

independently of the intensity of the stimulus (Martelli et al., 2013), see Figure 3e,f. For the ramp154
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Figure 4. Network response to 500 ms step stimuli of a single odorant for the network as shown in Figure 2.
a) Step stimuli, shade of green indicates concentration. b)-d) corresponding activity of ORNs, PNs, and LNs.
Shades of green match the input concentrations. e) Average response of PNs over 500 ms against the
average activity of the corresponding ORNs. The orange dashed line is the fit of the simulated data using
equation eq.1 as reported in (Olsen et al., 2010). f) Average values for PNs, ORNs, and LNs for different values
of concentration. Error bars show the SE over PNs.
Figure 4–Figure supplement 1. Similar results for shorter stimulation time (50ms).
Figure 4–Figure supplement 2. Similar results for shorter stimulation time (100ms).

stimuli, ORN responses plateau after an initial period of around 200ms, encoding the steepness155

of the ramp (Figure 3–Figure Supplement 1d). More generally, ORN responses seem to encode156

the rate of change of the stimulus concentration (Kim et al., 2011, 2015; Nagel and Wilson, 2011).157

Accordingly, ORN activity in response to the parabolic stimuli is like a ramp (Figure 3–Figure Sup-158

plement 1f).159

Model behavior for an isolated stimulus160

Without further constraining the model we then tested PN responses with a single constant step161

stimulus. Olsen et al. (2010) reported that the response of PNs to such a stimulus is best described162

by a sigmoid,163

�PN = �max
�1.5ORN

�1.5 + �1.5ORN
(1)

where �max is the maximum firing rate of ORNs, � is a fitted constant representing the level of ORN164

input that drives half-maximumresponse, and �ORN and �PN, are the average firing rates of theORNs165

and the PN over the stimulation period (500ms), respectively. Our model reproduces this behavior166

as a direct consequence of the model structure without any further parameter tuning (Figure 4).167

LNs follow the same behavior (see Figure 4f). Note that this result, i.e. the sigmoidal behavior,168

generalizes to both, shorter stimulation times (50 and 100ms, see Figure 4–Figure Supplement 1169

and Figure 4–Figure Supplement 2) and to the peak activity instead of the time averaged activity170

(data not shown).171

With a model in place that demonstrates the correct response dynamics for a variety of stimuli,172

we then analysed its predictions on whether NSIs can be beneficial for odor mixture processing. In173

particular, we tested the following two hypotheses: 1. Do NSIs improve the encoding of concentra-174

tion ratio in an odorant mixture (see section Odorant ratio in synchronous mixture stimuli) and 2.175

Do NSIs support differentiating mixture plumes from multiple versus single source scenarios (see176

section Processing asynchronous odor mixtures)?177
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Figure 5. Time course of ORN (2nd column), and PN activity (3rd column) in response to a triangular pulse
(50ms, 1st column) for the three models – control (top row), NSI (second row) and LN model (bottom row).
Green and purple lines are for glomerulus a and b, respectively. Input to the three models is identical, while
control and LN models have identical ORN activity, which is therefore not displayed twice. Peak PN activity for
the control-model is around 110Hz (top row), and around 70Hz for the NSI- and LN models. The lines show
the average response and the shaded area around the lines the standard deviation over 10 trials.

Odorant ratio in synchronous mixture stimuli178

Airborne odors travel in complex plumes characterized by highly intermittent whiffs and highly179

variable odor concentration (Mylne and Mason, 1991; Yee et al., 1995). To successfully navigate180

such plumes and find for example food, flies must recognize relevant whiffs regardless of the over-181

all odor concentration in them, i.e. perform concentration-independent odorant ratio recognition.182

This is a difficult problem as 1. PN responses are sigmoidal with respect to concentration and 2.183

the sigmoids are not the same for different odorants in a mixture and different receptor types. To184

investigate this problem and understand whether NSIs may play a role in solving it, we stimulated185

themodel ORNswith binarymixtures, varying the overall concentration of themixture, the concen-186

tration ratio, and the onset time of the two odorants. As a first approximation we mimic the whiffs187

in plumes (see e.g. Figure 6–Figure Supplement 2a) with simple triangular odorant concentration188

profiles that have a symmetric linear increase and decrease (see Figure 5). We first analysed the189

synchronous case where both odorants in the mixture arrive at the same time, which is typical190

when a single source emits both odorants (see Figure 7–Figure Supplement 1 a, extracted from191

Erskine (2018)). To assess the role of NSIs, we compared the model with NSIs (“NSI model”) to a192

model with lateral inhibition between PNs mediated by LNs in the AL (“LN model”) and a control193

model where the pathways for different OR types do not interact at all (“control model”).194

Figure 5 shows the typical effects of the two mechanisms on PN responses. For the purpose195

of this figure we adjusted the NSI strength and LN synaptic conductance (see Table 1) in such a196

way that the average PN responses to a synchronous mixture pulse were matched across the two197

models. While the stimulus lasts only 50ms, the effect on ORNs, PNs and LNs lasts more than twice198

as long. We observed the same behavior for other stimulus durations (tested from 10 to 500ms). In199

the control model (Figure 5, top row), PN and LN responses are unaffected by lateral interactions200

between OR-type specific pathways and because we have matched the sensory response strength201

of the two odorants and OR types for simplicity, the responses of the PN in the two glomeruli are202

very much the same. For the LN model the response of ORNs is unaltered by network effects and203

synaptic inhibition of LNs is the only lateral interaction between pathways (Figure 5 bottom). For204

the NSI model (Figure 5middle row) ORN activity is directly affected by NSIs and the activity of PNs205

is lower than in control conditions as a consequence of the lower ORN responses. As explained206

above, NSI strength and synaptic conductance of LN inhibition were chosen in this example so207

that the response of the PNs for both models is of similar magnitude (peak response for PNs for208

independent glomeruli ∼110Hz, for AL lateral inhibition and NSI mechanism ∼70Hz).209

To investigate the effectiveness of the two mechanisms for ensuring faithful odorant ratio en-210
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coding more systematically, we tested the three models with synchronous triangular odor pulses211

of different overall concentration, different concentration ratios, and for different values of stimu-212

lus duration (from 10 to 200ms), which we selected to match the range of common whiff durations213

observed experimentally (see Figure 6–Figure Supplement 2). Here, and throughout the study we214

explored several values for the two strength parameters (1, 2, 3, 6,10, 13, 16 for !NSI and (0.2, 0.3,215

