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Abstract

Intestinal organoids are an excellent model to study epithelial biology. Yet, the selection of analytical
tools to accurately quantify heterogeneous organoid cultures remains limited. Here, we developed a semi-
automated organoid screening method, which we applied to a library of highly specific chemical probes
to identify epigenetic regulators of intestinal epithelial biology. The role of epigenetic modifiers in adult
stem cell systems, such as the intestinal epithelium, is still undefined. Based on this resource data, we
identified several targets that affected epithelial cell differentiation, including HDACs, EP300/CREBBP,
LSD1, and type I PRMTs, which were verified by complementary methods. For example, we show that
inhibiting type I PRMTs, which leads enhanced epithelial differentiation, blocks the growth of adenoma
but not normal organoid cultures. Thus, epigenetic probes are powerful tools to study intestinal epithelial
biology and may have therapeutic potential.
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Introduction

The intestinal epithelium, a single layer of cells, faces the challenge of both providing a barrier against pathogens
while also being responsible for the uptake of nutrients and water. One of the hallmarks of intestinal epithelium is
the rapid turnover of 3-5 days, which is driven by LGR5+ intestinal stem cells (ISCs) that reside at the bottom of
crypts. ISCs are continuously dividing and give rise to progenitor cells, which differentiate into specialized intesti-
nal epithelial cell (IEC) lineages such as absorptive enterocytes and secretory lineages such as mucus-producing
goblet cells, antimicrobial-producing Paneth cells, hormone-secreting enteroendocrine cells, and chemosensory
tuft cells1. The intestinal epithelium exhibits high plasticity in respond to challenges2,3. On the other hand, it
is vulnerable to tumorigenesis with colorectal cancer being the second leading cause of cancer deaths world-wide.

The balance between ISC proliferation and IEC differentiation is controlled by pathways including WNT,
BMP and NOTCH1. Specific transcription factors, such as ATOH1, are critically required for acquisition of IEC
effector lineage identities4. Gene expression is further determined by the chromatin landscape. It is known that
epigenetic marks such as methylated DNA and histone tail modifications differ strongly between fetal and adult
intestine5,6, and can be altered in intestinal pathologies7. While the requirement of epigenetic modifications for
embryonic stem cell differentiation8 and differentiation and maturation of immune cells9 has been extensively
studied, their role for maintenance of intestinal homeostasis is debated. Both a permissive chromatin structure
and regulation of IEC lineage differentiation by transcription factors, and a control of gene expression patterns by
the chromatin states itself have been proposed as conflicting models (extensively reviewed by Elliot et al.10). The
classic NOTCH-mediated lateral inhibition model of ISC-to-IEC differentiation has been attributed to a broadly
permissive chromatin landscape, supporting the idea of regulation by transcription factors as the most defining
factor11. However, other studies suggest that ISC differentiation and the de-differentiation of lineage-defined IECs
back to ISCs are mediated by changes in DNA methylation and chromatin accessibility3,5,12,13. Several hundred
epigenetic modification enzymes contribute to writing, erasing, and reading the epigenetic code14. Currently, the
investigation of the role of epigenetic modifiers in the intestinal epithelium depends mostly on labour-intensive
mouse models with conditional genetic deletion, allowing for the examination of one or few epigenetic modifiers
at the same time15,16. A higher throughput could be achieved by using organoids to investigate epigenetic effects
in the intestinal epithelium17. Curated by the Structural Genomics Consortium, an openly accessible chemical
probe library targeting epigenetic modification enzymes with high selectivity and specificity became available
recently18,19. Treating organoids with this chemical probe library will enable a direct comparison of the putative
requirement of many epigenetic modifiers for epithelial homeostasis or differentiation of IEC lineages.

Heterogeneous organoid cultures are quite sensitive to subtle changes in handling and culture conditions.
Therefore, development of quantitative analysis methods for reproducible quantification of a whole organoid
population instead of relying on representative example data points is crucial20. Indeed, this has recently led to
specialized studies such as using light-sheet microscopy to elegantly define symmetry breaking21, using single-cell
RNA sequencing (scRNA-seq) to describe epithelial responses to immune cues2,22, or analysis of single intestinal
organoids in microcavity arrays23. However, these techniques are costly and the required instrumentation and
data analysis pipelines are not widely available to the research community. Thus, quantitative but cost-efficient
tools based on standard laboratory equipment that can be scaled to screen setups need to be established.

Here, we provide a semi-automated organoid quantification method suitable for screening experiments and
designed to be used in laboratories with a standard infrastructure. To widely investigate the role of epigenetic
modifiers for adult intestinal epithelial homeostasis, we combined this toolbox with a chemical probe library
consisting of 39 inhibitors that target epigenetic modification enzymes with high selectivity and specificity18.
From this screen dataset, we identified several mediators of IEC biology that we verified with complementary
methods. We envision that this resource will be useful for the research community and will lay basis for further
mechanistic investigation. Specifically, we find new regulators of organoid size related to ISC frequency, as well
as new regulators of IEC differentiation. Finally, we explore the potential of some of these probes for treatment
of intestinal cancer by application on intestinal tumor organoids.

Results

Development of a toolbox to quantify intestinal organoid growth and cellular composition
A decade after its establishment by Sato et al. 24 , the use of intestinal organoids has been become a standard in

the method repertoire. However, accurately quantifying heterogeneous organoid cultures remains a challenge and
the analytical tools available to a broad community, especially for screening purposes, remain limited or labour
intensive. We thus initiated a small intestinal (SI) organoid system that, similar to the original work, starts with
freshly isolated crypts that self-organize into budding organoids by day 4 (96h after seeding), which can be split
and propagated (Fig. 1a, Supplementary Fig. S1a). We next designed a setup to daily acquire bright-field
z-stack images of the whole extracellular matrix (Matrigel droplet) in a well, followed by automatic segmentation
and quantification of all individual organoids based on the open-source tools ImageJ/Fiji and Ilastik (Fig. 1b).
Based on edge detection in each stack layer, this workflow can be used to robustly quantify organoid size (object
area) and classify, e.g. by determining intensity, organoid phenotypes over time (Fig. 1c, Supplementary
Fig. S1b, S1c). The workflow is robust to changes in morphology, stitching artefacts, and can be adjusted to
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image data from different automated microscopes. As the object classification by Ilastik is not dependent on deep
learning and extensive training data, it can easily be adapted to new phenotypes and changes in experimental
conditions.

In addition to determining organoid size, the cellular composition is of critical interest. We therefore selected
transcripts that are specific for individual IEC lineages2, and performed qRT-PCR on these within a 24h-96h
time course (Fig. 1d). Except for the enterocyte marker Alpi, we generally find an increase in lineage-specific
gene expression over time cumulating at 96h (Fig. 1d). This corresponds to the transition from spheroids,
consisting mainly of progenitors, to mature budding organoids that contain more differentiated lineages, as was
shown previously21. As a complementary technique to quantify cellular composition on a single-cell level, we
conducted flow cytometry of commonly used IEC surface markers (Fig. 1e, Supplementary Fig. S1d,
S1e). The differences between 48h and 96h organoids were modest (Fig. 1e). Of note, we observed that the
frequency of Ulex europaeus agglutinin 1 (UEA1) positive cells reduced over time, indicating that the population
expressing UEA1 on the surface may be progenitor cells that are different from the population of UEA1bright

secretory cells commonly detected by immunofluorescence staining of permeabilized tissue (Fig. 1e). As a
proof of principle, we next tested our approach on organoids with an altered cell composition. Interfering with
WNT and NOTCH signaling pathways has previously been established by Yin and colleagues as a method
to enrich organoids for stem cells, Paneth cells, goblet cells, or enteroendocrine cells25. WNT and NOTCH
pathways are activated or respectively inhibited by treatment with combinations of the glycogen synthase kinase
3 (GSK3) inhibitor CHIR99021 (CHIR), valproic acid (VPA), the porcupine inhibitor IWP2, or the gamma-
secretase inhibitor DAPT25 (Fig. 1f). Interestingly, we found that incubation with CHIR + VPA followed by
IWP2 + DAPT increased the expression of tuft cell marker genes in addition to the previously described effects on
goblet cells and enteroendocrine cells (Fig. 1f). Drastic effects on the cell composition were reflected by widely
altered surface marker expression measured by flow cytometry and resulted in characteristic patterns (Fig. 1g,
Supplementary Fig. S1d, S1f, S1g). However, we observed that well established flow cytometry gating
strategies, such as identifying Paneth cells by a SSChi CD24+ gate26, did not follow the Lyz1 gene expression
pattern in some conditions (Fig. 1f, Supplementary Fig. S1h). Thus, while flow cytometry demonstrates
to be very useful to detect changes in the organoid composition, surface marker expression may be influenced by
additional factors, such as the growth conditions, and identification of certain cell populations by flow cytometry
requires appropriate controls. In summary, we developed an easy-to-use and cost-efficient toolbox for the analysis
of (intestinal) organoids that is suitable to detect changes in organoid growth and cell composition.

