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Summary

Using inducible protein degradation, we show that PAR-6 and PKC-3/aPKC are essential for 
postembryonic development of C. elegans and control the organization of non-centrosomal 
microtubule bundles in the epidermis, likely through recruitment of NOCA-1/Ninein.

Abstract

The cortical polarity regulators PAR-6, PKC-3 and PAR-3 are essential for the polarization of a broad 
variety of cell types in multicellular animals, from the first asymmetric division of the C. elegans 
zygote to apical–basal polarization of epithelial cells. In C. elegans, the roles of the PAR proteins in 
embryonic development have been extensively studied, yet little is known about their functions during 
larval development. Using auxin-inducible protein depletion, we here show that PAR-6 and PKC-3, 
but not PAR-3, are essential for postembryonic development. We also demonstrate that PAR-6 and 
PKC-3 are required in the epidermal epithelium to support animal growth and molting, and the proper 
timing and pattern of seam cell divisions. Finally, we uncovered a novel role for PAR-6 in controlling 
the organization of non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the 
localization of the microtubule organizer NOCA-1/Ninein, and microtubule defects in a noca-1 mutant 
are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts 
with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through 
localization of NOCA-1/Ninein.
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Introduction

Polarity is a near universal property of cells that is essential for establishing proper cellular 
architecture and function. Epithelial cells – one of the major polarized animal cell types – polarize 
along an apical–basal axis and establish molecularly and functionally distinct apical, basal, and lateral 
membrane domains. The boundary between apical and lateral domains is marked by the presence of 
cell–cell junctions that provide adhesion between cells and prevent unwanted paracellular passage of 
molecules. The polarization of epithelial cells is orchestrated by conserved cortical polarity regulators 
that establish opposing membrane domains through mutually antagonistic interactions. In metazoans, 
the partitioning defective (PAR) proteins Par3, Par6, and atypical protein kinase C (aPKC) play a 
central role in the establishment of epithelial cell polarity. These highly conserved polarity regulators 
are essential determinants of apical domain identity, and are required for the positioning, maturation, 
and maintenance of apical cell junctions (Achilleos et al., 2010; Franz and Riechmann, 2010; Georgiou 
et al., 2008; Harris and Peifer, 2004; Harris and Peifer, 2005; Harris and Tepass, 2008; Hutterer et 
al., 2004; Izumi et al., 1998; Joberty et al., 2000; Leibfried et al., 2008; Lin et al., 2000; Totong et al., 
2007; Wodarz et al., 2000; Yamanaka et al., 2001).

Par6 and Par3 are both PDZ domain containing scaffold proteins that can interact with each other, 
with aPKC, and with numerous other proteins. Par6 and aPKC form a stable subcomplex by 
interacting through their PB1 domains (Hirano et al., 2005; Wilson et al., 2003). The association of 
Par6–aPKC with Par3 is dynamic. In C. elegans zygotes, PAR-6/PKC-3 shuttle between a kinase 
inactive complex with PAR-3 that promotes anterior segregation, and an active complex with the small 
GTPase CDC-42 (Aceto et al., 2006; Beers and Kemphues, 2006; Rodriguez et al., 2017; Wang et al., 
2017). In epithelia, Par3 can promote the apical recruitment of Par6–aPKC (Franz and Riechmann, 
2010; Harris and Peifer, 2005; Hutterer et al., 2004; Joberty et al., 2000; Lin et al., 2000; Wodarz et 
al., 2000). In mature epithelia, however, the bulk of Par3 segregates to the apical/lateral border, where 
it plays an essential role in the positioning and assembly of apical junctions (Achilleos et al., 2010; 
Georgiou et al., 2008; Harris and Peifer, 2004; Harris and Tepass, 2008; Izumi et al., 1998; Leibfried 
et al., 2008; Totong et al., 2007; Yamanaka et al., 2001). The release of Par3 in epithelia depends on 
phosphorylation of Par3 by aPKC, and involves handoff of Par6–aPKC to Cdc42 and the epithelial 
specific Crumbs polarity complex (Bilder et al., 2003; Harris and Peifer, 2005; Hong et al., 2003; 
Krahn et al., 2010; Morais-de-Sá et al., 2010; Nagai-Tamai et al., 2002; Nunes de Almeida et al., 2019; 
Walther and Pichaud, 2010).

In addition to interactions that mediate the subcellular localization of Par6–aPKC or Par3, both Par6 
and Par3 can interact with effector proteins to connect cortical polarity with downstream pathways 
(McCaffrey and Macara, 2009). For example, Par3 modulates phospholipid levels by recruiting the 
lipid phosphatase PTEN to cell junctions (Feng et al., 2008; Martin-Belmonte et al., 2007; Pinal et 
al., 2006; von Stein et al., 2005), inhibits Rac activity by binding to and inactivating the RacGEF 
Tiam1 (Chen and Macara, 2005; Mertens et al., 2005), and mediates spindle positioning in Drosophila 
neuroblasts through recruitment of Inscuteable (Schober et al., 1999; Wodarz et al., 1999). For Par6, 
fewer downstream targets have been described. In mammals, Par6 can recruit the E3 ubiquitin ligase 
Smurf1 to promote degradation of the small GTPase RhoA, causing dissolution of tight junctions 
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(Ozdamar et al., 2005; Sánchez and Barnett, 2012; Wang et al., 2003). Par6 can also bind to the 
nucleotide exchange factor ECT2 to regulate epithelial polarization and control actin assembly 
at metaphase in dividing epithelial cells (Liu et al., 2004; Liu et al., 2006; Rosa et al., 2015). As 
high-throughput studies have identified multiple candidate binding partners that have not yet been 
investigated (Boxem et al., 2008; Brajenovic et al., 2004; Giot et al., 2003; Grossmann et al., 2015; 
Hein et al., 2015; Huttlin et al., 2015; Lenfant et al., 2010; Luck et al., 2020; Waaijers et al., 2016), 
additional interactions important for the functioning of Par6 and for linking cortical polarity to other 
processes involved in epithelial polarization likely remain to be discovered.

Despite the conserved requirements for Par6–aPKC and Par3 in epithelial cells there are important 
context and cell-type dependent differences in the functioning of these polarity proteins (Pickett et 
al., 2019; St Johnston, 2018). For example, in Drosophila, Bazooka (Par3) is not required for junction 
positioning or polarization of cells in the follicular epithelium (Pickett et al., 2019; Shahab et al., 
2015), and in the adult Drosophila midgut, the canonical Par, Crumbs, and Scribble polarity modules 
are all dispensable for apical–basal polarity (Chen et al., 2018). In C. elegans, requirements for 
PAR-3 and PAR-6 in embryonic epithelia also vary. PAR-6 appears to be required for apical junction 
formation in all epithelia, including the epidermis, intestine, foregut, and pharyngeal arcade cells 
(Montoyo-Rosario et al., 2020; Totong et al., 2007; Von Stetina and Mango, 2015; Von Stetina et al., 
2017). However, while arcade cells show a complete lack of polarization upon PAR-6 loss, foregut, 
intestinal, and epidermal epithelial cells still establish an apical domain (Totong et al., 2007; Von 
Stetina and Mango, 2015). PAR-3 is required for apical junction formation in embryonic intestinal and 
pharyngeal epithelia, but not in epidermal epithelial cells (Achilleos et al., 2010).