0.4 for �LN ) and for each analysed task we report the results of the best performing NSI and LN216

model, respectively.217

The results are summarised in Figure 6. Due to the fundamentally sigmoidal PN responses for218

increasing odorant concentration (see Figure 4e), the encoding of the ratio between two odorants219

in a mixture is distorted in the absence of additional mechanisms (as seen in the control model,220

Figure 6a,b. The encoding of odorant mixtures is indeed already disrupted at the level of the ORNs221

(Figure 6a), not only on the level of PNs (Figure 6b). Once activated, inhibitory interactions between222

PNsmediated by LNs improve ratio encoding (Figure 6c,d) but only for a very limited range of stimu-223

lus concentrations: Essentially only for the concentration 0.6, the response ratio of PNs reasonably224

follows the diagonal. For other concentration values, LN inhibition is either too strong (diverging225

response ratio) or too weak (flat response ratio). We explored a wide range of values for �LN , the226

synaptic efficacy of LN to PN synapses, and found that different values of �LN lead to successful ra-227

tio encoding for different individual concentration values but that the overall qualitative behavior228

was unchanged. In other words, stronger or weaker LN inhibition does not improve ratio encod-229

ing in PN activity across more than one input concentration value. The NSI mechanism instead230

changes the ORN responses (Figure 6e), and as a consequence, PN responses change so that their231

activity reflects the ratio of odor concentrations better for most of the tested concentration ratios232

(Figure 6f).233

The results in Figure 6 are all based on the ratio of peak activity RPN = �PNb ∕�PNa (see Model234

and methods) during the first 100ms after the stimulus onset. We also tested the ratio of average235

activity over the duration of the stimuli and found very similar results (see Figure 6–Figure Supple-236

ment 1). In the same vein, testing with longer stimuli also yielded qualitatively similar results.237

Next, we tested the encoding of ratios – besides for different concentrations – also for differ-238

ent whiff durations (Figure 6g). For very short stimuli (10ms), the sigmoidal dependence of PN239

responses on concentration does not yet have pronounced effects, and therefore ratio encoding240

is easier in the control model. However, the LN model over-compensates, leading to errors for241

all concentrations. In the NSI model the coding is as good as in control. For short stimuli (20ms),242

the encoding in the control model begins to degrade, while the LN model improves for larger con-243

centrations. The NSI model does best across all concentrations. For medium to very long stim-244

uli (50ms,100ms) encoding in the LN model begins to break down again for larger concentrations245

while the NSI model exhibits constant coding quality. While very intuitive, encoding mixture ratios246

linearly in PN firing rates is not the only option. To analyse encoding quality more generally, we247

therefore repeated our analysis by calculating the mutual information (MI) between the odorant248

concentration and RPN . The results from the analysis of the MI are qualitatively similar to the249

results with the coding error (see Figure 6–Figure Supplement 3).250

From this analysis it is evident that both NSI and AL inhibition lead to better ratio encoding251

than the control model for medium to long stimuli of high concentration. However, for the LN252

model this comes at the price of degraded ratio encoding at shorter stimulus durations and lower253

concentrations. Only theNSImodel, albeit not perfect, improves ratio encoding consistently across254

all tested combinations for duration and concentration.255

In the next section we will explore the effectiveness of the different models when the whiffs256

arrive asynchronously.257

Processing asynchronous odor mixtures258

When odorants are released from separate sources, they form a plume in which the whiffs of dif-259

ferent odorants typically are encountered at distinct onset times. To the contrary, when a mixture260
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Figure 6. Encoding concentration ratio with peak PN activity. ORN (a,c,e) and PN (b,d,f) responses ratio
(RORN = �ORNb ∕�ORNa and RPN = �PNb ∕�PNa ) to a single synchronous triangular pulse of 50ms duration applied
to both ORN groups. The graphs show response ratios versus concentration ratio of the two odorants for
four different overall concentrations (colours, see legend in f). The peak PN responses would be a perfect
reflection of the odorant concentration if they followed the black dashed diagonal for all concentrations.
Error bars represent the semi inter-quartile range calculated over 50 trials. g) Analysis of the coding error for
different values of stimulus duration (from 10 to 200ms) and concentration values (0.2 to 1.4). The coding
error is calculated as the squared relative distance (see Model and methods).
Figure 6–Figure supplement 1. Encoding ratio with the average PN activity.
Figure 6–Figure supplement 2. Plume statistics of natural plumes.
Figure 6–Figure supplement 3. Encoding ratio analysis with MI.
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of odorants is released from a single source they form a plume where the odorants typically ar-261

rive together (Figure 7–Figure Supplement 1). We hypothesise that if lateral inhibition (via LNs or262

NSIs) only takes effect in the synchronous case but not in asynchronous case, it will help distin-263

guishing single source and multi-source plumes. For instance, in the case of pheromone receptor264

neurons that are co-housed with receptor neurons for an antagonist odorant, the response to the265

pheromone would be suppressed by NSI when both odorants arrive in synchrony (same source)266

andnotwhen arrivingwith delays (the pheromone source is separate from the antagonistic source).267

This is thought to underlie the ability of male moths to identify a compatible female, where the an-268

tagonist odorant is a component of the pheromone of a related but incompatible species Baker269

et al. (1998). To test whether this idea is consistent with the effect of NSIs as described by our270

model, we calculated the predicted responses of PNs to asynchronous whiffs of two odorants in271

our three models - control, with LN inhibition, and with NSI.272

Figure 7a shows the responses in the models for the example of two 50ms triangular odor273

pulses of the same amplitude and at 100ms delay. We chose stimuli that excite the two ORN types274

with the same strength to simplify the analysis and focus on the differences between models with275

respect to asynchronous input rather than differing input ratios that we analyzed above. In the276

control model, responses are very similar between ORNa and ORNb, as well as, PNa and PNb as277

expected in the absence of interactions and for identical stimulus strength.278

The situation is very different when LN inhibition is present (Figure 7a, bottom). Even for the279

comparatively large delay of 100ms – the second stimulus starts 50ms after the first one ends – the280

excitatory input to PNb (purple) cannot overcome the inhibition coming through the LNs activated281

by PNa (green). This is a consequence of PN and LN responses outlasting the stimuli as observed282

above. In contrast, while an inhibitory effect is present in the NSI model, it is much weaker, with283

only small effects at the PNs (Figure 7, middle row).284

To quantify the differences between the three models across different typical conditions, we285

calculated the ratio between the PN responses of the two glomeruli RPN = �PNb ∕�PNa , both for the286

peak activity and for the average activity over the stimulation time. Figure 7b shows the results287

for stimulus durations between 10 and 200ms and delays from 0 to 500ms. The whiff durations288

and delays were selected to match the range of values commonly observed in experiments (see289