Organoid screen of epigenetic modifier inhibitors identifies established drugs targeting can-
cer growth

Next, we applied our organoid toolbox for screening of a chemical probe library that targets epigenetic mod-
ifiers to modulate the epigenome18. Organoids generated from 4 individual mice were grown in the presence of
39 inhibitors, with DMSO vehicle and VPA serving as controls (Fig. 2a, 2b). Samples were imaged daily and
expression of 12 transcripts specific for IEC lineages2 was analyzed at the 96h endpoint (Fig. 2a). We observed
that some of the probes significantly affected organoid growth as determined by area (Fig. 2c, 2d, Supplemen-
tary Fig. S2a-S2c, S3a). Integration of the primary readouts revealed a strong correlation of organoid size
and expression of the ISC marker gene Lgr5 (Fig. 2e). We found three probes that reduced both organoid size
and Lgr5 mRNA expression, namely the pan-Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib and two
histone deacetylase (HDAC) inhibitors LAQ824 (Dacinostat), a pan-HDAC inhibitor, and CI-994 (Tacedinaline),
an HDAC1-3 & HDAC8 inhibitor (Fig. 2c-2e, Supplementary Fig. S2b, S2c)27,28,29. These findings are in
agreement with a study that showed reduced growth and Lgr5 gene expression but a gain of enterocyte marker
expression in CI-994 treated organoids30. Olaparib-treated organoids would sufficiently grow to perform flow
cytometry. This allowed us to use Lgr5 -EGFP expressing reporter organoids to confirm the reduced Lgr5 gene
expression levels. Indeed, we found markedly fewer GFP-high/GFP-positive cells in olaparib-treated compared to
control organoids (Fig. 2f, Supplementary Fig. S2d). Finally, we treated Adenomatous polyposis coli (Apc)
knockout organoids, which are a model for intestinal cancer, with the two HDAC inhibitors and olaparib and
found that these probes also limited growth in these tumor cultures, with similar growth reductions compared
to WT organoids (Fig. 2g). Together, this is well in line with the design goal of these probes to limit cellular
growth to target cancer cells.

Inhibition of EP300/CREBBP enhances organoid size and Lgr5 expression
We next focused on probes that increased organoid size (Fig. 2b-2d). We found that both SGC-CBP30 and

I-CBP112 significantly increased the organoid area (Fig. S3a) and this increase was seen in objects that were clas-
sified as ”Organoids” and thus was not dependent on the occurrence of large spheres (Fig. 3a, Supplementary
Fig. S3b). In support of the sensitivity of our assay, both probes have the same targets: EP300/CREBBP. E1A
Binding Protein P300 (EP300, P300) and Creb-binding protein (CREBBP, CBP) are closely related bromodomain-
containing acetyltransferases that serve as transcriptional co-activators for numerous transcription factors31,32,33.
Both SCG-CBP30 and I-CBP112 specifically target the bromodomain-binding domain, which thus renders these
proteins unable to bind acetylated lysines. The observed increase in organoid size was surprising since both
inhibitors have been designed to cause growth restriction in cancer cells34,35,36. Comparing SGC-CBP30/I-
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CBP112-treated organoids with the DMSO vehicle control, organoid morphology appeared normal, however, we
observed a reduction of putative goblet/Paneth cells as determined by cytosolic UEA1 staining (Fig. 3b, Sup-
plementary Fig. S3c). We next tested whether these probes would expand the LGR5+ cell population in
Lgr5 -EGFP organoids and found a modest increase upon treatment, either alone or in combination with our
positive control CHIR, an activator of canonical WNT signaling (Fig. 3c, Supplementary Fig. S3d, S3e).
However, incubation with SGC-CBP30 or I-CBP112 could not enhance organoid growth under low EGF con-
centrations, replace R-Spondin in the culture medium, or overcome treatment with the WNT inhibitor IWP2
(Supplementary Fig. S3f, S3g). To determine which genes are under the control of EP300/CREBBP in the
intestinal epithelium, we performed mRNA sequencing on untreated vs. I-CBP112 treated organoid cultures.
In accordance with a transcriptional co-activator role for EP300/CREBBP, we found 53 genes upregulated and
110 genes downregulated using a log2 fold change cutoff of 0.5 and padjust ≤ 0.01 (Fig. 3d). Furthermore,
signatures of transcription factors known to interact with either EP300 or CREBBP were negatively enriched
(Supplementary Fig. S3h). Remarkably, Lgr5 was the most significantly upregulated gene in our dataset,
substantiating our previous results (Fig. 3d). In support, gene set enrichment analysis (GSEA) with a LGR5+
stem cell gene set37 showed positive correlation (Fig. 3e). The second most significantly upregulated gene was
Egr1 (Fig. 3d), which is an inducible transcription factor that is involved in cell proliferation38. The expansion
of ISCs or progenitors appears to come at a cost to the differentiation of other cell lineages. We observed reduced
UEA1 staining and downregulation of goblet cell markers such as Muc4 and Ccl6 following EP300/CREBBP
inhibition (Fig. 3b, 3d). This is further supported by the negative correlation with secretory cell gene sets by
GSEA (Supplementary Fig. S3i). Conversely, this is in line with positive enrichment of Gene Ontology biolog-
ical process (GO:BP) terms such as smoothened signaling pathway and tissue morphogenesis (Supplementary
Fig. S3j, S3k). Irrespective of the exact mechanism, we demonstrate that the paradoxical increase of organoid
size after inhibition of EP300/CREBBP bromodomains may be explained by upregulation of Lgr5, Egr1, and
genes associated with developmental processes, at the cost of IEC differentiation.

GSK-LSD1 broadly affects IEC composition
So far, we have used organoid size as a probe selection criteria. Additionally, we performed qRT-PCR on

12 genes associated with specific cell lineages2. We found that, after our positive control VPA, treatment with
GSK-LSD1 leads to the largest perturbation of the IEC lineage marker profile as determined by calculating the
euclidean distance of the gene expression xfold changes relative to DMSO treatment (Fig. 4a, Supplementary
Fig. S4a, S4f-S4k). Flow cytometry screening of inhibitor treated organoids showed primarily moderate
changes in surface marker expressions (Supplementary Fig. S4b, S4c). Although GSK484 and SGC0946
caused the most perturbation in surface marker populations, they showed little effect by qRT-PCR and thus we
did not pursue these probes further (Supplementary Fig. S4d, S4e). Treatment with GSK-LSD1 markedly
reduced gene expression of Paneth and goblet cell markers, but caused an increase in enteroendocrine and tuft
cell marker genes, particularly Gfi1b (Fig. 4b). This supports our recent work in which we found that Lysine-
specific Demethylase 1A (LSD1, KDM1A) is required for Paneth cell differentiation and contributes to goblet cell
differentiation39,40. Paneth cells are commonly gated as SSChi CD24+ population in flow cytometry26. In line
with a strong reduction of the Paneth cell marker genes Lyz1 and Defa22, we find this population significantly
reduced in GSK-LSD1 treated organoids (Fig. 4b, 4c). Furthermore, we observed that the pattern of CD24+
expressing cells in GSK-LSD1 treated organoids differs from control organoids in flow cytometry, with increase
of a SSClo CD24hi population (Fig. 4c). This pattern change was even more pronounced in SI crypt IECs from
Villin-Cre+ Lsd1 f/f mice, which conditionally lack Lsd1 in IECs, compared to wild type (WT) littermates (Fig.
4d). Similar gating has previously been associated with enteroendocrine cells and their progenitors26, which thus
fits with our previous observation that enteroendocrine progenitors such as Neurod1 and Neurog3 are upregulated
in Villin-Cre+ Lsd1 f/f mice39. However, upon performing intracellular flow cytometry staining for the canonical
tuft cell marker DCLK1, we found that also a DCLK1hi population fell within this gate and is increased in
Lsd1 -deficient crypts (Fig. 4e). In support, there was a modest yet significant increase of DCLK1+ cells in
duodenal tissue sections as well as colon sections from Villin-Cre+ Lsd1 f/f mice compared to WT littermates
(Fig. 4f, Supplementary Fig. S4l). Together, this example highlights that the epigenetic probe library
contains inhibitors that are able to completely mimic the phenotype that is seen upon genetic deletion in vivo.