Studies of PAR-6, PKC-3, and PAR-3 in C. elegans have largely focused on embryonic tissues. Here, 
we make use of targeted protein degradation to investigate the role of PAR-6, PKC-3, and PAR-3 in 
larval epithelia of C. elegans. Ubiquitous depletion of PAR-6 and PKC-3, but not PAR-3, resulted 
in a larval growth arrest, demonstrating that these proteins are required for larval development. 
Through tissue-specific depletion, we identified an essential role for PAR-6 and PKC-3 in the C. 
elegans epidermis. Depletion in this tissue caused growth arrest, a cessation of the molting cycle, 
and severe defects in the division pattern of the epidermal seam cells. We also observed defects in 
the maintenance of apical cell junctions, and a failure to exclude LGL-1 from the apical domain. 
Finally, we identified a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in 
the epidermis. Epidermal depletion of PAR-6 led to defects in the localization of the microtubule 
organizer NOCA-1/Ninein, as well as of the γ-tubulin ring complex component GIP-1, and of the 
sole Patronin/CAMSAP/Nezha homolog PTRN-1. Microtubule defects in a noca-1 mutant closely 
resembled those in PAR-6 depleted animals, including the loss of GIP-1 localization. As NOCA-1 
physically interacts with PAR-6, we conclude that PAR-6 likely organizes non-centrosomal 
microtubule arrays through localization of NOCA-1.
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Results

PAR-6 and PKC-3 are essential for larval development

To investigate the role of PAR-6, PKC-3, and PAR-3 in larval development, we made use of the 
auxin-inducible degradation (AID) system. The AID system enables targeted degradation of AID-
degron tagged proteins through expression of the plant-derived auxin-dependent E3 ubiquitin ligase 
specificity factor TIR1 (Zhang et al., 2015) (Fig. 1A). Using CRISPR/Cas9, we inserted sequences 
encoding the AID-degron and the green fluorescent protein (GFP) into the endogenous par-6, 
pkc-3, and par-3 loci, such that all known isoforms of each protein are tagged (Fig. 1B). PAR-6 was 
tagged at the shared C-terminus, and PKC-3 at the N-terminus. The par-3 locus encodes two groups 
of splice variants that use two alternative start sites; hence we inserted the GFP–AID tag at both 
start sites. To examine if the presence of the GFP–AID tags interfered with protein function, we 
examined the growth rates of the tagged strains. Homozygous animals were viable and showed the 
same growth rates as wild-type, indicating that the proteins are still functional (Fig. 1C–E). We also 
observed localization of each protein at the apical membrane domain of epithelial tissues, including 
the pharynx, excretory canal, intestine and epidermis (Fig. 1F, G). This localization pattern matches 
previous observations in C. elegans larvae (Li et al., 2010a; Li et al., 2010b), and further indicates that 
the GFP–AID tag does not interfere with protein functioning.

To investigate the role of PAR-3, PAR-6 and PKC-3 in larval development we degraded each 
protein using a ubiquitously expressed TIR1 under the control of the eft-3 promoter (Zhang et 
al., 2015). We tested the efficiency of protein degradation by exposing synchronized L3 larvae to 
auxin and examining protein expression. Apical enrichment of PAR-3, PAR-6, and PKC-3 became 
indistinguishable from background fluorescence within one hour of exposure to 4 mM auxin in the 
pharynx, excretory canal, intestine, and epidermis (Fig. 1G). To examine if the depletion of PAR-6, 
PKC-3, or PAR-3 affected larval development, we degraded each protein by addition of auxin at 
hatching and measured animal growth rates. Ubiquitous degradation of PAR-3 did not cause a defect 
in larval growth, and animals developed into morphologically normal looking and fertile adults (Fig. 
1E). This lack of a visible phenotype may indicate that the functions of PAR-3 are not essential for 
larval development. Alternatively, despite visual absence of GFP::AID::PAR-3, degradation may be 
incomplete, or animals may express unpredicted non-tagged protein isoforms. In contrast to PAR-3, 
depletion of PAR-6 or PKC-3 caused a striking growth arrest with animals not developing beyond L1 
size (Fig. 1C, D). Thus, PAR-6 and PKC-3 are essential for early larval development, and we focused 
our further analysis on PAR-6 and PKC-3.

PAR-6 and PKC-3 are essential in the larval epidermis, but not in the intestine

We next wanted to determine which larval tissue or tissues are severely affected by the loss of PAR-6/
PKC-3 and contribute to the growth arrest. We focused on the two major epithelial organs: the 
intestine and the epidermis. The intestine is an epithelial tube formed in embryogenesis by 20 cells, 
which do not divide during larval development. PAR-6 and PKC-3 are highly enriched at the apical 
luminal domain (Fig. 2A). The epidermis consists of two cell types: hypodermal cells and seam cells. 
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Fig. 1. PAR-6 and PKC-3 are essential for larval development. (A) Overview of the AID system, which enables targeted 
degradation of AID-tagged proteins by the plant-derived E3 ubiquitin ligase specificity factor TIR1 upon addition of auxin. 
(B) Schematic representation of endogenous tagging of par-6, pkc-3, and par-3 loci with sequences encoding a green 
fluorescent protein (GFP) and auxin-inducible degradation degron (AID) tag. (C–E) Growth curves of N2, par-6::aid::gfp, 
gfp::aid::pkc-3, and gfp::aid::par-3 animals in absence (- aux) or presence (+ aux) of 4 mM auxin. Data show mean ± SD. 
n = 6, 7, 8, and 8 for N2 - aux; 6, 7, 9, and 9 for N2 + aux; 7, 6, 9, and 9 for PAR-6 - aux; 8, 6, 7, and 9 for PAR-6 + aux; 22, 
11, 10, and 14 for PKC-3 - aux; 19, 14, 9, and 10 for PKC-3 + aux; 10, 10, 10, and 10 for PAR-3 - aux, and 10, 10, 10, and 
10 for PAR-3 + aux. (F) Graphical representation of larval epithelial tissues in C. elegans. Green indicates localization of 
PAR-6, PKC-3, and PAR-3. (G) Distribution of GFP::AID-tagged PAR-6, PKC-3, and PAR-3 in different larval tissues in 
absence (- auxin) or presence (+ auxin) of 4 mM auxin. Images are maximum projections. Dashed lines in - auxin panels 
outline pharynx (left panel), intestinal lumen (middle panel) or seam cells (right panel). White arrows point to the excretory 
canals. 
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Fig. 2. PAR-6 and PKC-3 are essential in the epidermis to support larval growth. (A, B) Distribution of PAR-
6::AID::GFP and GFP::AID::PKC-3 in the intestine (A) and epidermis (B) in absence (- auxin) or presence (+ auxin) 
of 1 mM auxin. Images are maximum projections of the luminal domain for the intestine, and the apical domain for 
the epidermis. Drawings are schematic representation of the area imaged, with the localization of PAR-6 and PKC-3 
indicated in green shades. Greys indicate absence of PAR-6 and PKC-3. (C–F) Quantification of apical GFP fluorescence 
intensity at the intestinal lumen and the hyp7–seam cell junction (indicated by colored lines in A, B) in par-6::aid::gfp and 
gfp::aid::pkc-3 animals in the absence (- aux) or presence (+ aux) of 1 mM auxin. Solid lines and shading represent mean 
± SD. For the intestine, n = 10 animals for PAR-6 - aux, PAR-6 + aux, PKC-3 - aux, and PKC-3 + aux. For the epidermis, 
n = 8 animals for PAR-6 - aux, 6 for PAR-6 + aux, 5 for PKC-3 + aux, and 5 for PKC-3 - aux. (G–J) Growth curves of N2, 
par-6::aid::gfp, and gfp::aid::pkc-3 animals in absence (- aux) or presence (+ aux) of 4 mM auxin. Solid lines and shading 
represent mean ± SD. In G and H, degradation was induced in the intestine, and in I and J in the epidermis. In the intestine, 
n = 13, 10, 13, 14, and 12 for N2 - aux; 7, 7, 7, 5, and 9 for PAR-6 - aux; 6, 6, 6, 5, and 7 for PAR-6 + aux; 8, 7, 8, 4, and 9 
for PKC-3 - aux; and 8, 7, 8, 8, and 8 for PKC-3 + aux. In the epidermis, n = 6, 7, 8, and 8 for N2 - aux; 6, 5, 11, and 8 for 
PAR-6 - aux; 5, 10, 8, and 9 for PAR-6 + aux; 7, 7, 10, and 8 for PKC-3 - aux; and 8, 7, 12, and 13 for PKC-3 + aux. 
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The hypodermal syncytial cell hyp7 covers most of the body. Embedded within hyp7 are two lateral 
rows of epithelial seam cells, which contribute multiple nuclei to hyp7 through asymmetric divisions 
in each larval stage. PAR-6 and PKC-3 localize to the apical domain of the seam cells and hyp7, and 
are enriched at the seam/seam and seam/hyp7 junctions (Fig. 2B).