Figure 6–Figure Supplement 2).290

As expected, the value of RPN is close to 1 (pink lines) for the control model with independent291

ORNs and PNs and all explored parameters. In contrast, the NSI model and the LN model ex-292

hibit clear effects of their lateral interactions. In the LN model the response of the second PNb is293

strongly suppressed by the response to the first stimulus for all tested whiff durations and delays.294

The NSI model also shows suppression but the effects are smaller and only present for very long295

whiffs (200ms) and commensurate or shorter delays (<250ms). This is a clear advantage over the296

LN model. The results are very similar whether measured in terms of the peak activity (Figure 7b)297

or the average activity over the stimulus duration (Figure 7–Figure Supplement 2).298

Correlation detection in long realistic plumes299

So far we have seen that NSIs are beneficial for ratio coding in synchronous mixtures and that300

they distort responses less than LN inhibition in the case of asynchronous mixtures. In this final301

section, we investigated and compared the effects of the two mechanisms when the system is302

stimulated with more realistic signals of fluctuating concentrations that have statistical features303

resembling odor plumes in an open field (see Figure 6–Figure Supplement 2). The statistics of the304

plumes and how we simulated them are described in detail in the Model and methods; in brief,305

we replicated the statistical distribution of the duration of whiffs and clean air and the distribution306

of the odorant concentration which were reported in the literature (Mylne and Mason, 1991; Yee307

et al., 1995). Similarly to Jacob et al. (2017), we simulated plumes as pairs of odorant concentration308

time series, with a varying degree of correlation to emulate plumes of odors emitted from a single309

or from two separate sources (see Erskine (2018) and Figure 7–Figure Supplement 1). Similar to the310
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Figure 7. Asynchronous mixture encoding. a) Stimulus concentration ("Input", first column), and the response
of ORNs (second column) and PNs (third column). The lines are the average response, and the shaded areas
mark the standard deviation calculated over 10 trials. The PN peak activity for the control-model (top row) is
∼150Hz for both glomeruli, for the LN model (bottom row) ∼50Hz for the second glomerulus and for the NSI
model (middle row) ∼130 Hz for the second glomerulus. b) Median ratio of the peak PN responses of the two
glomeruli RPN = �PNb ∕�PNa in the three models: control model (dot dashed pink), LN model (orange
continuous), and NSI model (dashed cyan) for different stimulus durations as marked on the top. Error bars
represent the semi inter-quartile ranges.
Figure 7–Figure supplement 1. Example concentration fluctuation time series for two odorants emitted by a
single source or two separate sources
Figure 7–Figure supplement 2. Results for the average PN response over the stimulus duration.
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Figure 8. a) Time course of stimulus concentration (Input ORN, first column), and response of ORNs (second
column), PNs (third column) to two 4 s long realistic plumes with statistical properties as described in the text;
first row: control model, second row: NSI model, third row: LN model. Lines are the mean and shaded areas
around the lines the standard deviation over 10 trials. b) Response of ORNs, and c) response of PNs averaged
over 200 s for the three models: control model (dot dashed pink), LN model (orange continuous), and NSI
model (dashed cyan). The observation from the LN model is not shown in panel b as it overlaps with the dot
dashed pink lines (ctrl-model). d) Total PN activity above 150Hz, for 3msmaximum whiff durations.
Figure 8–Figure supplement 1. Statistical properties of simulated natural plumes
Figure 8–Figure supplement 2. Similar results of panel d with different thresholds (50, 100, 150 Hz)

previous section, the stimuli were applied to themodels andwe analyzed the PN responses in order311

to understand the ability of the early olfactory system to encode the signal. PN responses are very312

complex time series (see Figure 8) and many different decoding algorithms (Huerta et al., 2004;313

Nowotny et al., 2005; Jortner et al., 2007; Lin et al., 2007, 2014), could be present in higher brain314

areas to interpret them. However, as before, we applied the simple measure of peak PN activity in315

terms of the total firing rate above a given threshold to analyze the quality of the encoding.316

In order to analyze the discrimination of plumes with odorants coming from a single source317

– highly correlated stimuli – from separate sources – poorly correlated stimuli – we developed a318

method to generate plumes of a prescribed correlation between concentration time series while319

keeping other properties such as intermittency and average odorant concentration constant (see320

Model and methods and Figure 8–Figure Supplement 1). Using this method, we then explored321

plumes with correlation 0 to very close to 1. We simulated the model for 200 s duration (a few322

times the maximal timescale in plumes, i.e. 50 s) and preset correlations between the odorant con-323

centration time series, and first inspected the average activity of neuron types over the stimulation324

period. By construction, the ORN activity for the LN model is the same as in the absence of inhibi-325

tion (Figure 8a-b), while the average ORN activity for the NSI model is lower and depends on the326

correlation between odor signals (Figure 8a-b). These effects are approximately the same for the327
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whole range of the tested NSI strengths !NSI (data not shown).328

The situation is different for the average PN activity. The average PN response in the NSI model329

is almost the same as in the control model and only weakly, if at all, dependent on input correlation330

(see Figure 8c). It, therefore, does not encode input correlation well. To the contrary, the average331

PN responses in the LN inhibition network are lower than in the control model, and a bit more332

clearly dependent on input correlation (Figure 8c). Hence, LN inhibition is useful for encoding333

input correlation with the average PN activity. All reported effects remain approximately the same334

for the entire range of explored parameters (!NSI and �LN ) (data not shown).335

We next analysed instead of the average PN response the “peak PN” response, defined as the336

integrated PN activity over timewindowswhere the PNfiring rate is above a given threshold (e.g. 50,337

100, or 150ms). Figure 8d shows peak PN for 150Hz threshold (see Figure 8–Figure Supplement 2 for338

plots with other underlying thresholds). For the LN model and the NSI model, peak PN responses339

depend on the plume correlation. Within the values we investigated, the highest peak threshold of340

150Hz recovers the most information about input correlation and for high peak thresholds the NSI341

mechanism leads to more informative responses than than LN inhibition. We conclude that most342

of the information about input correlations is contained in the first part of the response before343

adaptation takes place and that therefore the average activity over the entire response is not a344

good proxy for encoding the correlations in the input signals.345

So far we have used simulated plumes corresponding to 60m distance from the source. At346

different distances the maximum whiff durations will vary (Pannunzi and Nowotny, 2019). We347

therefore asked whether and how the efficiency of the two mechanisms depends on maximum348

whiff duration and hence distance from the source. To address this question, we generated plumes349

with different maximum whiff duration, wmax. Figure 9a shows a plot for each tested value of wmax350