BET inhibition reduces relative abundance of tuft cells
Secretory cell lineage differentiation, such as goblet and Paneth cells, is well studied and is generally thought

to involve NOTCH-mediated lateral inhibition. Tuft cell differentiation, however, is less defined. Therefore, we
next focused on the BRD/BET inhibitors (+)-JQ1 and bromosporine in our marker gene expression dataset (Fig.
4a) as treatment with these led to a strong reduction of tuft cell marker genes Dclk1, Trpm5, and Gfi1b (Fig.
5a). Organoids treated with these probes also had altered expression in some of the other IEC lineage marker
genes, but the downregulation of tuft cell marker genes was consistent and prominent (Supplementary Fig.
S5a). Although probe A-366, an inhibitor of Euchromatic histone-lysine N-methyltransferase 1 and 2 (EHMT1/2,
GLP/G9A) also reduced tuft cell marker genes, two other EHMT1/2 inhibitors, UNC0638 and UNC0642, did not
(Fig. 4a, Supplementary Fig. S4k). (+)-JQ1 inhibits Bromodomain-containing protein 2 (BRD2), BRD3,
BRD4, and BRDT while bromosporine is a pan-bromodomain inhibitor. In our hands, these two probes did not
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affect overall organoid growth in the 96h course of the screen experiment (Supplementary Fig. S2a, S5b), but
(+)-JQ1 treatment affected organoid morphology when inhibitor treatment was continued after passaging (Fig.
5b). Others have reported that (+)-JQ1 treatment strongly reduced the efficiency of crypts to form organoids41.
Tuft cell quantification after treatment of Hpgds2 -tdTomato reporter organoids indeed confirmed a complete lack
of tuft cell differentiation in organoids treated with either (+)-JQ1 or bromosporine (Fig. 5b, 5c), suggesting
that BRD proteins are necessary for the tuft cell lineage. BRD2, BRD3, BRD4, and BRDT are mutual targets
of (+)-JQ1 and bromosporine, of which BRDT is not expressed in SI crytps or organoids (Supplementary Fig.
S5c). Interestingly, the BRD2/4 inhibitor PFI-1 did not cause marked changes in tuft cell marker gene expression
in our screen (Supplementary Fig. S5d). To investigate the role of specific BRDs in tuft cell differentiation in
future studies may be worthwile.

Inhibition of type I PRMTs results in higher relative abundance of secretory cells and
prevents growth of tumor organoids

So far, we focused on inhibitors that caused reduced IEC differentiation. However, two probes stood out because
they increased the expression of genes associated with Paneth-, goblet-, and enteroendocrine cells (Fig. 4a). Of
these two, the pan-PARP inhibitor olaparib also had a marked effect on median organoid size and abundance of
LGR5+ stem cells (Fig. 2b-2e). The other probe is MS023, which is an inhibitor of type 1 protein arginine
methyltransferases (PRMTs) such as PRMT1, PRMT3, PRMT4 (CARM1), and PRMT842 (Fig. 6a). Of note,
two other PRMT inhibitors in our probe library, SGC707 and MS049 that inhibit PRMT3 and PRMT4/PRMT6
respectively, did not cause similar effects (Supplementary Fig. 6a). Although MS023-treated organoids were
moderately yet signficantly smaller than control organoids and Lgr5 gene expression was reduced, frequency of
Lgr5 -EGFP stem cells was not significantly affected, and organoids treated for 96h would renew normally after
splitting (Supplementary Fig. S6b-S6d). The upregulation of secretory cell marker genes by the inhibitors was
reflected by relative cell abundance of the respective lineages in MS023-treated versus control organoids. SSChi

CD24+ Paneth cells appeared more frequent in MS023 treated organoids in our flow cytometry screen (Fig. 6b,
Supplementary Fig. S4c), and quantification of MUC2+ goblet cells showed a trend in the same direction
(Fig. 6c). Furthermore, we treated enteroendocrine cell reporter organoids with MS023 and found an increased
frequency of Neurog3 -RFP+ cells compared to the DMSO control (Fig. 6d). To get a more detailed overview
of how MS023 affects organoids, we performed mRNA sequencing of untreated vs. MS023 treated organoids.
We found 462 genes upregulated and 457 genes downregulated with a log2 fold change cutoff of 0.5 and padjust
≤ 0.01 (Fig. 6e). Importantly, GSEA of cell-lineage specific gene sets confirmed that MS023-treated organoids
have a transcriptome that is enriched for secretory cell lineages (Fig. 6f). However, GSEA also indicated an
enrichment for genes associated with enterocytes (Fig. 6f). Thus, rather than specifically affecting secretory
cells, differentiation of all IEC cell lineages seems to be increased in MS023 treated organoids, potentially at the
cost of progenitor cells. This is in agreement with positive enrichment of GO:BP terms related to nutrient uptake
and response to microbials (Supplementary Fig. S6e, S6f), which are associated with mature enterocytes
and Paneth cells respectively. DNA repair, which is a well established function of type I PRMTs43, was among
the negatively correlated GO:BP terms (Supplementary Fig. S6e, S6g). We found that PRMT1 was the
type I PRMT with the highest gene expression level in SI crypts and organoids (Supplementary Fig. S6h).
Enhanced PRMT levels are found in various malignancies and high PRMT1 expression is negatively correlated
with survival in colon cancer44,45. Furthermore, Prmt1 gene expression was highest in ISC, transit-amplifying
cells, and early enterocyte progenitors compared to fully differentiated lineages in a published IEC scRNA-seq
dataset2 (Supplementary Fig. S6i). We therefore hypothesize that inhibition of type I PRMTs leads to
maturation of IECs, which aligns with the observation that differentiated cells have lower Prmt1 levels. To test
if PRMT type I inhibition could hence be used therapeutically to force progenitors, such as those found in WNT-
driven tumors, to mature or differentiate, we treated Apc-deficient organoids with MS023 or the PRMT1-specific
inhibitor TC-E5003. MS023 treated adenomas were smaller and darker than adenomas treated with DMSO
control, and TC-E5003 treatment almost completely hindered their growth (Fig. 6g, Supplementary Fig.
S6j). Yet, these probes did not cause growth inhibition of wild type organoids nor did they reduce cell viability
(Fig. 6h, Supplementary Fig. S6k, S6l). In summary, we show that inhibition of type I PRMT leads to
more differentiated organoids and has the potential to hinder proliferation in intestinal tumor organoids, making
it an attractive candidate to pursue in future studies.

Discussion

Working with heterogeneous organoid cultures is challenging with respect to reproducibility and quantification.
Our toolkit, which we present in this article enables reproducible results across biological replicates using stan-
dard equipment and is suitable for screening setups. We established a quantification workflow that is based on
the open source tools ImageJ and Ilastik, which is a simple yet robust alternative to recent stand-alone software
options46,47 and could easily be adapted to different tissue organoids. In addition, qRT-PCR and flow cytometry
of IEC lineages is sufficiently sensitive for initial screening and was subsequently confirmed by additional methods
such as reporter organoids. We used this screening setup to test a set of 39 chemical probes targeting epigenetic
modifiers and identified probes that strongly affected organoid size or IEC lineage composition. These new regu-
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lators of intestinal epithelial biology are highly interesting candidates for further mechanistic studies.

Probes targeting EP300/CREBBP were designed as cancer therapeutics36. Thus, we were surprised to find
that inhibition of P300/CREBBP led to an increase of organoid size, which was supported by an expansion of
LGR5+ cells and reduction of differentiation (Fig. 3). EP300/CREBBP mediate acetylation of histone H3K27
at enhancer elements and promoters, and can act as a transcriptional co-activator with numerous transcription
factors31,32,48,33,49. In support of a general activating role for EP300/CREBBP, we found that the majority of
genes altered by I-CBP112-treatment were down-regulated (Fig. 3d), and many of these genes are established
targets of EP300/CREBBP-associated transcription factors (Fig. 3e). EP300/CREBBP is a well established co-
activator of signaling cascades that control cell proliferation, including WNT, NFκB, or MYB signaling. Although
we cannot rule out that altering these interactions might contribute to enhanced organoid growth, transcriptional
signatures associated with β-Catenin (Ctnnb1 ), NFκB-subunit RelA, or MYB were downregulated after treat-
ment with the EP300/CREBBP inhibitor I-CBP112 (Supplementary Fig. S3h). It is difficult to separate the
epigenetic modifier (H3K27 acetylation) from the transcriptional co-activator role of EP300/CREBBP, especially
since a recent study showed a central role for the bromodomain and HAT domain also for the EP300/CREBBP
transcription factor binding capacity50. Nevertheless, underlining the critical role of the bromodomain, plt6 -mice
that carry a mutation in the EP300KIX domain, which specifically prevents interaction of EP300 with the tran-
scription factor MYB, displayed reduced cell proliferation in the intestine51. The EP300/CREBBP bromodomain
is critically required for H3K27 acetylation at enhancer elements, a mark of active enhancers, and its inhibition
leads to reduced expression of enhancer-proximal genes52,33. In the adult small intestine, Sheaffer et al. described
a gain of H3K27Ac at dynamically methylated enhancer sites in differentiated IECs but not LGR5+ ISC12.
Furthermore, Kazakevych et al. found that H3K27Ac positive distal elements were a good indicator for cell
identity and differentiation status whereas genes positively regulating proliferation were transcribed in most IEC
types5. EP300/CREBBP has previously been shown to be required for differentiation of embryonic stem cells,
muscle cells and adipocytes53,54,55. In turn, Ebrahimi et al. recently described that EP300/CREBBP maintains
transcription of fibroblast-specific somatic genes and that EP300/CREBBP bromodomain inhibition can promote
cellular reprogramming to pluripotency56, accompanied by decrease in promoter- and enhancer-associated H3K27
acetylation56. We provide evidence that EP300/CREBBP inhibition in the intestinal epithelium can promote
proliferation rather than preventing it. It appears plausible that EP300/CREBBP bromodomain activity is criti-
cally required to enable transcription of IEC differentiation genes and that in its absence the intestinal epithelium
remains immature, accompanied by an enhanced proliferative capacity.