To enable tissue-specific depletion of PAR-6 and PKC-3, we generated single-copy integrant lines 
expressing TIR1 in the intestine and epidermal lineages, using the tissue-specific promoters Pelt-2 and 
Pwrt-2, respectively. In both tissues, protein depletion occurred within one hour of addition of 1 mM 
auxin (Fig. 2A–F). To determine the contribution of the intestine and epidermis to the larval growth 
defects we observed above, we measured the growth rate of animals depleted of PAR-6 or PKC-3 in 
each tissue. Depletion of either protein from the intestine did not result in a growth delay or in obvious 
defects in morphology of the intestine (Fig. 2G, H). Simultaneous depletion of PAR-6 and PKC-3 also 
did not result in a growth delay or visible abnormalities in the intestine (Fig. S1A). These data indicate 
that PAR-6 and PKC-3 are not essential for the functioning and homeostasis of the larval intestine, 
though we cannot exclude that very low protein levels that we were not able to detect by fluorescence 
microscopy are sufficient in this tissue.

A recent study in Drosophila indicated a potential redundancy between aPKC and the kinase Pak1 
(Aguilar-Aragon et al., 2018). To determine if a similar redundancy was the cause of the absence 
of intestinal PKC-3 depletion phenotypes, we combined depletion of PKC-3 with inactivation of C. 
elegans pak-1 by RNAi. However, we again did not observe a delay in larval growth (Fig. S1B). 

In contrast to the intestine, depletion of PAR-6 or PKC-3 from hatching in the epidermis caused an 
early larval growth arrest, as observed with ubiquitous degradation (Fig. 2I, J). Thus, PAR-6 and 
PKC-3 play an essential role in the functioning and/or development of epidermal larval epithelia. We 
did notice that animals with ubiquitous PAR-6 or PKC-3 depletion appeared more sick than epidermal 
depleted animals, indicating that the functions of PAR-6 and PKC-3 are not limited to the epidermis. 

Cell autonomous and non-autonomous roles for PAR-6 and PKC‑3 in molting, seam cell 
divisions and seam cell morphology

One of the major functions of the epidermal epithelium is the synthesis and apical secretion of 
cuticle components, and defects in this tissue can lead to molting defects (Chisholm and Xu, 2012; 
Lažetić and Fay, 2017). As molting defects can be accompanied by a growth arrest (Brooks et al., 
2003; Lažetić and Fay, 2017; Russel et al., 2011; Yochem et al., 1999), we explored the possibility that 
PAR-6 depleted animals are molting defective. By Nomarski differential interference contrast (DIC) 
microscopy, we observed incompletely released cuticles 30 hours past exposure to auxin, indicative 
of molting defects (Fig. 3A). To examine molting progression in more detail, we used a transcriptional 
reporter expressing GFP from the mlt-10 promoter (Meli et al., 2010). mlt-10 expression cycles, 
increasing during molting and decreasing during the inter-molt. Upon epidermal degradation of PAR-
6 from hatching, mlt-10 driven GFP levels did not cycle and remained low (Fig. 3B, C), indicating a 
perturbation of the molting cycle. Together, these results demonstrate that PAR-6 performs essential 
functions in the epidermis required to support remodeling of the C. elegans cuticle.
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We next examined the effects of PAR-6 depletion on the stereotypical division pattern of the seam 
cells. In every larval stage, an asymmetric cell division creates a new seam cell daughter and a cell 
that differentiates to form neurons or fuse with hyp7 (Chisholm and Hsiao, 2012) (Fig. 3E, blue shaded 
lineage tree). In the second larval stage, a symmetric division precedes the asymmetric division to 
double the number of seam cells. Depletion of PAR-6 directly after hatching did not disrupt the L1 
asymmetric division, but the divisions that normally take place in the L2 stage were severely delayed 
(Fig. 3D, E). At the time when control animals were already undergoing the L3 divisions, L2-stage 
divisions had still not taken place in PAR-6 depleted animals. Eventually, a next round of divisions did 
take place, but we observed various deviations from the normal L2 division pattern, including division 
failures and abnormal differentiation and fusion with hyp7. We did not observe any L3 divisions (Fig. 
3E). We also observed numerous morphological abnormalities such as membrane protrusions, blebs, 
and abnormal division plane orientation (Fig. 3D). Exposure of synchronized populations to auxin 
starting after the L1 or L2 divisions resulted in similar defects, indicating that the seam cell lineage 
requires the functioning of PAR-6 throughout development (Fig. 3E).

Expression of TIR1 under the wrt-2 promoter results in degradation of target proteins in both hyp7 
and the seam cells. While both tissues contribute to cuticle production, severe molting defects 
can result from the loss of hyp7-specific proteins, such as the NIMA-related kinases NEKL-2,3 
(Yochem et al., 2015). It is possible therefore the seam cell defects are a secondary consequence of 
the molting defect. To address this, we expressed an exogenous copy of par-6:mCherry lacking the 
degron sequence in hyp7 using the hypodermis-specific dpy-7 promoter (Gilleard et al., 1997). In 
combination with auxin-induced depletion of PAR-6::GFP::AID by wrt-2 driven TIR-1, this results 
in absence of PAR-6 only from the seam cells. Hypodermal specific expression of par-6::mCherry 
rescued the cuticle defects and seam cell division delay observed upon PAR-6 epidermal degradation, 
and partially rescued the growth arrest (Fig. S2A–D). However, seam cell morphology defects and the 
abnormal cell division plane were not restored (Fig. S2C). Thus, PAR-6 expression in the hypodermis 
is sufficient to support molting and larval growth. Furthermore, at least some of the seam cell defects 
we observed, most notably the timing defect, appear to be a secondary consequence of hypodermal 
or molting defects. The fact that the growth arrest and seam abnormalities were not fully rescued may 
indicate cell autonomous roles for PAR-6 in the seam, or alternatively that the Pdpy-7::par-6::mCherry 
rescue construct is not fully functional.