(from 0.01 to 50m) for peak threshold 150Hz (see Figure 9–Figure Supplement 1 and Figure 9–Figure351

Supplement 2 for results with peak thresholds of 50, and 100Hz). The choice of maximum whiff352

durations reflects typical experimental observations (Yee et al., 1995).353

There are two effects that are evident: 1. At zero correlation between the stimuli, PN responses354

in the NSI model are quite similar to those in the control model while those in the LN model differ355

more, and 2. The PN responses in the NSImodel dependmore strongly on the input correlations of356

the stimuli than the PN activities in the LNmodel, especially for short (<3s) whiffs (Figure 9a) which357

constitute more than 90% of all typical whiff durations. This second effect is important because358

ideally we would like the PN responses to differ maximally between highly correlated plumes and359

independent plumes in order to discern the two conditions.360

To quantify these effects we measured the following distances: 1. The distance between peak361

PN of the NSI model (or LNmodel) and of the control model at zero correlation, defined as p0ctrl −p0x362

with x ∈ (NSI,LN) (Figure 9b) and 2. the distance between peak PN of NSI model (or LN model) at363

0 correlation and at correlation (very close to) 1, defined as p0x − p1x with x ∈ (NSI,LN) (Figure 9c).364

These figures show the clear advantage of using an NSI mechanism instead of LN inhibition when365

encoding the correlation between stimuli that resemble a naturalistic plume: p0ctrl − p0NSI is always366

always smaller than p0ctrl − p0LN and p0x − p1NSI is consistently larger than p0x − p1LN .367

Discussion368

“Thought experiment is in any case a necessary precondition for physical experiment. Every experimenter369

and inventor must have the planned arrangement in his head before translating it into fact.” E. Mach370

(1905)371

We have implemented a model of the early olfactory system comprising ORNs of two receptor372

types, their NSIs in the sensillum, and two corresponding glomeruli in the AL, containing PNs and373

LNs in roughly the numbers that have been observed for Drosophila. Our objective was to inves-374

tigate two potential roles of NSIs in insects’ olfactory processing: Concentration invariant mixture375

ratio recognition, vital for insects to identify the type or state of an odor source (see e.g. ((Visser376
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Figure 9. a) Peak PN for threshold 150Hz, and for different subsets of whiff durations (from 0.01 to 50s) for
the three models: control model (dot dashed pink), LN model (orange continuous), and NSI model (dashed
cyan). Note that the horizontal axis has a log-scale. b) Distance between the PN activity of the control model
and the NSI model (or LN model), at 0 correlation, p0ctrl − p

0
x with x ∈ (NSI,LN). c) Distance between the PN

activity of NSI model (or LN model) at 0 correlation and at correlation 1, p0x − p1x with x ∈ (NSI,LN).
Figure 9–Figure supplement 1. Similar results using threshold 50Hz
Figure 9–Figure supplement 2. Similar results using threshold 100Hz
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and Avé, 1978; Christensen et al., 1989; Natale et al., 2003; Bruce et al., 2005; Najar-Rodriguez377

et al., 2010) and references therein) and odor source separation, which can be critical for insects,378

e.g. in the context of findingmates Baker et al. (1998); Fadamiro and Baker (1997); van Naters and379

Carlson (2007). This second function requires high spatiotemporal resolution of odor recognition380

in complex plumes.381

By comparing our model with NSIs to a control model without lateral interactions between382

pathways for different receptor types, we found evidence that NSIs should be beneficial for con-383

centration invariantmixture processing: NSIs lead tomore faithful representation of odormixtures384

by PNs in the sense that the ratio of PN activity is closer to the ratio of input concentrations when385

NSIs are present. Similarly, the mutual information between the ratio of input concentrations and386

the ratio of PN activity is higher for the NSI model. While we admittedly do not know how exactly387

odor information is represented in PN activity, responses that differ systematically with input ratio388

must be superior to responses that saturate and hence do not inform about the input ratio, as389

seen in the control model.390

Furthermore, using a model variant with no NSIs but LN inhibition between glomeruli in the391

AL we found that 1. For synchronous individual whiffs, both models, the one with NSI mechanism392

and the one with LN inhibition, are better than the control model in several conditions (Figure 6393

g); moreover, the NSI mechanism is typically more effective than LN inhibition. This is especially394

true for very short stimuli (<100ms). 2. For asynchronous individual whiffs, PN responses to the395

later whiff are strongly altered by the response to the first whiff when LN inhibition is present. In396

contrast, with NSIs the PN responses to the second whiffs are only mildly affected by the activity397

triggered by the first whiff, indicating that with NSIs there is less of a trade-off between benefits in398

encoding synchronous mixtures and distortions when odorants from separate sources mix.399

These results further support the hypothesis that the NSI mechanism offers an evolutionary400

advantage by enabling more precise odor coding for these simple stimuli. Similar conclusions401

can be drawn when analyzing the capacity of the insect olfactory systems to encode the correla-402

tion between two odorants in a more realistic setting of an odor plume. We found that, when403

analysing peak PN activity (the integrated PN firing rate over windows during which it is above a404

given threshold), the model with NSI mechanism outperforms the LN inhibition model and both405

are better when considering peak activity than when considering average PN activity. Besides sup-406

porting the benefits of NSIs this also adds further evidence in favor of using peak activity to encode407

important features of a signal, in this case stimulus correlations, as hypothesized in earlier work408

(see e.g. Krofczik et al. (2009);Wilson et al. (2017)).409

The model and its limitations410

“A good model should not copy reality, it should help to explain it”, Segev (1992).411

As in everymodelling work the level of descriptionmustmatch the purpose of the investigation.412

In terms of Marr’s categorisation of models (Marr and Poggio, 1976), our model is somewhere413

between the algorithmic level - as both our models implement a form of lateral inhibition - and414

the implementation level - albeit we are not yet able to capture the underlying physics of the NSI415

mechanism. Because of our hypotheses that the role of NSIs is to improve processing of temporally416

complex stimuli, we focused on a descriptionwhich included temporal dynamics butwas otherwise417

as simple as possible. We therefore have simplified 1. the cellular dynamics of odor transduction418