We recently demonstrated a central role of LSD1 in Paneth and goblet cell differentiation and maturation39,40.
Here, we confirm the critical role of LSD1 for IEC lineage differentiation in an unbiased screen and in addition
provide indications that instead of Paneth/goblet cells there is an expansion of DCLK1+ tuft cells that is asso-
ciated with a CD24high SSClow population by flow cytometry (Fig. 4). In contrast, we find that treatment with
the BRD/BET inhibitors (+)JQ-1 and bromosporine completely blocks tuft cell differentiation (Fig. 5). Tuft
cells are important mediators of intestinal type 2 immunity57,58. Our work matches observations of two studies
that found that inhibition of the BET bromodomain in vivo abolished tuft cells41,59. Using a different BRD/BET
probe, Nakagawa et al. described that the absence of tuft cells was due to blockade of transit-amplifying cells
as their intermediate progenitors59. While Nakagawa et al. also found a reduction of enteroendocrine cells,
another study described an increase of pancreatic NEUROG3+ enteroendocrine progenitors following (+)JQ-1
treatment60. Our findings could be the foundation of using these compounds to modulate immune responses,
especially when a type 2 response is unfavourable.

Type I PRMT inhibition with MS023 led to a more differentiated intestinal epithelium without major loss of
LGR5+ stem cells (Fig. 6, Supplementary Fig. S6b). PRMT1 was the most highly expressed type I PRMT
and is higher expressed in ISCs and progenitors compared to differentiated cells (Supplementary Fig. S6h,
S6i). An evolutionary conserved role of PRMT1 in the adult intestine has been proposed earlier as endoge-
nous PRMT1 knockdown reduces the adult ISC population in Xenopus and zebrafish, while transgenic PRMT1
overexpression leads to an increase of ISCs61,62. Furthermore, our observation is very similar to findings of en-
riched PRMT1 in epidermis progenitors, required for maintenance of this population63. Bao et al. proposed that
PRMT1 is both involved in the maintenance of progenitor/proliferative genes as well as the repression of ’differen-
tiation’ genes63. In agreement with the latter, we found increase of all differentiated IEC lineages after treatment
with MS023 (Fig. 6a-6f). PRMT1 has a wide substrate specificity and mediates both arginine methylation of
histones such as H4R3, and non-histone proteins64,65. Elevated PRMT1 expression is found in several cancer
types and is associated with poor prognosis and chemoinsensitivity66,67 and pharmacological PRMT inhibitors
have recently gained interest as drug candidates for cancer treatment43,45. Targeting cancer stem cells (CSCs)
in the gut comes with the challenge that following ablation of LGR5+ CSCs, LGR5- cells have the potential to
de-differentiate to CSCs68. Therefore, forcing differentiation of cancer cells could be an attractive treatment strat-
egy. Indeed, we found that PRMT type I inhibition with MS023 and PRMT1-specific inhibition with TC-E5003
severely impaired growth of Apc-deficient tumor organoids but not normal organoids (Fig. 6g, 6h). A condi-
tional Prmt1 -deficient mouse was recently generated69. Crossing these mice with intestine-specific Villin-Cre or
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tumor-developing Apcmin mice, could be an elegant way to further study the role of PRMT1 in IEC differentiation
and maturation and to investigate the therapeutic potential of PRMT1 inhibition for the treatment of intestinal
cancer.

Highly permissive chromatin and transcriptional control of IEC fate, as well as gene regulation by differential chro-
matin states have been discussed as opposing models of intestinal epithelial differentiation regulation10. Testing
a library of highly selective inhibitors targeting more than 20 epigenetic modification enzymes/enzyme families,
only two HDAC-inhibitors prevented organoid growth (Fig. 2) and the majority of the tested probes did not alter
organoid growth or IEC composition. However, we found that few compounds resulted in pronounced changes
and these were associated with generally less (EP300/CREBBP, LSD1 inhibition) or more (PRMT type I inhi-
bition) epithelial differentiation. We therefore propose that epigenetic modifiers control the degree of intestinal
epithelial differentiation in general, rather than affecting specific cell lineage fate. Whether this parallels the
postnatal maturation of the fetal intestinal epithelium remains to be elucidated. Of note, the epigenetic modifiers
identified to affect IEC differentiation in our screen share the capacity to both modify histones and to interact
with multiple transcription factors. Thus, these molecules could be a key link connecting the epigenetic and the
transcriptional layers of gene regulation in the intestinal epithelium. Indeed, work by others supports a model
of tightly intertwined epigenetic and transcriptional control and shifting between permissive and dynamic chro-
matin on a local instead of a global scale. By integrating the investigation of gene expression, open chromatin,
and DNA hydroxymethylation in IEC populations with differential expression levels of the transcription factor
SOX9, recent elegant work by Raab et al. identified either highly permissive or dynamic chromatin states at
given loci relative to transcription factor binding70. EP300 has been described to potentiate SOX9-dependent
transcription71 and Sox9 -deficient intestinal epithelium fails to mature72. Mapping of EP300-binding sites was
recently utilized to identify transcriptional networks in specialized cell types in the placenta73, inspiring further
investigation of epigenetic modifier-aided transcription in different IEC lineages.
To summarize, we developed a resource that allows to compare the requirement of various epigenetic modifiers
for intestinal epithelial renewal and IEC differentiation. Our results indicate that some epigenetic modifiers with
the capacity to both mediate histone modifications and act as transcriptional co-regulators control the balance
between an undifferentiated/differentiated epithelial state. Thereby, they lay basis for a fine-tuned transcriptional
regulation and rapid adjustment upon injury or pathogenic challenge.

Methods

Epigenetic modifier inhibitors The epigenetic modifier inhibitors in the screen experiment were part of
the Structural Genomics Consortium Epigenetic Chemical Probes Collection as of March 2016. Probes were
reconstituted in DMSO and used at the recommended concentration as listed in Supplementary Table 1. 1mM
valproic acid (VPA) was included as positive control. DMSO vehicle control was matched to the highest concen-
tration used per experiment, maximal 10µM. PRMT1-specific inhibitor TC-E5003 (Santa Cruz Biotechnology, #
sc397056) was included in follow-up experiments and used at 50µM, equivalent to 10µM DMSO.

Mice C57BL/6JRj wild type (Janvier labs), Lgr5 -EGFP-IRES-CreERT2 (Jackson Laboratories, stock no:
008875), Villin-Cre74 (kind gift from Sylvie Robine), Lsd1 f/f 75 (kind gift from Stuart Orkin), and Apc15lox (Jack-
son Laboratories, stock no: 029275) mice were housed under specific-pathogen free conditions at the Comparative
Medicine Core Facility (CoMed), Norwegian University of Science and Technology, Norway. For the flow cytome-
try screening experiment, organoids were generated from C57BL/6 mice housed at the Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Germany. Hpgds-tdTomato mice76 were housed at University of Montpellier,
France. Neurog3 -RFP mice77 (kind gift from Anne Grapin-Botton) were housed at University of Copenhagen,
Denmark. Experiments were performed following the respective legislation on animal protection, were approved
by the local governmental animal care committee, and were in accordance with the European Convention for the
Protection of Vertebrate Animals used for Experimental and other Scientific purposes.

Small intestinal crypt isolation Small intestinal crypts were isolated as described previously78. The
proximal half of the small intestine was rinsed, opened longitudinally, cut to small pieces after villi and mucus
were scraped off, washed with PBS until the solution was clear, and incubated in 2mM EDTA/PBS for 30min
at 4◦C with gentle rocking. Fragments were subsequently washed with PBS and the crypt fraction was typically
collected from wash 2-5. All centrifugation steps were carried out at 300 × g.

Organoid culture Organoids were generated by seeding ca. 250-500 small intestinal crypts in a 50µl droplet
of cold Matrigel (Corning #734-1101) into the middle of a pre-warmed 24-well plate. Matrigel was solidified by
incubation at 37◦C for 5-15min and 500µl culture medium added. Basal culture medium (”ENR”) consisted of
advanced DMEM F12 (Gibco) supplemented with 1x Penicillin-Streptomycin (Sigma-Aldrich), 10mM HEPES,
2mM Glutamax, 1x B-27 supplement, 1x N2 supplement, (all Gibco) 500mM N-Acetylcysteine (Sigma-Aldrich),
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50ng/ml recombinant EGF (Thermo Fisher Scientific), 10% conditioned medium from a cell line producing Noggin
(kind gift from Hans Clevers), and 20% conditioned medium from a cell line producing R-Spondin-1 (kind gift
from Calvin Kuo). ENR culture medium was replaced every 2-3 days. Organoids were passaged at 1:3-1:4 ratio
by disruption with rigorous pipetting almost to single cells. Organoid fragments were centrifuged at 300 × g,
resuspended in 40-50µl cold Matrigel per well, and plated on pre-warmed 24-well plates. Organoids derived from
different mice or a repetition at least one passage apart are considered biological replicates. Technical replicates,
i.e. separate wells, were carried out in some experiments and were pooled for analysis.