L4 divisions. For before L1, n = 17 animals for the L1 and 143 animals for the delayed L2 divisions. For before L2, n = 91 
animals. For before L3, n = 40 animals.cell junction, normalized to the background intensity of each animal measured in 
the hypodermis. n = 6 animals for both conditions. (E, F) Junction organization visualized by DLG-1::mCherry expression 
in par-6::aid::gfp or gfp::aid::pkc-3 animals in the absence (- auxin) or presence (+ auxin) of 1 mM auxin for 6 (E) or 24 
(F) hours. (G) Graphical representation of junctional defects in the seam cells upon PAR-6 or PKC-3 degradation.15 for 
PAR-6 deg, 14 for PKC-3 deg and 13 for noca-1(ok3692). Bars show mean ± SD (E) Microtubule growth visualized by 
maximum intensity projection of the plus end marker EBP-2::GFP in absence (- auxin) or presence (+ auxin) of 1 mM auxin 
for 1 h. To match the age of animals in (C), we depleted PAR-6 for 1 h starting with 23 h old L2 animals. (F) EBP-2 comet 
density. n = 12 animals for control and PAR-6 deg, 8 for noca-1(ok3692), and 8 for PAR-6 deg + rescue. Bars show mean ± 
SD (G) Microtubule growth rate. n > 400 comets. Bars = mean ± SD (H) Quantification of microtubule growth orientation. 
Vertical axis: left/right orientation; horizontal axis: anterior/posterior orientation. n = 150 comets. Bars = mean ± SD. 
Tests of significance: Tukey’s multiple comparisons test for D, and Dunn’s multiple comparisons test for F and G. ns = not 
significant, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001.
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To determine the effects of a molting arrest on seam cell divisions via an alternative approach, we 
used a CRISPR-tagged NEKL-2::AID strain that arrests molting upon auxin addition (Joseph et al., 
2020). NEKL-2 depletion caused defects in the morphology of seam cells, as well as reduced cell 
division, confirming that abnormalities in the hypodermis can affect the seam cells (Fig. S2E, F). 
However, in contrast to PAR-6 depletion, not all seam cell divisions were affected, indicating that a 
block in molting does not fully explain the seam cell division delay in PAR-6 depleted animals.

Taken together, our data shows that PAR-6 and PKC-3 have essential roles in the C. elegans epidermis 
to support cuticle homeostasis and molting. Restoring par-6(+) expression specifically in the 
hypodermis revealed the importance of PAR-6 for this cell type and indicate that the hypodermis 
and/or molting are essential for proper seam cell development. Finally, PAR-6 may perform cell 
autonomous functions in the seam cells that contribute to proper seam cell shape and cell division 
plane.

PAR-6 and PKC-3 mediate apical LGL-1 exclusion and promote junction integrity in the larval 
epidermis 

As one of the major functions of the apical PAR complex is to mediate the exclusion of basolateral 
proteins from the apical domain, we next examined the effects of PKC-3 depletion on two key aPKC 
target genes: LGL-1/Lgl and PAR-1. Both proteins are direct aPKC targets in epithelia, and in the 
C. elegans zygote their anterior exclusion is mediated by PKC-3 (Beatty et al., 2010; Betschinger et 
al., 2003; Doerflinger et al., 2010; Hoege et al., 2010; Hurov et al., 2004; Motegi et al., 2011; Plant 
et al., 2003; Ramanujam et al., 2018; Yamanaka et al., 2003). For these experiments we made use of  
integrated LGL-1::GFP transgene (Waaijers et al., 2015) and an endogenously tagged PAR-1::GFP 
fusion.

Depletion of PKC-3 in the intestine did not result in apical invasion of LGL-1 (Fig. S3A). In contrast, 
degradation of PKC-3 in the epidermis resulted in clear apical LGL-1 localization in the seam cells 
within 6 hours of auxin addition (Fig. 4A, B). Degradation of PKC-3 in the epidermis did not result 
in apical PAR-1 localization (Fig. 4C, D). Instead, prolonged depletion of PKC-3 for 24h resulted in 
fragmentation of the normally contiguous PAR-1 signal at cell junctions, which may reflect an indirect 
effect of PKC-3 on junction organization (Fig. 4C). These results demonstrate that PKC-3 is necessary 
to maintain the basolateral localization of LGL-1 in the seam cells, but not the intestine. In contrast, 
the apical exclusion of PAR-1 is not solely mediated by aPKC, though the organization of PAR-1 at cell 
junctions does depend on PKC-3.

In embryonic epithelia, PAR-6 and PKC-3 are essential for proper junction formation, with loss of 
either protein resulting in fragmented cell junctions (Montoyo-Rosario et al., 2020; Totong et al., 
2007). To investigate the requirement for PAR-6 and PKC-3 in junction integrity in larval epithelia, 
we assessed the localization of an endogenous GFP fusion of the junctional protein DLG-1 upon 
degradation of PAR-6 or PKC-3 from hatching. In control animals not exposed to auxin, DLG-1 
displays the typical ladder-like intestinal junction pattern and forms a continuous apical belt around 
the seam cells (Figs S3B and 4E, F). Upon degradation of PAR-6 in the intestine, we did not observe 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.217679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217679
http://creativecommons.org/licenses/by-nc/4.0/


12

junctional defects (Fig. S3B). We also did not observe any changes to the DLG-1 localization 
pattern in the epidermis after 6 hours of PAR-6 or PKC-3 depletion (Fig. 4E). However, after 24 h 
of degradation, DLG-1 no longer localized in a uniform band around the seam cells but appeared 
fragmented, with aggregates of bright DLG-1 interspersed with areas lacking fluorescent signal (Fig. 
4F). We also observed fluorescent aggregates in the hypodermis (Fig. 4F). Thus, as in the embryo, 
PAR-6 and PKC-3 are essential for junction integrity in the epidermis. The fact that junctional defects 
took 24 h to develop, compared to 6 h for LGL-1 mislocalization, points to an inherent stability of cell 
junctions.

Fig. 4. PKC-3 excludes LGL-1 from the apical cortex and, together with PAR-6, regulates junctions. (A, B) 
Distribution and quantification of LGL-1::GFP in the epidermis of lgl-1::gfp animals without auxin and in lgl-1::gfp; 
gfp::aid::pkc-3; Pwrt-2::tir-1::bfp animals in the presence of 4mM auxin. Images are maximum projections of the 
apical domain. Quantifications shows mean apical GFP fluorescence intensity ± SD at the hyp7–seam cell junction, 
normalized to background intensity of each animal measured in the hypodermis. n = 7 animals for both conditions. (C, 
D) Distribution and quantification of PAR-1::GFP in the epidermis in par-1::gfp animals without auxin and in par-1::gfp; 
gfp::aid::pkc-3; Pwrt-2::tir-1::bfp animals in the presence of 4mM auxin. Images are maximum projections of the apical 
domain. Quantifications show mean apical GFP fluorescence intensity ± SD at the hyp7–seam cell junction, normalized to 
the background intensity of each animal measured in the hypodermis. n = 6 animals for both conditions. (E, F) Junction 
organization visualized by DLG-1::mCherry expression in par-6::aid::gfp or gfp::aid::pkc-3 animals in the absence 
(- auxin) or presence (+ auxin) of 1 mM auxin for 6 (E) or 24 (F) hours. (G) Graphical representation of junctional defects 
in the seam cells upon PAR-6 or PKC-3 degradation.
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Finally, we investigated the localization dependencies between PAR-6, PKC-3 and PAR-3. Several 
studies demonstrated that PAR-6 and PKC-3 co-localize throughout development, and are mutually 
dependent on each other for their asymmetric localization (Bossinger et al., 2001; Leung et al., 1999; 
McMahon et al., 2001; Nance and Priess, 2002; Nance et al., 2003; Tabuse et al., 1998; Totong et al., 
2007). Moreover, binding of PAR-6 to PKC-3 is required for apical localization of PAR-6, including 
in larval epithelia (Li et al., 2010a). Not surprisingly therefore, degradation of PAR-6 resulted in 
the loss of PKC-3 from the apical domain of the seam cells, and degradation of PKC-3 similarly 
disrupted PAR-6 localization (Fig. S4A, B). These disruptions occurred rapidly, within 1 h of auxin 
addition. Depletion of PAR-6 in the intestine also caused rapid loss of PKC-3 from the apical plasma 
membrane, demonstrating that, despite the lack of intestinal phenotypes, PAR-6 and PKC-3 do form 
an apical protein complex (Fig. S3C, D). When we followed the apical loss of PKC-3 in the intestine 
over time, we observed similar dynamics of PAR-6 depletion and PKC-3 loss (Video S1). Our results 
thus confirm the interdependency between PAR-6 and PKC-3. Surprisingly, the effects of PAR-6 and 
PKC-3 depletion on PAR-3 were distinct: the apical localization of PAR-3 in the seam cells depended 
on the presence of PKC-3, but not PAR-6 (Fig. S4C, D). Finally, we examined the effects of PAR-3 
degradation on PAR-6 and PKC-3 in the seam cells. We observed partially reduced levels of PAR-6, 
but no effect on PKC-3 (Fig. S4E, F). Thus, PAR-6 and PKC-3 may not form an obligatory dimer 
under all conditions.