(Kaissling, 2001, 2009, 2014, 2019; Gu and Rospars, 2011; Gorur-Shandilya et al., 2017) and only419

heuristically describe the macroscopic effects at the receptor neuron level, an approach similar420

to (Lazar and Yeh, 2020); 2. the complexity of the full receptor repertoire in the insect olfactory421

system, e.g. about 60 ORN types in Drosophila, and instead focused on a single sensillum with two422

co-housed ORNs; 3. the true complexity of the many different LN types and transmitters in the423

AL (Silbering et al., 2008), using only GABAA-like LNs. 4. the spatial distribution of the sensilla on424

the surface of the antenna or the maxillary palp; 5. the complexity of odor stimuli delivered by425

stimulation devices in the experiments we are mimicking for the single pulse investigation (see the426
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corresponding Model and methods section, (Pannunzi and Nowotny, 2019)), 6. the asymmetry of427

NSIs where there is some evidence that the strength of the NSIs is proportional to the size of the428

ORN that is exerting the interaction onto another neuron Zhang et al. (2019). By making these429

simplifications we were able to reduce the number of free parameters in the model, reasonably430

constrain most parameters and scan the few remaining parameters, such as the strength of LN431

inhibition, across a reasonable range. This increases our confidence that the observed benefits of432

NSIs for olfactory information processing are not artefacts of particular parameter choices in the433

model(s).434

For the sake of simplicity we chose to work with a specific animal model in mind and because435

of the large amount of information available in the literature, we chose Drosophila. It will be inter-436

esting to see whether and how much our results can be generalized to other insect such as bees,437

mosquitoes or moths.438

Comparison with related modelling works439

“If I have seen further it is by standing on the shoulders of Giants.” I. Newton (1675).440

Our work builds on ideas in previous models (e.g., Chan et al. (2018); Rospars et al. (2008); Ver-441

meulen and Rospars (2004)) and concurrent approaches (e.g. Lazar and Yeh (2020)). While earlier442

modeling works focused on the oscillatory and patterned dynamics of activity in the antennal lobe443

(Bazhenov et al., 2001a,b; Linster et al., 1993; Linster and Smith, 1997; Linster et al., 2005), it was444

soon realized that the recognition of odorants and their mixtures across different concentrations445

posed a particularly difficult question. One school of models explored the idea of winnerless com-446

petition as a dynamical systems paradigm for concentration invariant coding (Laurent et al., 2001;447

Kwok, 2007) while others exploredmore direct gain control mechanismmediated by local neurons448

in the AL (Getz and Lutz, 1999; Schmuker et al., 2011; Serrano et al., 2013). The task becomes even449

more difficult when the exact ratio of mixtures needs to be recognised, and a network model for450

mixture ratio detection for very selective pheromone receptors has been formulated in (Zavada451

et al., 2011). However, generally, odors already interact at the level of individual ORs due to com-452

petitive and non-competitive mechanisms which can be recapitulated in models, see e.g. (Rospars453

et al., 2008) for vertebrates and (Chan et al., 2018) for invertebrates.454

However, our model also makes a clear departure from the large number of models that have455

been built on assumptions and data based on long, essentially constant, odor step stimuli. While456

these kind of stimuli are not impossible, they can be considered as the exception more than the457

rule; for instance, even at more than 60m from the source, around 90% of whiffs last less than458

200ms (Justus et al., 2002; Yee et al., 1993), see (Pannunzi and Nowotny, 2019) for review. This459

insight is particularly difficult to reconcile with models that emphasize and depend on intrinsically460

generated oscillations in the antennal lobe (Bazhenov et al., 2001a,b; Linster et al., 2005, 1993;461

Linster and Smith, 1997), and models that depend on comparatively slow, intrinsically generated462

dynamics such as the models based on the winnerless competition mechanism (Rabinovich et al.,463

2001; Laurent et al., 2001). The original interpretation of these models, how they use intrinsic464

neural dynamics to process essentially constant stimuli, is disrupted when stimuli have their own465

fast dynamics. How to reconcile the idea of intrinsic neural dynamics for information processing466

with natural odor stimuli that have very rich temporal dynamics of their own remains an open467

problem.468

In building our model, we followed themain ideas developed by Vermeulen and Rospars (2004)469

but went beyond the assumption of constant stimuli and also added the important element of470

adaptation in ORNs and PNs, a widely accepted feature that is important in the context of dynamic471

stimuli; and while Vermeulen and Rospars (2004) already were interested in possible evolutionary472

advantages of NSIs, we here added the comparison with lateral inhibition in the AL that has been473

described as a competing mechanism, from an experimental (e.g. Todd and Baker (1999)) and474

a theoretical point of view (e.g., Getz and Lutz (1999); Zavada et al. (2011); Serrano et al. (2013).475

Finally an important addition in this study are the mixture stimuli: Many, though not all, earlier476
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works focused on the response of the network to mono-molecular odors, whereas we analyse the477

network response to two-odorant mixtures.478

A previous studywith very similarmotivation relating tomixture ratio recognition is the analysis479

of pheromone ratio recognition of Zavada et al. (2011). However, this earlier work still assumed480

constant stimuli, no adaptation in ORNs, a fixed target input ratio and only LN inhibition.481

Further hypotheses about NSIs482

“there is always a well-known solution to every human problem—neat, plausible, and wrong.” H. L.483

Mencken 1920 “Prejudices: Second Series”484

At this early stage, our knowledge and underdstanding of NSIs is still full of gaps. For example,485

while suggestive our results cannot prove beyond doubt whether NSIs are effectively useful to the486

olfactory system, or if they are an evolutionary spandrel. We also do not know their evolutionary487

history. One interesting idea would be that the complex function of improved odor mixture encod-488

ing could have arisen as a side effect from a simpler function, e.g. of saving space, but we do not489

have any evidence to support this.490

Researchers in the past 20 years have suggested a number of non exclusive explanations for491

the functions of NSIs. We have analyzed two of them - improved odor ratio representation and492

detecting plume correlations. Other typical hypotheses are: 1. NSIs may be useful to generally493

enhance the dynamic range of ORN responses. Based on an electrical circuitmodel Vermeulen and494

Rospars (2004) showed an increased dynamic range of responses in the more strongly activated495

ORN in a sensillum. While the model does not include established experimental insights, e.g. ORN496

adaptation Kim et al. (2011); Martelli et al. (2013), its main assumptions remain plausible. 2. NSIs497

could facilitate novelty detection for odor signals on the background of other odors Todd and Baker498