Altering IEC lineage composition in organoids Protocols to alter the IEC composition in organoids
have been described previously25,79,80. Organoids were grown for 48h in ENR or ENR + 3µM CHIR99021 (Sigma-
Aldrich) and 1mM valproic acid (VPA). Then, media was replaced by ENR, ENR + 3µM CHIR and 1mM VPA,
ENR + 3µM CHIR and 10µM DAPT, or ENR + 10µM DAPT and 2µM IWP2. VPA, DAPT, IWP2 were
purchased from Cayman Chemicals. Organoids were harvested 72h after media change.

Organoid screen with Epigenetic Chemical Probes library Organoids of four biological replicates
were passaged to nearly single cells at 1:4 ratio as described above and seeded in 40µl Matrigel droplets in 24-well
plates. 250µl/well ENR were added immediately after solidification and 250µl/well ENR + probes at 2x working
concentration (see Supplementary Table 1) were added within 30min. For each biological replicate DMSO vehicle
controls were carried out in quadruplicates. Media was replaced after 48h. Organoids bright-field images were
acquired daily on an EVOS2 microscope and after 96h RNA was harvested.

Reporter organoids Lgr5 -EGFP organoids were generated as described above from Lgr5 -EGFP-IRES-
CreERT2 mice and maintained for no longer than 3 weeks. Organoids were grown in ENR or ENR + 3µM
CHIR99021 (Sigma-Aldrich) as indicated and Lgr5 -EGFP+ cells were quantified using a BD LSRII flow cytometer
(Becton Dickinson) as percentage of viable cells. Tuft cell reporter organoids were generated from Hpgds-tdTomato
mice (expressing tdTomato under the Hpgds promoter) as described above. Hpgds-tdTomato+ cells were quanti-
fied by confocal microscopy on an Axio Imager Z1 microscope (Zeiss) as number of cells relative to the organoid
area after z-stack projection, determined by nuclear staining. Enteroendocrine cell reporter organoids were de-
rived from the proximal small intestine of Neurog3 -RFP mice (expressing RFP under the Neurog3 promoter)
and cultured as described above using recombinant murine Noggin (100ng/ml, Peprotech) and 10% R-Spondin
conditioned medium. Neurog3 -RFP+ cells were quantified using a BD FACSAria III flow cytometer (Becton
Dickinson) as percentage of viable cells.

Modified organoid growth conditions with EP300/CREBBP inhibition Lgr5 -EGFP organoids
were grown in ENR or ENR + 3µM CHIR for 96h. Media was replaced after 48h. To investigate low growth
factor conditions, wild type organoids were grown in ENR or ENR with 1% R-Spondin, ENR with 5ng/ml EGF,
or ENR + 2µM IWP2 for 192h. Media was replaced every 48h.

Splitting of organoids after type I PRMT inhibition Organoids were treated with DMSO or MS023
for 96h, passaged to nearly single cells as described above, and cultured in ENR for additional 96h. Media was
replaced every 48h.

Generation of APC-deficient adenomas Eight week old Apc15lox × Lgr5 -EGFP-IRES-CreERT2 mice
were administered 2mg Tamoxifen in corn oil (both Sigma-Aldrich) for 5 consecutive days. Adenomatous polyps
developed over the course of a month (ethically approved by the Norwegian Food Safety Authority, FOTS ID:
15888). To generate adenoma organoids, the small intestine was rinsed with PBS, opened longitudinally, polyps
were excised, cut into small pieces, and washed in PBS. Next, 5 ml TrypLE express (Thermo Fisher Scientific)
was added and incubated for 30min at 37◦C while pipetting every 5-10min. After incubation, single cells were
obtained by passing the supernatant through a 40µm strainer. Single cells were plated in 50µl cold Matrigel
on a pre-warmed 24-well plate, and cultured in basal culture medium lacking R-Spondin-1 (”EN”). EN culture
medium was replaced every 2-3 days.

Organoid growth quantification Organoid bright-field images were acquired on an EVOS2 microscope
(Thermo Fisher Scientific) with 2x magnification. At the starting point of the experiment, for each plate an
automation setup was generated to acquire z-stacks with 50µm spacing either of a single position or 2-4 tiled
images covering height and most area of the Matrigel dome for each well. This automation setup was reused
at consecutive timepoints. A custom ImageJ/Fiji v1.52n81,82 macro was used to collect single positions and
layers for each well, to save a stack (ImageJ bright-field stack) and projections, and to perform a simple organoid
segmentation (”ImageJ workflow”). For the segmentation, a Sobel edge detector was applied to each z-stack layer
(ImageJ edge stack), a standard deviation z-projection of the edge stack was generated, and particle analysis with
optional manual correction was performed after several binary operations and thresholding. For an improved
segmentation that is robust to stitching artefacts, allows to filter out debris and organoid clusters and to distinguish
different organoid phenotypes, the ImageJ workflow was combined with the interactive machine learning software

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.07.23.217414doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217414
http://creativecommons.org/licenses/by/4.0/


Ilastik v1.3.283 (”combined workflow”). Training data was taken from the analyzed experiment and excluded
from further analysis. In a first step, pixel classification on an intensity summary projection of the ImageJ edge
stack was used to separate between background and object outlines. The generated pixel prediction maps were
then used as input in a second step of object classification together with minimum projections of the ImageJ
bright-field stack. Routinely, the following label classes were used: Organoid, big sphere, small sphere, cluster,
debris, background mislabelled as organoid, air bubble, edges of well plate. Objects classfied in the latter three
object classes were excluded from all timepoints, objects classfied as debris or cluster were excluded from 72h and
96h timepoints. Representative images were arranged using GNU R packages magick and ggimage.

RNA isolation, quantitative RT-PCR and analysis To harvest RNA, organoids in the Matrigel
dome were dissolved in 250µl RNA-solv reagent (Omega Bio-Tek). RNA was isolated using Direct-zol-96 RNA
or Direct-zol MiniPrep kit (Zymo Research) according to the manufacturer’s instructions, including DNAse di-
gestion. cDNA was transcribed using High-Capacity RNA-to-cDNA Kit (Applied Biosystems) according to the
manufacturer’s instructions. RNA quality and concentration was assessed on an NanoDrop-1000 instrument
(NanoDrop). Samples were handled in 96-well plates and transferred with multichannel pipettes. qRT-PCR was
carried out in technical duplicates in 384-well plates on a QuantStudio 5 instrument (Thermo Fisher Scientific)
using 2x Perfecta ROX,UNG Fast Mix (Quanta Biosciences) and 5ng cDNA per reaction in a total volume of 12µl.
Primer-probe combinations were selected based on the Universal Probe Library System (Roche) and are listed in
Supplementary table 2, primers were purchased from Sigma-Aldrich. Hprt was used as housekeeping gene. ∆CT
values were calculated as ∆CT = CT(housekeeping gene) - CT(gene of interest) (such that higher values indicate
higher relative expression); ∆∆CT values referred to the calibrator as indicated, and fold change was calculated
as 2∆∆CT. Target gene ”perturbation” was calculated as euclidean distance of the log2 median fold change using
GNU R package pheatmap. Defa22 gene expression was below the detection limit for some samples and was
therefore omitted from the euclidean distance ranking but is provided in the supplementary information.

Flow cytometry To obtain single cells, Matrigel in 1-3 wells was disrupted by pipetting, well content was
transferred to an Eppendorf tube, centrifuged at 300× g, and supernatant removed. Then, organoids were
incubated with 300µl TrypLE express (Thermo Fisher Scientific) for 37◦C for 30min and pipetted up/down with
a 1000µ pipet tip prior to and after the incubation. Single cells were stained with Zombie Aqua (Biolegend,
1:1000 in PBS) for 15min at room temperature (RT) for live-dead exclusion. If DAPI instead of Zombie Aqua
staining was used for live-dead exclusion, it was added it during the last washing step (1:1000). Samples were
incubated with antibody conjugates against CD326-BV605, CD24-PerCp-Cy5.5 or AF647, CD44-BV785, CD117-
PE-Cy7 (all Biolegend, see Supplementary Table 3 for detailed list, 1:200 in PBS + 2% fetal calf serum (FCS)), and
Ulex Europaeus Agglutinin (UEA)1-Rhodamine (2µg/ml, Vector Laboratories #RL-1062-2) for 20min at 4◦C. For
intracellular staining, samples were subsequently fixed with 2% paraformaldehyde (PFA) for 15min, and incubated
with or without rabbit anti-DCLK1 (Abcam #ab31704, 1:500 in PBS/2% FCS/0.05% Saponin) for 1h at 4◦C,
followed by incubation with Goat anti-Rabbit IgG-AF405 (Invitrogen, 1:1000 in PBS + 2% FCS + 0.05% Saponin).
Samples were analyzed on a BD LSRII instrument (Becton Dickinson) equipped with 405nm, 488nm, 561nm,
647nm laser lines. Single fluorochrome stainings of cells and compensation particles (BD CompBead, Becton
Dickinson) were included in each experiment. For analysis, FlowJo software v10.6.2 and GNU R/Bioconductor
v3.6.3/v3.10 packages flowCore, CytoML/flowWorkspace, ggcyto, flowViz were used84. If not indicated otherwise,
only samples with more than 10000 viable cells in the parent gate were included.