PAR-6 and PKC-3 control the organization of non-centrosomal microtubule arrays in the 
hypodermis

The loss of PAR-6 or PKC-3 affected several epidermal processes in which cytoskeletal elements play 
important roles, including molting, seam cell divisions, and maintaining proper seam cell morphology. 
The PAR proteins play essential roles in organizing the actomyosin cytoskeleton and microtubules 
in different settings, including asymmetric cell division, neuronal differentiation, and epithelial 
polarization (Goldstein and Macara, 2007; Rodriguez-Boulan and Macara, 2014; St Johnston, 2018). 
We therefore investigated if PAR-6 degradation affects the organization of actin or microtubules in 
the epidermis. To assess the organization of the actin cytoskeleton we used an epidermal transgene 
expressing the actin-binding-domain of vab-10 fused to mCherry (Gally et al., 2009). We depleted 
PAR-6 from hatching and examined actin organization after 24 h in late L2 larvae. Consistent with 
previous observations (Costa et al., 1997), we observed prominent circumferential actin bundles 
in hyp7, strong enrichment of actin along the hyp7/seam junctions, and largely anterior/posteriorly 
organized actin within the seam cells of control animals at this stage (Fig. 5A). Upon PAR-6 depletion, 
actin organization appeared largely undisturbed in both the seam cells and hypodermis (Fig. 5A), and 
actin bundles in hyp7 remained perpendicular to the seam cells (Fig. 5B). These data indicate that 
PAR-6 does not play a major role in regulating the actin cytoskeleton in the larval epidermis.

We next inspected the organization of the microtubule cytoskeleton using an endogenously GFP 
tagged variant of the microtubule-binding protein MAPH-1.1 (Waaijers et al., 2016). We degraded 
PAR-6 in the epidermis from hatching and assessed the organization of epidermal microtubule arrays 
after 24 h. In control animals, we observed highly ordered circumferential microtubule bundles in the 
dorsal and ventral sections of hyp7 underlying the muscle quadrants, and a microtubule meshwork in 
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Fig. 5. PAR-6 and PKC-3 control microtubule organization in the C. elegans epidermis. (A) Actin organization 
visualized by the Plin-26::ABDvab-10::mCherry reporter in par-6::aid::gfp animals in absence (- auxin) or presence 
(+ auxin) of 1 mM auxin for 24 hours. (B) Quantification of actin bundle orientation. Angle is measured relative to the 
anterior (180°) – posterior (0°) axis. n = 100 bundles in 5 animals per condition. (C) Microtubule organization of the 
indicated genotypes visualized by MAPH-1.1::GFP in absence (- auxin) or presence (+ auxin) of 1 mM auxin for 24 hours. 
Images are maximum intensity projections. (D) Hypodermal microtubule bundle density. n = 13 animals for control, 15 
for PAR-6 deg, 14 for PKC-3 deg and 13 for noca-1(ok3692). Bars show mean ± SD (E) Microtubule growth visualized by 
maximum intensity projection of the plus end marker EBP-2::GFP in absence (- auxin) or presence (+ auxin) of 1 mM auxin 
for 1 h. To match the age of animals in (C), we depleted PAR-6 for 1 h starting with 23 h old L2 animals. (F) EBP-2 comet 
density. n = 12 animals for control and PAR-6 deg, 8 for noca-1(ok3692), and 8 for PAR-6 deg + rescue. Bars show mean ± 
SD (G) Microtubule growth rate. n > 400 comets. Bars = mean ± SD (H) Quantification of microtubule growth orientation. 
Vertical axis: left/right orientation; horizontal axis: anterior/posterior orientation. n = 150 comets. Bars = mean ± SD. 
Tests of significance: Tukey’s multiple comparisons test for D, and Dunn’s multiple comparisons test for F and G. ns = not 
significant, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001.
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the lateral sections of hyp7 abutting the seam cells, as previously reported (Chuang et al., 2016; Costa 
et al., 1997; Taffoni et al., 2020; Wang et al., 2015) (Fig. 5C). In the seam cells the microtubule network 
was less well defined but also forms a meshwork (Fig. 5C). In PAR-6 depleted animals, we observed a 
significant reduction in the density of circumferential microtubule bundles in the hypodermis (Fig. 5C, 
D). Epidermal depletion of PKC-3 resulted in similar defects (Fig. 5C, D). To understand the cause of 
the reduced microtubule density, we investigated microtubule dynamics using an endogenous fusion 
of the microtubule plus-end tracking protein EBP-2EB1 to GFP. In control animals, EB1 comets moved 
along trajectories consistent with the organization of microtubule bundles in the epidermis, and both 
comet density and growth rates match previous reports (Fig. 5 E–G) (Chuang et al., 2016; Taffoni et 
al., 2020; Wang et al., 2015). Already within 1 h of inducing depletion of PAR-6, we observed reduced 
microtubule dynamics (Fig. 5E–G). The density of growing MTs was reduced by 56% (Fig. 5F), and 
microtubule growth rate was reduced by 14% in hyp7 and by 16% in the seam cells (Fig. 5G). These 
results suggest that the reduced density of microtubule bundles upon depletion of PAR-6 is the result 
of reduced growth or nucleation of microtubules. We also observed a defect in the directionality of 
microtubule growth. While 54% of the comets in control animals travel perpendicular to the seam 
cells (70–110°), this number is reduced to 24% upon PAR-6 degradation (Fig. 5H), consistent with the 
defects in organization observed with GFP::MAPH-1.1.

PAR-6 controls microtubule organization through its interaction partner NOCA-1/Ninein and 
the γ-tubulin ring complex

Two large-scale protein–protein interaction mapping studies in C. elegans had identified the 
microtubule organizing protein NOCA-1 as an interaction partner of PAR-6 (Boxem et al., 2008; 
Lenfant et al., 2010). Affinity purification experiments showed that PAR-6 interacts with NOCA-1 
through its PDZ domain (Lenfant et al., 2010), and we were able to confirm the PAR-6 PDZ 
interaction with NOCA-1 by yeast two-hybrid (Fig. S5). NOCA-1 functions together with γ-tubulin 
to assemble non-centrosomal microtubule arrays in multiple tissues, including the epidermis, and is 
thought to be a functional homolog of the vertebrate microtubule organizer Ninein (Green et al., 2011; 
Wang et al., 2015). NOCA-1 localizes to the apical cortex in seam cells, similar to the localization of 
PAR-6 (Figs 1C, 6A), but the mechanisms that mediate apical localization of NOCA-1 are currently 
not known. The physical interaction between PAR-6 and NOCA-1 prompted us to investigate if PAR-6 
regulates non-centrosomal microtubule arrays through NOCA-1.