(1999), if newly arriving “foreground odors” suppress the ongoing response to an already present499

“background odor”.500

The improvement of dynamic range by NSIs sits alongside work that showed that syntopic in-501

teractions at the receptor level and masking interactions at a cellular level achieve similar effects502

Reddy et al. (2018); Singh et al. (2019) as well as improving mixture representations. Similarly,503

Chan et al. (2018) showed that syntopic interactions improve concentration invariant mixture rep-504

resentation in particular for odors with many components. How these receptor-level and cell-level505

mechanisms interact with sensillum-level NSIs is an interesting future research question.506

With regards to separating foreground odors from background odors, Todd and Baker (1999)507

noticed early on that NSIs duplicate the role of LNs in the AL even though (Wilson, 2013) pointed508

out later that LN networks take effect later and mainly decorrelate PN activities and normalize509

them with respect to the average input from ORNs. Here we have added to the discussion by show-510

ing that NSIs have advantages with respect to their faster timescale that led to less disruption of511

asynchronous odor whiffs.512

Moreover, NSIs have two additional key advantages with respect to LN inhibition in the AL or513

processes in later brain areas: 1. NSIs take effect without the need to generate spikes and reduce514

the number of necessary spikes whichmakes them energetically advantageous (Hasenstaub et al.,515

2010; Laughlin, 2001, 1998; Lennie, 2003; Sarpeshkar, 1998). 2. NSIs take place at the level of the516

single sensillum and hence a few spikes and synapses earlier than any AL or later interactions517

(Todd and Baker, 1999; Wilson, 2013). In the AL the information from ORNs of the same type is518

likely pooled and information about the activity of individual ORNs is not retained (see e.g. Kazama519

andWilson (2009);Nagel andWilson (2011)). Therefore, while interactions within the sensillum are520

precise in space and time, interactions in the AL will be global (averaged over input from many521

sensilla) and information channels will interact in an averaged fashion. Similar local interactions in522

the very early stages of sensory perception were already discussed for the retina (Klaassen et al.,523

2016; Thoreson and Mangel, 2012).524
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Conclusions525

In conclusion, we have demonstrated in a model of the early olfactory system that NSIs have ad-526

vantages over LN inhibition in the AL with respect to faithful mixture ratio recognition and plume527

separation. In our future work we seek to confirm the behavioral relevance of NSIs in Drosophila.528

Other interesting future directions include the relationship of NSIs and syntopic effects/masking,529

as well as the differential roles of NSIs and LN inhibition when both are present at the same time.530

Model and methods531

Model topology532

Wemodel the electrical activity of the early olfactory system of Drosophila melanogaster. Themodel533

encompasses ORNs on the antenna, and thematching glomeruli in the AL, containing PNs and LNs.534

For simplicity, ORNs are housed in sensilla in pairs, and each neuron in a pair expresses a different535

OR type. The paired neurons interact through NSIs, effectively leading to mutual inhibition (see536

Figure 1 a). There are multiple sensilla of the same type on each antenna. We here model 40537

sensilla per type (Kazama and Wilson, 2009). ORNs of the same type all project exclusively to the538

same glomerulus in the AL, making excitatory synapses onto the associated PNs. In addition to the539

inputs fromORNs, PNs also receive global excitation from PNs associated with other glomeruli and540

from other parts of the brain. They are inhibited by the LNs of other glomeruli but not by LN in the541

same glomerulus (see Figure 2). The model simulates one type of sensillum and hence two types542

of ORNs, ORNa and ORNb. We assume that ORNa and ORNb are selectively activated by odorants A543

and B, respectively (see Figure 2 and Figure 1 a).544

Olfactory Receptor Neurons545

We describe ORN activity in terms of an odorant transduction process combined with a biophysical546

spike generator (Lazar and Yeh, 2020). During transduction, odorants bind and unbind at olfactory547

receptors according to simple rate equations. As we are not interested in the competition of differ-548

ent odorants for the same receptors, we simplify the customary two-stages binding and activation549

model (Rospars et al., 2008; Nowotny et al., 2013; Chan et al., 2018) to a single binding rate equa-550

tion for the fraction r of receptors bound to an odorant,551

ṙ = brCn(1 − r) − drr (2)

ẋ = axr − cxy(1 + dxx) − bxx
ẏ = ayx − byy

(3)

where x is the ‘activation’ of the ORN and y an internal adaptation variable. The firing � of the552

ORN is then obtained by a sigmoid filter applied to x,553

� =
�max

1 + exp(−arect(x − crect))
(4)

The parameters (ax, bx, ar, cx, dy, by) are rate constants that are estimated together with br and554

dr to reproduce the data presented in Lazar and Yeh (2020); Martelli et al. (2013). The maximum555

spike rate �max and sigmoid shape parameters arect and crect are given in 1. The model is similar in556

nature to the models presented in (De Palo et al., 2013; Lazar and Yeh, 2020) albeit simplified and557

formulated in more tangible rate equations. As we will demonstrate below, this simplified model558

can reproduce experimental data equally well as the previous models. In order to simulate the559

spiking output of a population of ORNs of a given type, we simulate the odor binding dynamics560

once to obtain the firing rate � and then sample from NORN= 40 Poisson processes with rate �. Us-561

ing Poisson processes is very common for the sake of simplicity, and it is also close to experimental562

observations (see e.g. Kaissling (2014)). However, ORN firing of homotypic ipsi-lateral ORNs has563

been observed to have specific correlations (Kazama and Wilson, 2009) that are not automatically564
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reproduced by independent Poisson spike trains. To replicate the experimentally observed corre-565

lations - correlation for homotypic ipsi-lateral without stimulation around 0.14 and for homotypic566

ipsi-lateral under stimulation is around 0.2 - we extracted the random numbers for the generation567

of the Poissonian spike trains of the ORNs from a multivariate normal distribution with a covari-568

ance matrix of this shape: 1 in the diagonal, cℎom for the elements connecting homotypic neurons569

(see 1) and 0 all the others.570

Non-synaptic interactions571

To simulate experimentally observed NSIs, we assume a simple linear model with respect to the572

output variable of the transduction model, as the exact biochemical mechanism for NSIs is of yet573

unclear. We do this with a multiplicative term (xa xb) to reflect that presumably the driving force574

for xa (xb) is removed, rather than ORNa (ORNb) being directly hyperpolarized.575

ẋa = axra − cxya(1 + dxxa) − bxxa − !NSIxaxb
ẋb = axrb − cxyb(1 + dxxb) − bxxb − !NSIxaxb