Flow cytometry screening For the flow cytometry screening experiment, organoids were grown in 96well
glass-bottom plates (Cellvis) that were pre-cooled and held on ice during seeding. Organoid fragments in Matrigel
(50µl/well) were distributed in pre-cooled plates with an automated pipette, then plates were transferred to a
rotary plate shaker for 30sec at 150rpm, before the Matrigel was solidified at 37 ◦C. With help of a Viaflo 96-
channel pipette (Integra Biosciences) 200µl/well ENR without or with inhibitors were added of which 100µl were
replaced daily during the 96h time course. To obtain single cells, culture media was removed, 100µl/well TrypLE
express (Thermo Fisher Scientific) added and Matrigel disrupted by repeated pipetting with a multichannel
pipette. Staining with Zombie Aqua, CD326-BV421, CD24 -PerCp-Cy5.5, CD44-AF647, CD117-PE-Cy7 (all
Biolegend, see Supplementary Table 3 for detailed list), and UEA1-FITC (Invitrogen) was carried out as described
above. Samples were run on a MACSQuant X instrument (Miltenyi Biotec) equipped with 405nm, 488nm, 647nm
laser lines and analyzed as described above. Euclidean distance clustering tree of normalized median population
frequencies was generated with GNU R package ggtree85.

Confocal microscopy and quantification For immunofluorescence staining, organoids were grown in
30µl/well Matrigel droplets in a 8-well microscopy chamber (Ibidi) that was pre-warmed for seeding. After
96h incubation, the organoids were fixed in 4% paraformaldehyde and 2% sucrose for 30min at RT, washed,
and permeabilized with 0.2% Triton-X100 in PBS. Free aldehyde groups were blocked using 100mM glycine,
followed by blocking buffer (1% BSA, 2% NGS diluted in 0.2% Triton-X100 in PBS) for 1h at RT. The organoids
were incubated overnight at 4◦C with a primary antibody against KI67 (Invitrogen #MA5-14520; 1:200) or
MUC2 (Santa Cruz #sc-15334; 1:200) in blocking buffer, followed by three washes with slight agitation. Next,
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the organoids were incubated with Goat anti-Rabbit IgG-AF488 (Invitrogen, 1:500), UEA1-Rhodamine (Vector
Laboratories #RL-1062-2, 2µg/ml), and Hoechst 33342 overnight at 4◦C. After washing, the organoids were
mounted using Fluoromount G (Thermo Fisher Scientific), and visualized using a LSM880 confocal microscope
(Zeiss). UEA1/MUC2-positive cells were manually counted for ≥5 organoids per biological replicate in a middle
plane of a z-stack. Cell numbers are reported relative to the area of the z-stack projection of each organoid,
determined by nuclear staining.

Immunohistochemistry & Immunofluorescence staining of paraffin-embedded tissue and
quantification Immediately after euthanizing mice, the intestinal tissues were removed, washed with PBS,
fixed in 4% formaldehyde for 48-72h at RT, and embedded in paraffin wax. Staining was carried out on 4µm
paraffin sections. The sections were rehydrated and treated with 3% hydrogen peroxide for 10min at RT. Antigens
were retrieved by boiling the slides in citrate buffer (pH6) in a microwave for 15min. For immunohistochemistry
staining of duodenum sections, the sections were incubated overnight at 4◦C with anti-DCLK1 (Abcam #ab31704;
1:1500) in TBS + 0.025% Tween 20 + 1% BSA. Specific binding was detected with Envision-HRP (Dako) and
DAB (Dako) and images were acquired on a EVOS2 microscope (Thermo Fisher Scientific) with 10x magnification.
DCLK1+ cells were quantified for ≥30 crypt-villus pairs per mouse. Representative images were acquired on a
Eclipse Ci-L microscope (Nikon) with 20x magnification. For immunofluorescence staining of colon sections, slides
were blocked with PBS + 1% BSA + 2% goat serum + 0.2% Triton X-100 for 1h at RT and incubated overnight
at 4◦C with anti-DCLK1 antibody (Abcam #ab31704; 1:250) in PBS + 1% BSA +1% goat serum + 0.05% Tween
20. Specific binding was detected with Goat anti-Rabbit IgG-AF488 (Invitrogen, 1:1000) for 1h at 37 ◦C while
nuclei were stained with DAPI (1:1000). Slides were mounted with Fluoromount G (Thermo Fisher Scientific)
and images were acquired on a LSM880 confocal microscope (Zeiss) with 20x magnification. DCLK1+ cells were
quantified for ≥50 crypts per mouse.

mRNA sequencing Organoid RNA was isolated and treated with DNAse with Quick-RNA Micro prep kit
(Zymo Research) according to manufacturer’s instructions. RNA integrity numbers were found to be ≥7. For the
I-CBP112 inhibitor study, library preparation was done using the Illumina TruSeq Stranded protocol. Library
concentrations were quantified with the Qubit Fluorometric Quantitation system (Life Technologies) and the size
distribution was assessed using a 2100 Bioanalyzer automated electrophoresis system (Agilent). For sequencing,
samples were diluted and pooled into NGS libraries in equimolar amounts and sequenced at 75bp single-read
chemistry on an Illumina NS500 MO flow-cell on a Ilumina NextSeq 500 instrument (Illumina) by the Genomics
core facility (GCF, NTNU). For the MS023 study, library preparation was done using the NEB Next Ultra RNA
Library Prep Kit with poly(A) mRNA enrichment and samples were sequenced at 150X2 bp paired-end chemistry
on a Illumina NovaSeq 6000 instrument by Novogene (UK) Co.

mRNA sequencing analysis Read quality was assessed using FastQC v0.11.8, reads were aligned with
STAR v2.7.3a to the Mus musculus genome build mm10, and MultiQC v1.7 was used to summarize logs from STAR
and FastQC86,87,88. The number of reads that uniquely aligned to the exon region of each gene in GENCODE
annotation M18 of the mouse genome was then counted using featureCounts v1.6.489,90. Genes that had a total
count less than 10 were filtered out. Differential expression was then determined with GNU R/Bioconductor
v3.6.1/v3.10 package DESeq2 v1.26.0 using default settings and shrunken log2foldchange was calculated with
the apeglm method91,92. GSEA enrichment was performed using GNU R/Bioconductor v3.6.3/v3.10 package
ClusterProfiler v3.14.3 by shrunken log2 fold change and with the shrunken log2 fold change as weights using 10000
permutations93. Gensets for celltype signatures were assembled based on single-cell and bulk RNA-Sequencing
data from sorted samples based on datasets by Haber et al.2 (GSE92332) and Munoz et al.37 (GSE33949).
Transcription factors interacting with murine or human EP300 or CREBBP were retrieved from protein-protein
interactions with an minimum medium experimental confidence level (≥0.4) from STRING-DB v1194. Genesets
regulated for the mouse and human version of these transcription factors were retrieved from TRRUST v295. For
human genesets, murine orthologue genes retrieved from Ensembl GRCh38.p13 through GNU R/Bioconductor
v3.6.3/v3.10 package biomaRt v2.42.196 were used for enrichment. Genesets for characterization of Biological
Process were directly obtained from the Gene Ontology Consortium97.

Data processing and statistical analysis Data was processed and statistical analysis was carried out with
GNU R v3.6.3 using the packages tidyverse and ggpubr98. Pearson correlation coefficient, and paired or unpaired
t-test were calculated as indicated, assuming normal distribution. Median or mean are shown as indicated. In
boxplots, the box represent the 25%, 50% and 75% percentiles and whiskers represent 1.5 × IQR.

Data availability

The Imaging data from the initial screen was deposited to the Image Data Resource99 (https://idr.openmicroscopy.org)
under accession number idr0092. The Ilastik projects and respective training data of the initial screen organoid
segmentation were deposited to Zenodo under https://doi.org/10.5281/zenodo.4311473. The qRT-PCR data from
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the initial screen was deposited along with processed data from follow-up experiments to BioStudies database
at EMBL-EBI100 (https://www.ebi.ac.uk/biostudies) under accession number S-BSST447. RNA-seq data were
deposited in the ArrayExpress database at EMBL-EBI101 (https://www.ebi.ac.uk/arrayexpress) under accession
number E-MTAB-9290 (I-CBP112-treated samples) and E-MTAB-9291 (MS023-treated samples).

Code availability

The ImageJ script used for organoid segmentation is available from https://github.com/jennyostrop/
Fiji organoid brightfield processing and deposited under https://doi.org/10.5281/zenodo.3951126.
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David Smil, David McLeod, Carlos A. Zepeda-Velazquez, Minkui Luo, Jian Jin, Dalia Barsyte-Lovejoy,
Kilian V. M. Huber, Daniel D. De Carvalho, Masoud Vedadi, Colby Zaph, Peter J. Brown, and Cheryl H.
Arrowsmith. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat
Commun, 10(1):1–14, January 2019. ISSN 2041-1723. doi: 10.1038/s41467-018-07905-4.