We first examined the effect of epidermal PAR-6 depletion on the localization of NOCA-1. To 
visualize NOCA-1 we made use of an existing transgenic line that expresses the epidermis specific 
NOCA-1d and e isoforms fused to GFP from their endogenous promoter (Wang et al., 2015). In 
untreated control animals, we observed punctate localization of NOCA-1 in the epidermis, mostly 
clustered at the seam/seam and seam/hyp7 junctions, as previously observed (Fig. 6A) (Wang et al., 
2015). Addition of auxin to induce epidermal PAR-6 degradation led to a 61% reduction in junctional 
levels of NOCA-1 within 6 hours (Fig. 6A, B), demonstrating that PAR-6 promotes the apical 
localization of NOCA-1. 
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NOCA-1 was reported to work together with γ-tubulin and redundantly with Patronin/PTRN-1 in 
controlling circumferential microtubule bundle organization in the hypodermis (Wang et al., 2015). 
We therefore examined the effect of PAR-6 depletion on the localization of PTRN-1 and GIP-1, a core 
component of the γ-tubulin ring complex (γ-TuRC) required to localize other γ-TuRC components 
to the apical non-centrosomal microtubule organizing center (ncMTOC) in the embryonic intestine 
(Sallee et al., 2018). To visualize PTRN-1 and GIP-1 we used endogenous PTRN-1::GFP and 
RFP::GIP-1 fusion proteins. GIP-1 localized in a punctate pattern at the seam/seam and seam/hyp7 
junctions, similar to NOCA-1 (Fig. 6C) (Sallee et al., 2018; Wang et al., 2015). PTRN-1 also localized 
in a punctate pattern, but dispersed through the epidermis and lacking the junctional enrichment seen 

Fig. 6. PAR-6 promotes the localization of its binding partner NOCA-1, as well as of GIP-1 and PTRN-1. (A, B) 
Distribution and quantification of NOCA-1de::GFP in the epidermis of noca-1de::gfp animals without auxin, and noca-
1de::gfp; par-6::aid::gfp; Pwrt-2::tir-1::bfp animals in the presence of 4mM auxin. n = 9 animals for Control, and 10 for 
PAR-6 epid. deg. (C, D) Distribution and quantification of GIP-1::RFP in the epidermis of gip-1::rfp animals without 
auxin, and gip-1::rfp; par-6::aid::gfp; Pwrt-2::tir-1::bfp animals in the presence of 4mM auxin. n = 6 for Control and 6 for 
PAR-6 epid. deg. (E, F) Distribution and quantification of PTRN-1::GFP in the epidermis of ptrn-1::gfp animals without 
auxin, and ptrn-1::gfp; par-6::aid::gfp; Pwrt-2::tir-1::bfp animals in the presence of 4mM auxin. n = 10 for Control and 10 
for PAR-6 deg. (G, I) Distribution and quantification of GIP-1::RFP in the epidermis of gip-1::rfp animals and gip-1::rfp; 
noca-1(ok3692). n = 6 for Control and 6 for noca-1(ok3692). All images are maximum projections of the apical domain. 
Quantifications in B, D and H show mean apical GFP fluorescence intensity ± SD at the hyp7-seam cell junction (indicated 
by colored lines), normalized to background intensity of each animal measured in the hypodermis. Quantification in F 
shows mean PTRN-1::GFP puncta density ± SD. Tests of significance: unpaired t-test for F. *** = P ≤ 0.001.
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for NOCA-1 and GIP-1 (Fig. 6E) (Wang et al., 2015). Upon PAR-6 degradation, junctional GIP-1 levels 
were strongly reduced (Fig. 6C, D), similarly to NOCA-1. We also observed that PAR-6 depletion 
resulted in a decrease in the number of PTRN-1 puncta in the epidermis (Fig. 6E, F). As NOCA-1 is 
a direct interaction partner of PAR-6, we examined if the loss of GIP-1 is due to the loss of NOCA-1 
localization. Indeed, in a noca-1(ok3692) deletion mutation GIP-1 levels were significantly reduced 
(Fig. 6G, H), suggesting that NOCA-1 acts upstream of GIP-1 in the C. elegans larval epidermis.

Finally, we examined if the failure to properly localize NOCA-1 could explain the microtubule 
defects we observed upon PAR-6 depletion. We determined microtubule bundle density, EB1 comet 
density, and microtubule growth rate in noca-1(ok3692) animals. In the noca-1(ok3692) deletion 
mutant, we observed a significant reduction in the density of circumferential microtubule bundles in 
the hypodermis (Fig. 5C, D). As reported in a previous study (Wang et al., 2015), we also observed 
reduced microtubule dynamics, with the density of growing MTs reduced by 65%, and microtubule 
growth rates reduced by 65 % (Fig. 5E, G). These values are all very similar to those we observed 
upon PAR-6 depletion and are consistent with a model in which the microtubule defects caused 
by PAR-6 depletion are a result of the requirement of PAR-6 in localizing NOCA-1. The effects on 
PTRN-1 may be a secondary consequence of microtubule defects caused by NOCA-1 loss.

Discussion

Par6 and aPKC are essential for apical–basal polarization across animal species. Here, we used 
inducible protein degradation to identify an essential role for PAR-6 and PKC-3 in the larval epidermis 
of C. elegans, and a novel role for PAR-6 in regulating the assembly of microtubule bundles through 
its interaction partner NOCA-1/Ninein. Most studies of the apical PAR proteins in C. elegans have 
focused on embryonic tissues, and an essential role in postembryonic development has not been 
described. Depletion of par-6, pkc-3, or par-3 by RNAi in larval stages caused defects in polarization 
of spermathecal cells and in ovulation, but not in larval development (Aono et al., 2004). Similar 
results were recently observed using a temperature sensitive pkc-3 allele grown at non-permissive 
temperature (Montoyo-Rosario et al., 2020). More severe phenotypes were observed in hatching 
progeny (escapers) of par-6, pkc-3, or par-3 RNAi-treated mothers, which showed partially penetrant 
defects in outgrowth of vulval precursor and seam cells, migrations of neuroblasts and axons, and the 
development of the somatic gonad (Welchman et al., 2007). The lack of a growth arrest phenotype in 
these studies presumably reflects incomplete gene inactivation.

Auxin-inducible protein depletion of PAR proteins

The auxin-inducible degradation approach allowed us to bypass embryonic requirements and examine 
the roles of PAR-6, PKC-3, and PAR-3 in specific epithelial tissues during larval development. Despite 
these advantages, one drawback of all protein degradation approaches is that it remains difficult to 
draw conclusions from negative results. Although we tagged all known PAR-3 protein isoforms and 
observed efficient protein depletion, ubiquitous depletion of PAR-3 did not cause obvious defects 
in larvae. While PAR-3 may indeed not be essential in larval tissues, it is also possible that very 
low levels of PAR-3 are sufficient for its functioning, or that unpredicted splicing events cause the 
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expression of non-degron tagged PAR-3 isoforms. One approach to counteract the latter possibility 
would be to replace the endogenous gene with a re-engineered copy that is unlikely to express 
alternative splice variants, e.g. by replacing natural introns with artificial ones and removing internal 
promoters. However, removing this level of regulation and expressing only one isoform may affect 
the functioning of par-3 and cause unintended side effects. We also did not detect phenotypes upon 
depletion of PAR-6 or PKC-3 in the larval intestine. Similar caveats as for PAR-3 depletion apply 
here, though PAR-6 depletion did lead to complete loss of PKC-3 from the apical domain, and 
epidermal depletion caused severe phenotypes. These observations make it less likely that the lack 
of a phenotype is due to the expression of unknown isoforms. PAR-6 and PKC-3 are likely to play 
non-essential or redundant roles in the intestine, as a previous study found that PAR-6 contributes to 
endosome positioning in this tissue (Winter et al., 2012). 