(5)

The full set of parameters used for the simulations are reported in Table1.576

The antennal lobe577

We here reduce the antennal lobe (AL) to two glomeruli, a and b (see Fig. Topology) in order to578

focus on the effects of NSIs of the corresponding ORN types. The numbers of PNs and LNs per579

glomerulus are as reported in literature (De Bruyne et al., 2001; Kazama andWilson, 2009; Stocker,580

1994; Vosshall et al., 1999).581

The competing LNs are inhibitory whereas the PN is excitatory. For simplicity, we do not model582

multiple kinds of LNs or PNs that have been observed in the AL. Similar models are being used583

extensively in the analysis of the insect AL (Chan et al., 2018; Schmuker et al., 2011; Serrano et al.,584

2013; Zavada et al., 2011) and are well suited for replicating the competition dynamics that we seek585

to evaluate.586

Each ORN spike (width splengtℎ and height spℎeigℎt) from the NORNs is summed into a variable,587

uORN . PN and LN spikes have the same width splengtℎ and height spℎeigℎt and per each (impinging)588

neuron, PN or LN, they are summed into the variables uPN and uLN , respectively. uORN together589

with uLN drives the activity of the corresponding PN:590

�VV̇ = (V PN
rest − V ) + s (V

PN
rev − V )

�sṡ = �ORNuORN (1 − s) (1 − x) (1 − y) − s
�xẋ = �x uORN (1 − x) − x
�yẏ = �LN uLN (1 − y) − y

(6)

where V is the PN membrane potential, s represents the combined action of synaptic inputs, x591

is an adaptation variable, and y is the inhibitory variable impinging into PNs. Each one of these592

variables has its time constant - �s, �V , �x, and �y. The multiplicative factors �LN , �ORN reflects the593

amount of released vesicles per each spike from an ORN and LN, respectively and they can be594

considered synaptic strength. In the second equation, the term (1-y) reflects the inhibition from595

LNs, implementing a pre-synaptic type of inhibition proportional to the low-pass filtered activity of596

the LNs. When V>Θ, the PN fires a spike and V is reset to Vrest.597

LNs receive excitatory input from PNs and are otherwise described by a similar model but with-598

out adaptation,599

�V V̇ = (V LN
rest − V ) + s (V

LN
rev − V )

�sṡ = �PNuPN (1 − s) − �LNs
(7)

where V is the LN membrane potential, s represents the synaptic input, and �PN reflects the rate600

of transmitter release, or synaptic strength, for incoming synapses from a PN. When V>Θ, the LN601

fires a spike and V is reset to Vrest. The refractory period, �ref , for PNs and LNs lasts 2 ms. All the602

parameters used for the simulations are reported in 1. The comparative analysis between the LN603
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inhibition and NSImechanism has been carried out through the exploration of the two parameters604

�LN and the strength of the NSIs, !NSI .605

Odor stimuli606

To compare the model response with the neurophysiological results in the literature and with pre-607

vious models (Lazar and Yeh, 2020), we analyzed its activity with different stimuli: step stimuli, ustep,608

ramp stimuli uramp and parabolic stimuli upar.609

ustep(t) =

{

c, t1 ≤ t ≤ t2
0, otherwise

(8)

upar(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c( t−t1
t2−t1−�

)2, t1 ≤ t ≤ t2 − �

c(1 − t−t2+�
�
)2, t2 − � ≤ t ≤ t2

0, otherwise.

(9)

uramp(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c t−t1
t2−t1−2�

, t1 ≤ t ≤ t2 − 2�

c
(

1 − t−t2+2�
2�

)

, t2 − 2� ≤ t ≤ t2
0, otherwise

(10)

where t1= 0.5s, t2=2.5s, and �= 0.1s (see Figure 3–Figure Supplement 1).610

Table 1. Model parameters. To fit the experimental data, we used the following 38 parameters: Transduction
(3), ORNs (10), ORNs, PNs and LNs (18), and Network (7) parameters. We fitted ORN, PN and LN parameters in
order to reproduce the time course shown in e-phys experiments (e.g. Kim et al. (2011);Martelli et al. (2013));
we fit the correlation parameters to obtain similar correlated values as those reported in (Kazama and Wilson,
2009); Network parameters are not fitted, but extracted from the literature (e.g. (Kazama and Wilson, 2009;
Stocker, 1994; Vosshall et al., 1999)). NSI strength and synaptic strength of LNs are not fitted, but their values
were changed to explore the network behavior.

Transduction
n 1
br 0.01
dr 0.009

ORNs
ay 0.25
by 0.002
cx 0.0028
bx 0.2
dx 1
ax 1
!NSI 0.2

Rectification function
crect 1
arect 3.3
�max 250 Hz

Network
Norn,pn 18
Norn,glo 40
Npn,glo 5
Nln,glo 3
Nglo 2
cℎom 0.4
�pn,noise 250 Hz

LN, ORN, and PN
�s 10 ms
�V 0.5 ms

splengtℎ 4 ms
Θ 1

spℎeigℎt 0.3 Θ
�ref 2 ms

LNs
VLNrest -3 mV
VLNrev 15 mV
�LN 10
�y 600 ms
�PN 2.5
yLN0 0.025

PNs
�ORN 2.5
VPNrest -6.5 mV
VPNrev 15 mV
�x 2
�x 600 ms
xPN0 0.48
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Simulation of realistic plumes611

In a realistic scenario, odorants are mixed together in complex plumes that follow the laws of612

fluid dynamics. For these conditions, even odorants coming from different sources are sometimes613

mixed together, and one difficult task for insects is to recognize when two intermingled odorants614

are coming from the same source or from separate sources. Of course it is not possible to distin-615

guish these two possibilities from a single, instantaneous sampling, but on average the odorants616

coming from the same source are more correlated than odorants coming from separate sources617

(see panel a of Figure 7–Figure Supplement 1). To test the function of NSIs for odor source separa-618

tion, we adopted long stimuli (>3 s), with statistical properties that resemble the filaments observed619

downwind from an odor source in an open environment (Mylne and Mason, 1991; Pannunzi and620

Nowotny, 2019; Yee et al., 1993, 1995) at zero crosswind distance. For these conditions, the distri-621

butions of whiff and clean air durations follow a power law with exponent -3/2 (see, e.g., Yee et al.622

(1993)), and the cumulative distribution function (CDF) for the normalized concentration values will623

follow an exponential distribution and we fitted the CDF as a piecewise linear function, as follows624