19. Suzanne Ackloo, Peter J. Brown, and Susanne Müller. Chemical probes targeting epigenetic pro-
teins: Applications beyond oncology. Epigenetics, 12(5):378–400, May 2017. ISSN 1559-2308. doi:
10.1080/15592294.2017.1279371.

20. Meritxell Huch, Juergen A. Knoblich, Matthias P. Lutolf, and Alfonso Martinez-Arias. The hope and the
hype of organoid research. Development, 144(6):938–941, March 2017. ISSN 0950-1991, 1477-9129. doi:
10.1242/dev.150201.

21. Denise Serra, Urs Mayr, Andrea Boni, Ilya Lukonin, Markus Rempfler, Ludivine Challet Meylan, Michael B.
Stadler, Petr Strnad, Panagiotis Papasaikas, Dario Vischi, Annick Waldt, Guglielmo Roma, and Prisca
Liberali. Self-organization and symmetry breaking in intestinal organoid development. Nature, 569(7754):
66–72, May 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1146-y.

22. Moshe Biton, Adam L. Haber, Noga Rogel, Grace Burgin, Semir Beyaz, Alexandra Schnell, Orr Ashenberg,
Chien-Wen Su, Christopher Smillie, Karthik Shekhar, Zuojia Chen, Chuan Wu, Jose Ordovas-Montanes,
David Alvarez, Rebecca H. Herbst, Mei Zhang, Itay Tirosh, Danielle Dionne, Lan T. Nguyen, Michael E.
Xifaras, Alex K. Shalek, Ulrich H. von Andrian, Daniel B. Graham, Orit Rozenblatt-Rosen, Hai Ning Shi,
Vijay Kuchroo, Omer H. Yilmaz, Aviv Regev, and Ramnik J. Xavier. T Helper Cell Cytokines Modulate
Intestinal Stem Cell Renewal and Differentiation. Cell, 175(5):1307–1320.e22, November 2018. ISSN 0092-
8674. doi: 10.1016/j.cell.2018.10.008.

23. Nathalie Brandenberg, Sylke Hoehnel, Fabien Kuttler, Krisztian Homicsko, Camilla Ceroni, Till Ringel,
Nikolce Gjorevski, Gerald Schwank, George Coukos, Gerardo Turcatti, and Matthias P. Lutolf. High-
throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nature Biomedical
Engineering, pages 1–12, June 2020. ISSN 2157-846X. doi: 10.1038/s41551-020-0565-2.

24. Toshiro Sato, Robert G. Vries, Hugo J. Snippert, Marc van de Wetering, Nick Barker, Daniel E. Stange,
Johan H. van Es, Arie Abo, Pekka Kujala, Peter J. Peters, and Hans Clevers. Single Lgr5 stem cells build
crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244):262–265, May 2009. ISSN
1476-4687. doi: 10.1038/nature07935.

25. Xiaolei Yin, Henner F. Farin, Johan H. van Es, Hans Clevers, Robert Langer, and Jeffrey M. Karp. Niche-
independent high-purity cultures of Lgr5 + intestinal stem cells and their progeny. Nature Methods, 11(1):
106–112, January 2014. ISSN 1548-7105. doi: 10.1038/nmeth.2737.

26. Toshiro Sato, Johan H. van Es, Hugo J. Snippert, Daniel E. Stange, Robert G. Vries, Maaike van den Born,
Nick Barker, Noah F. Shroyer, Marc van de Wetering, and Hans Clevers. Paneth cells constitute the niche
for Lgr5 stem cells in intestinal crypts. Nature, 469(7330):415–418, January 2011. ISSN 1476-4687. doi:
10.1038/nature09637.

27. J. Mateo, C. J. Lord, V. Serra, A. Tutt, J. Balmaña, M. Castroviejo-Bermejo, C. Cruz, A. Oaknin, S. B.
Kaye, and J. S. de Bono. A decade of clinical development of PARP inhibitors in perspective. Annals of
Oncology, 30(9):1437–1447, September 2019. ISSN 0923-7534. doi: 10.1093/annonc/mdz192.

28. E. Weisberg, L. Catley, J. Kujawa, P. Atadja, S. Remiszewski, P. Fuerst, C. Cavazza, K. Anderson, and J. D.
Griffin. Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in
vitro and in vivo. Leukemia, 18(12):1951–1963, December 2004. ISSN 1476-5551. doi: 10.1038/sj.leu.2403519.

29. Thomas Beckers, Carmen Burkhardt, Heike Wieland, Petra Gimmnich, Thomas Ciossek, Thomas Maier,
and Karl Sanders. Distinct pharmacological properties of second generation HDAC inhibitors with the
benzamide or hydroxamate head group. International Journal of Cancer, 121(5):1138–1148, 2007. ISSN
1097-0215. doi: 10.1002/ijc.22751.

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.07.23.217414doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217414
http://creativecommons.org/licenses/by/4.0/


30. Alexis Gonneaud, Christine Jones, Naomie Turgeon, Dominique Lévesque, Claude Asselin, François
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38. Delphine Gitenay and Véronique T. Baron. Is EGR1 a potential target for prostate cancer therapy? Future
Oncol, 5(7):993–1003, September 2009. ISSN 1744-8301. doi: 10.2217/fon.09.67.

39. Rosalie T. Zwiggelaar, H̊avard T. Lindholm, Madeleine Fosslie, Marianne Terndrup Pedersen, Yuki Ohta,
Alberto Dı́ez-Sánchez, Mara Mart́ın-Alonso, Jenny Ostrop, Mami Matano, Naveen Parmar, Emilie Kvaløy,
Roos R. Spanjers, Kamran Nazmi, Morten Rye, Finn Drabløs, Cheryl Arrowsmith, John Arne Dahl, Kim B.
Jensen, Toshiro Sato, and Menno J. Oudhoff. LSD1 represses a neonatal/reparative gene program in adult
intestinal epithelium. Science Advances, 6(37):eabc0367, September 2020. ISSN 2375-2548. doi: 10.1126/sci-
adv.abc0367.

40. Naveen Parmar, Kyle Burrows, H̊avard T. Lindholm, Rosalie T. Zwiggelaar, Mara Mart́ın-Alonso, Madeleine
Fosslie, Bruce Vallance, John Arne Dahl, Colby Zaph, and Menno J. Oudhoff. Intestinal-epithelial LSD1 con-
trols cytoskeletal-mediated cell identity including goblet cell effector responses required for gut inflammatory
and infectious diseases. bioRxiv, page 2020.07.09.186114, July 2020. doi: 10.1101/2020.07.09.186114.

41. Jessica E. Bolden, Nilgun Tasdemir, Lukas E. Dow, Johan H. van Es, John E. Wilkinson, Zhen Zhao,
Hans Clevers, and Scott W. Lowe. Inducible In Vivo Silencing of Brd4 Identifies Potential Toxicities of
Sustained BET Protein Inhibition. Cell Reports, 8(6):1919–1929, September 2014. ISSN 2211-1247. doi:
10.1016/j.celrep.2014.08.025.

42. Mohammad S. Eram, Yudao Shen, Magdalena Szewczyk, Hong Wu, Guillermo Senisterra, Fengling Li,
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Figure 1: Quantification of intestinal organoid growth and cellular composition
a) Scheme of organoid formation and images of a representative position 24h-96h after seeding. Whole
well is shown in Supplementary Fig. S1a.
b) Scheme of organoid size quantification workflow using open-source tools ImageJ/Fiji and Ilastik. Vi-
sual quantification output and ImageJ quantification results are shown in Supplementary Fig. S1b,
S1c.
c) Box plots showing organoid size quantified as object area at 24-96h timepoints (top). Object area vs.
object mean grey value (8-bit scale) on a minimum projection of the image stack (bottom). Pooled data
from 2 biol replicates, indicated by shape. Each dot represents one organoid.
d) mRNA expression of IEC lineage marker genes at 24h-96h timepoints, measured by qRT-PCR. xfold
change relative to 96h organoids, median of 3 biol. replicates.
e) Flow cytometry of organoids grown for 48h and 96h. Staining of representative replicate (bottom
right). Population frequencies in Cells parent gate, 3 biol. replicates, indicated by shape. Mean high-
lighted (bottom left). Log2 fold change relative to 96h timepoint, median of 3 biol. replicates. Dot
size corresponds to absolute log2 fold change (top left). Gating strategy and population frequencies for
FSC CD326hi and FSC CD24+ parent gates are shown in Supplementary Fig. S1d, S1e.
f) Organoids cultured for 48h followed by 72h (48h 72h) with normal culture medium
(ENR ENR), or culture medium containing CHIR+VPA CHIR+VPA, CHIR+VPA CHIR+DAPT, or
CHIR+VPA IWP2+DAPT to modify IEC composition by interfering with Wnt and Notch signaling
pathways as indicated, adapted from Yin et al. 25 . mRNA expression measured by qRT-PCR. xfold
change relative to ENR ENR treatment. 3 biol. replicates, indicated by shape. Mean highlighted.
g) Flow cytometry of organoids treated for 48h 72h as indicated, population frequencies normalized to
ENR ENR treatment. Log2 fold change, median of 3 biol. replicates. Dot size corresponds to absolute
log2 fold change. Gating strategy, representative staining and population frequencies for FSC CD326hi