Roles of PAR-6 and PKC-3 in junction formation and cell polarity

Depletion of PAR-6 and PKC-3 in the epidermis resulted in a fragmented appearance of the hyp7/seam 
and seam/seam junctions, similar to previous observations in embryonic epithelia (Montoyo-Rosario 
et al., 2020; Totong et al., 2007; Von Stetina and Mango, 2015; Von Stetina et al., 2017). Our data 
therefore further demonstrate a general requirement for PAR-6 and PKC-3 in junction formation or 
maintenance. We also examined if PKC-3 functions to exclude the basolateral polarity proteins PAR-1 
and LGL-1 from the apical domain. In the epidermis, PKC-3 depletion caused a rapid invasion of 
LGL-1 in the apical domain of the seam cells, while PAR-1 remained junctional and basal. Thus, as 
in the one cell embryo, PKC-3 functions to exclude LGL-1 in the seam cells. A recent study found 
that LGL-1 can suppress sterility of a temperature sensitive pkc-3 allele, further indicating that the 
interaction between LGL-1 and PKC-3 is functionally relevant (Montoyo-Rosario et al., 2020).

In contrast to the epidermis, LGL-1 localization in the intestine remained unchanged upon PKC-3 
depletion, and we observed no obvious abnormalities in the intestine upon PAR-6 or PKC-3 depletion. 
Thus, while PAR-6 and PKC-3 are essential for development of the embryonic intestine (Totong et 
al., 2007), they do not appear to be essential in the larval intestine. Other cellular systems, such as 
polarized protein trafficking, may suffice to maintain cell polarity in the absence of the apical PAR 
proteins (Shafaq-Zadah et al., 2012; Zhang et al., 2011; Zhang et al., 2012). An analogous situation 
exists in the Drosophila midgut, where integrins, but not the apical PAR proteins, are essential for 
polarization (Chen et al., 2018). The lack of LGL-1 mislocalization also points to the existence of 
possible redundancies in polarization of cortical polarity regulators, which may be uncovered through 
enhancer screens in PAR-6 or PKC-3 depleted backgrounds.

In embryonic epithelia, the requirements of the apical PAR proteins also vary between tissues. 
Intestinal and epidermal cells depleted of PAR-6 or PKC-3 using the ZF1 system still show apicobasal 
polarization, as evidenced by apical localization of junctional and cytoskeletal proteins (Montoyo-
Rosario et al., 2020; Totong et al., 2007). However, in the arcade cells of the pharynx, most PAR-6 
depleted animals show no apical enrichment of junctional or apical cytoskeletal markers (Von Stetina 
and Mango, 2015). These data further highlight that the requirements for PAR-6 and PKC-3 can vary 
between tissues.
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Interdependencies between the PAR proteins

PAR-6 and PKC-3 were mutually dependent in both the epidermis and intestine. This result was not 
surprising, as Par6 and aPKC act as a dimer and have been shown to be mutually dependent in other 
C. elegans tissues (Hung and Kemphues, 1999; Li et al., 2010a; Nance et al., 2003; Tabuse et al., 
1998; Totong et al., 2007). We also found that depletion of PAR-3 from the epidermis resulted in a 
partial loss of PAR-6. This is consistent with findings that multiple mechanisms can promote cortical 
recruitment of Par6–aPKC, including binding of Par6 to Par3 or Cdc42, and binding of aPKC to 
phospholipids (Dong et al., 2020; Hong et al., 2003; Hutterer et al., 2004; Joberty et al., 2000; Nagai-
Tamai et al., 2002; Nunes de Almeida et al., 2019; Rodriguez et al., 2017; Wang et al., 2017; Wodarz et 
al., 2000). Conversely, the apical localization of PAR-3 was dependent upon PKC-3. While Par3 often 
localizes independently of Par6/aPKC, a similar dependency has been observed in Drosophila and in 
the C. elegans zygote (Hutterer et al., 2004; Petronczki and Knoblich, 2001; Tabuse et al., 1998; Watts 
et al., 1996). 

Two results were more surprising in light of the interdependency between PAR-6 and PKC-3. First, 
whereas depletion of PKC-3 causes a loss of apical PAR-3, depletion of PAR-6 did not have a similar 
effect. Second, PAR-3 depletion resulted in a partial reduction of apical PAR-6 levels, but not of 
PKC-3. An independence in PAR-6 and PKC-3 localization has been observed previously in the one 
cell embryo, where reduction of the chaperone protein CDC-37 by RNAi resulted in the localization 
of PAR-6 to the cortex independently of PKC-3 (Beers and Kemphues, 2006). Thus, under certain 
conditions, PAR-6 and PKC-3 may not act as an obligate dimer.

A novel role for PAR-6 in epidermal microtubule organization

Epidermal specific depletion uncovered a novel role for PAR-6 in organizing non-centrosomal 
microtubule bundles. In epithelial cells, apical non-centrosomal microtubule organizing centers 
(ncMTOCs) assemble apical–basal microtubule arrays. ncMTOCs contain proteins and complexes 
involved in microtubule anchoring, microtubule stabilization, and microtubule nucleation — such 
as the γ-tubulin ring complex (γ-TuRC) (Sanchez and Feldman, 2017). How apical ncMTOCs are 
organized is not well understood, but several studies indicate an important role for apical PAR 
proteins in this process. In the cellularizing Drosophila embryo, aPKC is required for the transition 
from centrosome emanated asters to non-centrosome associated apical–basal bundles (Harris 
and Peifer, 2007). In the developing embryonic intestine of C. elegans, PAR-3 is needed for the 
redistribution of γ-tubulin and other microtubule regulators from the centrosomes to the apical domain 
of the cell (Feldman and Priess, 2012). A role for Par6 in regulating microtubule organizing centers 
may not be limited to epithelial ncMTOCs. For example, in several mammalian cultured cell lines 
Par6 is a component of centrosomes and regulates centrosomal protein composition (Dormoy et al., 
2013; Kodani et al., 2010).

Epidermal depletion of PAR-6 resulted in reduced numbers of circumferential microtubule bundles, as 
well as a reduced microtubule growth rate and EB1 comet density. Moreover, depletion of PAR-6 led 
to a loss of apical NOCA-1 enrichment at seam–seam and seam–hyp7 junctions. The effects of PAR-6 
depletion on microtubule organization and dynamics are very similar to those we observed in a noca-1 
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mutant. While other models are possible, these data are consistent with PAR-6 acting through NOCA-
1 to control microtubule organization in the epidermis. The reduced microtubule growth rate and EB1 
comet density we observed in noca-1 mutant animals have been reported previously (Wang et al., 
2015). However, no defects in circumferential microtubule bundle density were observed in that study, 
despite using the same noca-1(ok3692) allele. The observed difference may be a result of a difference 
in exact experimental procedure or the precise genetic background used. For example, whereas we 
used the microtubule-binding protein GFP::MAPH-1.1 to label microtubules, the study by Wang et al. 
used a GFP::β-tubulin fusion. 

We also found that, in the epidermis, the localization of GIP-1 is dependent on NOCA-1. The 
relationship between NOCA-1 and γ-TuRC components has been examined previously in two 
different tissues (Sallee et al., 2018; Wang et al., 2015). In the germline, NOCA-1 co-localizes with 
γ-tubulin to non-centrosomal microtubule arrays but is not required for the localization of γ-tubulin 
(Wang et al., 2015). In fact, in this tissue the localization of a short NOCA-1 protein lacking isoform-
specific N-terminal extensions is dependent for its localization on γ-tubulin. The longer NOCA-1h 
isoform, however, localizes independently of γ-tubulin, indicating the presence of multiple NOCA-1 
localization signals (Wang et al., 2015). In the embryonic intestine, the localization of NOCA-1 was 
not altered by the depletion of GIP-1 (Sallee et al., 2018). However, microtubule organization in the 
intestine is regulated differently from the epidermis, as apical microtubule organization was largely 
normal even in ptrn-1 mutant animals depleted of intestinal NOCA-1 and GIP-1 (Sallee et al., 2018). 
Thus, differential effects of γ-TuRC component loss may reflect differences in the mechanisms 
of microtubule regulation. Whether PAR-6 plays a role in ncMTOC assembly and microtubule 
organization in tissues other than the epidermis remains to be investigated.