CDF (x) =

{

5∕3x, 0 ≤ x ≤ 0.3
(1 − 10−(a1+b1x)), otherwise

(11)

where x is the normalized concentration C∕C , and a1 and b1 are free parameters, which values625

were determined by fitting and are reported below in 1 (Mylne and Mason, 1991). We analysed626

stimuli with different ‘intermittency factor’, defined here as the proportion of time where odor627

concentration is non-zero (even though there are different definitions in use). To simulate the628

arrival of plumes of two odors with the aforementioned properties, we need to generate a time629

series of whiffs and blanks with the correct statistics for each odorant (like in (Jacob et al., 2017))630

and the correct correlation between odorants. We achieved this by the following procedure:631

1. We drew two correlated pseudo random numbers from a Gaussian distribution, with a given632

correlation633

2. We mapped the two numbers into two uniform random variables634

3. The uniform random variables are mapped into the desired power law distributions; blank635

and whiff durations have different distributions depending on the distance from the source636

(see Figure 6–Figure Supplement 2).637

Analysis and simulation638

We used the PNs spiking activity as the output of the networks and we analysed it to estimate639

the ability of the three networks to encode odorants mixture ratio and spatio-temporal analysis.640

We assumed for simplicity that the relevant information is present in the firing rate and therefore641

analyse the average activity and peak activity, defined below and in the main text.642

For the analysis of the ratio encoding (see Figure 6), The concentration ratio is ratio between643

the weak and the strong concentration values, Rc = cw∕cs; while the PN ratio is R� = �w∕�s.644

We defined the coding error as the square relative distance between the ratio of the PN activity645

and the ratio of the odorant concentrations. The relative distance is therefore: ((Rc−R�)∕(Rc+R�))2.646

Spike density function Firing rates were obtained from the convolution of the spike trains with647

the kernel: k(t̂) = t̂ exp(−t̂∕�). Where t̂ = t − tspike + �, so that the maximum of k is situated at the648

occurrence of the spike, tspike. The timescale of the kernel was chosen as �=20ms (Nawrot et al.,649

1999).650

The model was simulated with custom Python code, as well as the analysis of the simulations.651

All code is publicly available on github, https://github.com/mariopan/flynose.652
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Figure 3–Figure supplement 1. Model ORN response to a single step (a,b), ramp (c,d), and
parabola (e,f). a, c, e: Stimulus waveforms, i.e. odorant concentration profiles, as in Kim et al.
(2015). b, d, f: Model ORN firing rates visualized as a spike density function (SDF).

828

Figure 3–Figure supplement 2. Output of the model of Lazar and Yeh (Lazar and Yeh, 2020) for
the Or59b receptor neuron in response to the corresponding stimulus waveforms (experimental
data reported in Kim et al. (2015)).

829

Figure 4–Figure supplement 1. a) 50ms step stimuli, shade of green indicates concentration. b)-d)
corresponding activity of ORNs, PNs, and LNs. Shades of green match the input concentrations. e)
Average response of PNs over 50ms against the average activity of the corresponding ORNs. The
orange dashed line is the fit of the simulated data using equation eq.1 as reported in (Olsen et al.,
2010). f) Average values for PNs, ORNs, and LNs for different values of concentration. Error bars
show the SE over PNs.
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Figure 4–Figure supplement 2. a) 10ms step stimuli, shade of green indicates concentration. b)-d)
corresponding activity of ORNs, PNs, and LNs. Shades of green match the input concentrations. e)
Average response of PNs over 10ms against the average activity of the corresponding ORNs. The
orange dashed line is the fit of the simulated data using equation eq.1 as reported in (Olsen et al.,
2010). f) Average values for PNs, ORNs, and LNs for different values of concentration. Error bars
show the SE over PNs.
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Figure 6–Figure supplement 1. Encoding ratio with the average PN activity. ORN (a,c,e) and PN
(b,d,f) responses to a single synchronous triangular pulse of 50ms duration applied to both ORN
groups. The graphs show average responses ratio (RORN and RPN ), respectively, versus concentra-
tion ratio of the two odorants for four different overall concentrations (colours, see legend in f). The
average PN responses would be a perfect reflection of the odorant concentration if they followed
the black dashed diagonal for all concentrations. Error bars represent the semi inter-quartile range
calculated over 50 trials. g) Analysis of the coding error for different values of stimulus duration
(from 10 to 200ms) and concentration values (0.2 to 1.4).
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Figure 6–Figure supplement 2. a) Probability distribution of thewhiff durations for odorants emit-
ted at distances larger than 60m Yee et al. (1995). b) Probability distribution of the blank durations
for odorants emitted at distances larger than 60m Yee et al. (1995). c) Probability distribution of
the normalized concentration for odorants emitted at 75m distance from the source Mylne and
Mason (1991).

833

Figure 6–Figure supplement 3. Analysis of the coding error with mutual information for different
values of stimulus duration (from 10 to 200ms) and concentration values (0.2 to 1.4). The coding
error is calculated as the MI between odorant concentration and RPN (see Model and methods).

834

Figure 7–Figure supplement 1. Example concentration fluctuation time series of natural plumes
for two odorants emitted by a single source or two separate sources (Erskine, 2018).
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Figure 7–Figure supplement 2. Median ratio of the average PN responses of the two glomeruli
RPN = �PNb ∕�PNa in the three models: control model (dot dashed pink), LN model (orange contin-
uous), and NSI model (dashed cyan) for different stimulus durations as marked on the top. Error
bars represent the semi inter-quartile ranges.

836

Figure 8–Figure supplement 1. Observed properties of the simulated plumes as a function of the
intended correlation between plumes averaged over 200 s. Intermittency and average input plots
show the values for the two plumes (green and purple).

837

Figure 8–Figure supplement 2. Panels a-c) show the total PN activity above 50, 100, 150Hz, respec-
tively, for 3msmaximum whiff durations.
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Figure 9–Figure supplement 1. a) peak PN threshold 50Hz for different subsets of whiff dura-
tions (from 0.01 to 50 s) for the three models: control model (dot dashed pink), LN model (orange
continuous), and NSI model (dashed cyan). Note that the horizontal axis has a log-scale.

839

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.217216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217216
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Figure 9–Figure supplement 2. a) peak PN threshold 100Hz for different subsets of whiff dura-
tions (from 0.01 to 50 s) for the three models: control model (dot dashed pink), LN model (orange
continuous), and NSI model (dashed cyan). Note that the horizontal axis has a log-scale.
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