and FSC CD24+ parent gates are shown in Supplementary Fig. S1d, S1f-S1h.
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Figure 2: Organoid screen of epigenetics probes identifies established cancer drugs
a) Scheme of screen setup and follow-up experiments.
b) Inhibitors used in screen, detailed information is provided in Supplementary Table 1. Probes used
in follow-up experiments are highlighted. Abbreviations of inhibitor target families (inhibitor class):
BRD - Bromodomain, BET - Extra-terminal motif, HAT - Histone acetyltransferase, KDM - Lysine
demethylase, PMT - Protein methyltransferase, KMT - Lysine methyltransferase, PRMT - Protein argi-
nine methyltransferase, MBT - Malignant brain tumor, HDAC - Histone deacetylase.
c) Median object area of organoids treated with DMSO or inhibitors for 0-96h. Median of 4 biol. repli-
cates. Boxplots for each inhibitor and timepoint are shown in Supplementary Fig. S2a.
Probes that altered organoid size and were followed-up are highlighted: Controls, CI-994, LAQ824 (HDAC
inhibitors), olaparib (PARP inhibitor), SGC-CBP30, I-CBP112 (BRD BET inhibitors).
d) Representative replicates, 96h timepoint.
e) Correlation of median organoid size and relative Lgr5 gene expression, median of 4 biol. replicates.
Pearson coefficient.
f) Frequency of Lgr5 -EGFP stem cells in reporter organoids treated with DMSO or olaparib for 96h.
Gating of representative replicate (top) and percentage of GFPhi cells, normalized to DMSO control. 5
biol. replicates, indicated by shape. Mean highlighted. Minimum 5000 viable cells in parent gate. Paired
t-test (bottom). Percentage of total GFP+ cells is shown in Supplementary Fig. S2d.
g) Apc-deficient adenomas treated with DMSO, CI-994, LAQ824, or olaparib for 96h. Representative
replicate (top) and quantification of object size in 7/3/3/7 (DMSO/CI-994/LAQ828/olaparib) individual
wells (bottom).
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Figure 3: Inhibition of EP300/CREBBP enhances organoid size and Lgr5 expression
a) Organoids treated with DMSO, SCG-CBP30, or I-CBP112 for 96h. Area of objects classified as
”Organoid” by combined ImageJ/Ilastik workflow. 4 biol. replicates, indicated by shape.
b) Representative organoids treated with DMSO, SCG-CBP30, or I-CBP112 for 96h. 10x magnification,
max. intensity projection. KI67 staining marks crypt regions (top). Density of UEA1+ cells, each value
represents the median of ≥5 organoids quantified. 3/2/3 biol. replicates, indicated by shape. Mean
highlighted (bottom). Full wells for one representative replicate is shown in Supplementary Fig. S3c.
c) Frequency of Lgr5 -EGFP stem cells in reporter organoids grown in ENR or ENR+CHIR and treated
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3 biol. replicates, indicated by shape. Mean highlighted. Paired t-test (bottom). Percentage of total
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Figure 4: GSK-LSD1 broadly affects IEC composition
a) Gene expression of organoids treated with DMSO or inhibitors for 96h, measured by qRT-PCR. Color
scale represents log2 of median of xfold change relative to DMSO-treated organoids of 4 biol. replicates.
IEC lineage marker genes are indicated on x-axis. Inhibitor class is indicated on y-axis. Clustering
tree is based on euclidean distance. Log2 of the euclidean distance (”perturbation”) is indicated in the
right panel, the line at x=1.5 indicates inhibitors that were followed up in further experiments. Samples
treated with HDAC inhibitors and gene Defa22 and were excluded from the analysis. Euclidean distance
including Defa22 is shown in Supplementary Fig. S4a.
b) Gene expression of organoids treated with GSK-LSD1 for 96h measured by qRT-PCR. xfold change
relative to DMSO-treated organoids. 4 biol. replicates, indicated by shape. Median highlighted.
c) Flow cytometry of organoids treated with DMSO or GSK-LSD1 for 96h. Gating of representative
replicates (left) and normalized frequencies of SSChi CD24+ and SSClo CD24hi populations of 5 biol.
replicates, indicated by shape. Mean highlighted. Paired t-test (right).
d) Flow cytometry of small intestinal crypts isolated from Villin-Cre+ Lsd1fl/fl (KO) mice with intestine-
specific deletion of Lsd1 or wild type (WT) littermates. Gating of representative replicates (left) and
frequencies of SSChi CD24+ and SSClo CD24hi populations of 2/2 mice (right).
e) Frequency of DCLK1+ cells measured by intracellular flow cytometry in small intestinal crypts from
WT and KO mice. Overlay of positive cells for secondary anti-rabbit staining, representative replicate
(left). Quantification of intracellular staining with rabbit anti-DCLK1 primary antibody or control in
small intestinal crypts isolated from WT or KO mice. 3/2 mice. Minimum 7000 viable cells in parent
gate (right).
f) DCLK1+ cells per crypt-villus pair in duodenum of WT and KO mice. Immunohistochemistry stain-
ing of tissue sections. Representative staining (left) and quantification in 3/3 mice, mean highlighted.
Unpaired t-test (right).

a

●

●

●

p = 0.0033 p = 2.6e−05

●

●

●

p = 0.00426 p = 0.00042

● ●

●

p = 0.189 p = 0.016

D
clk1

T
rpm

5
G

fi1b

D
M

S
O

(+
)−

JQ
1

br
om

os
po

ri
ne

0.1

1.0

0.1

1.0

0.1

1.0

Treatment

xf
ol

d 
ch

an
ge

 [D
M

S
O

] 

b

c

●
●

●

●

●●
●

●●●●● ●●● ●●

p = 0.00082 p = 0.00108

0

10

20

30

40

D
M

S
O

(+
)−

JQ
1

br
om

os
po

ri
ne

Treatment

T
uf

t c
el

l d
en

si
ty

 (
A

.U
.)

Figure 5: BET inhibition reduces relative abundance of tuft cells
a) Gene expression of tuft cell marker genes of organoids treated with DMSO, (+)-JQ1, or bromosporine
for 96h, measured by qRT-PCR. xfold change relative to DMSO-treated organoids. 4 biol. replicates,
indicated by shape. Median highlighted.
b) Representative Hpgds-tdTomato tuft cell reporter organoids treated with DMSO, (+)-JQ1, or bromo-
sporine for 8 days with one passage. 10x magnification, max. intensity projection.
c) Tuft cell density in Hpgds-tdTomato organoids treated with DMSO, (+)-JQ1, or bromosporine for 8
days. Each dot represents one organoid.
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Figure 6: Inhibition of type I PRMTs leads to more mature organoids and prevents adenoma
growth
a) Gene expression of organoids treated with MS023 for 96h measured by qRT-PCR. xfold change relative
to DMSO-treated organoids. 4 biol. replicates, indicated by shape. Median highlighted.
b) Frequency of SSChi CD24+ Paneth cells in organoids treated with MS023 for 96h, normalized to
DMSO treatment, measured in flow cytometry screen (Supplementary Fig. S4c). 3 wells/2 biol.
replicates, indicated by shape. Mean highlighted.
c) Density of MUC2+ goblet cells in organoids treated with DMSO or MS023 for 96h. Median of 3 biol.
replicates, indicated by shape. Each value is the median of 4-11 organoids quantified. Paired t-test.
d) Frequency of enteroendocrine/enteroendocrine progenitor Neurog3 -RFP+ cells in reporter organoids
treated with DMSO or MS023 for 96h, measured by flow cytometry. Representative gating and quantifi-
cation in 3 biol. replicates, indicated by shape. Paired t-test.
e) Volcano plot of mRNA sequencing of untreated vs. MS023 treated organoids, 3 biol replicates per
group. Selected genes are highlighted.
f) mRNA sequencing of untreated vs. MS023 treated organoids. GSEA for Paneth cell, goblet cell,
enteroendocrine cell, and tuft cell signatures from Haber et al.2 (GSE92332).
g) Apc-deficient adenomas treated with DMSO, MS023, or TC-E5003 for 96h. Representative well (top,
full well shown in Supplementary Fig. S6j, scale bar shows 500µm) and quantification of organoid
size and mean grey value, 7 individual wells per condition (bottom).
h) Organoids treated with DMSO, MS023, or TC-E5003 for 96h. Representative replicate (top, full well
shown in Supplementary Fig. S6k, scale bar shows 500µm) and quantification of organoid size and
mean grey value, 3 biol. replicates per condition (bottom).
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