In addition to the effects on NOCA-1 and GIP-1, PAR-6 depletion resulted in a reduced number of 
PTRN-1 puncta in the epidermis. PTRN-1 is a member of the Patronin/CAMSAP/Nezha family 
of minus end-associated proteins, which stabilize and protect uncapped microtubule minus ends 
(Atherton et al., 2019; Goodwin and Vale, 2010; Hendershott and Vale, 2014; Jiang et al., 2014). 
NOCA-1 was previously shown to act in parallel with PTRN-1 in organizing circumferential 
microtubule arrays in the C. elegans epidermis (Wang et al., 2015). The mechanistic details of the 
relationship between NOCA-1 and PTRN-1 have not been resolved, but their distinct localization 
patterns suggest that they act on distinct pools of microtubules. Our data does not reveal why 
PAR-6 depletion results in a reduced number of PTRN-1 foci, but a likely possibility is that this is a 
secondary consequence of the microtubule defects caused by the loss of NOCA-1 localization.

Mechanisms of larval growth arrest

The depletion of PAR-6 or PKC-3 in the epidermis led to a rapid growth arrest and cessation of the 
molting cycle. What causes this dramatic effect on animal development? The junctional defects we 
observed are unlikely to be the primary consequence, as effects on cell junctions appeared only after 
24 h of exposure to auxin. The effects on LGL-1 were more rapid but are also not likely to explain the 
growth arrest, as lgl-1 mutants are viable (Beatty et al., 2010; Hoege et al., 2010). The effects on the 
microtubule cytoskeleton are likely to contribute to the growth arrest or molting defects. However, 
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noca-1 mutants displayed similar microtubule defects as PAR-6 depletion yet develop to adulthood. 
Interestingly, noca-1; ptrn-1 double mutant animals do grow slowly and frequently die before reaching 
adulthood (Wang et al., 2015). Thus, the combined defects in NOCA-1 and PTRN-1 localization we 
observed upon PAR-6 depletion may partially explain the growth defects. The roles of PTRN-1 may 
not be limited to microtubule regulation, as a recent study demonstrated that PTRN-1 stimulates actin 
polymerization during endocytic recycling in the intestine (Gong et al., 2018). A final possibility is 
that the molting defect is the primary cause of the developmental arrest, as failure to molt can cause a 
growth arrest (Brooks et al., 2003; Lažetić and Fay, 2017; Russel et al., 2011; Yochem et al., 1999). 

One way in which PAR-6 and PKC-3 could affect molting is by affecting intracellular trafficking. 
Molting requires the coordinated activity of the endocytic and exocytic machineries to mediate apical 
secretion of new cuticle components, recycling of old cuticle components, and uptake of sterols from 
the environment (Lažetić and Fay, 2017). Accordingly, mutations in multiple regulators of intracellular 
trafficking cause molting defects (Lažetić and Fay, 2017). Several links between cortical polarity 
regulators and the polarized trafficking machinery have been uncovered (Rodriguez-Boulan and 
Macara, 2014). In C. elegans, par-3, par-6, and pkc-3 were all found to be required for endocytic 
trafficking in oocytes, and RNAi for par-3 and par-6 causes scattering of multiple endosome types in 
the intestine (Balklava et al., 2007; Winter et al., 2012). It is possible, therefore, that PAR-6 and PKC-3 
regulate vesicle trafficking in molting as well. Such regulation may be indirect, through regulation of 
cytoskeletal components, or through more direct mechanisms remaining to be uncovered. 

In summary, our data supports that PAR-6 and PKC-3 have multiple roles in the epidermis that 
support larval development and molting. We have also uncovered an important role for PAR-6 in 
regulating the microtubule cytoskeleton, while additional mechanisms through which PAR-6 and 
PKC-3 control growth and/or molting likely remain to be discovered.

Materials and Methods

C. elegans strains
All C. elegans strains used in this study are derived from the N2 Bristol strain, and are listed in Table 1. All strains were 
maintained at 20 °C on Nematode Growth Medium (NGM) plates seeded with Escherichiae coli OP50 bacteria under 
standard conditions (Brenner, 1974). 

CRISPR/Cas9 genome engineering
All gene editing was done by homology-directed repair of CRISPR/Cas9-induced DNA double-strand breaks, using 
plasmid-based expression of Cas9 and sgRNAs. All edits were made in an N2 background, with the exception of 
2x(egfp::aid)::par-3, for which egfp::aid::par-3 was used as the starting background. All fusions were repaired using 
a plasmid-based template with 190–600 bp homology arms and containing a self-excising cassette (SEC) for selection 
(Dickinson et al., 2015). The homology arms included mutations of the sgRNA recognition sites to prevent re-cutting after 
repair. The par-6::aid::egfp, par-6::mCherry, dlg-1::mCherry and ebp-2::egfp vectors were cloned using Gibson assembly 
and vector pJJR82 (Addgene #75027) (Gibson et al., 2009; Ramalho et al., 2020) as the backbone. The 2x(egfp::aid)::par-3, 
Pwrt-2::tir-1::bfp and Pelt-2::tir-1::bfp vectors were cloned using SapTrap assembly into vector pMLS257 (Schwartz and 
Jorgensen, 2016), and the egfp::aid::pkc-3 and mCherry::pkc-3 vectors were cloned using SapTrap assembly into vector 
pDD379 (Dickinson et al., 2018). The sgRNAs were expressed from a plasmid under control of a U6 promoter. To generate 
sgRNA vectors, antisense oligonucleotide pairs were annealed and ligated into BbsI-linearized pJJR50 (Addgene #75026) 
(Waaijers et al., 2016), with the exception of the pkc-3 fusions, in which the sgRNA was incorporated into assembly 
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vector pDD379 using SapTrap assembly. The targeted sequences can be found in Table 2. Injection mixes were prepared in 
MilliQ H2O and contained 50 ng/ml Peft-3::cas9 (Addgene ID #46168) (Friedland et al., 2013), 50–100 ng/µl U6::sgRNA, 
50 ng/µl of repair template, with the exception of the pkc-3 fusions, in which the sgRNA-repair-template vector was used 
at a concentration of 65 ng/µl. All mixes also contained 2.5 ng/µl of the co-injection pharyngeal marker Pmyo-2::GFP 
or Pmyo-2::tdTomato to aid in visual selection of transgenic strains. Young adult hermaphrodites were injected in the 
germline using an inverted micro-injection setup (Eppendorf FemtoJet 4x mounted on a Zeiss Axio Observer A.1 equipped 
with an Eppendorf Transferman 4r). Candidate edited progeny were selected on plates containing 250 ng/µl of hygromycin 
(Dickinson et al., 2015), and correct genome editing was confirmed by Sanger sequencing (Macrogen Europe) of PCR 
amplicons encompassing the edited genomic region. From correctly edited strains, the hygromycin selection cassette was 
excised by a heat shock of L1 larvae at 34 °C for 1 h in a water bath. Correct excision was confirmed by Sanger sequencing. 
Sequence files of the final gene fusions in Genbank format are in Supplementary File 1. 

C. elegans synchronization 
In order to obtain synchronized worm populations, plates with eggs were carefully washed with M9 (0.22 M KH2PO4, 0.42 
M Na2HPO4, 0.85 M NaCl, 0.001 M MgSO4) buffer in order to remove larvae and adults but leave the eggs behind. Plates 
were washed again using M9 buffer after an hour, to collect larvae hatched within that time span.

Auxin Inducible Degradation
Auxin treatment was performed by placing synchronized populations of worms on NGP plates seeded with E. coli OP50 
and containing 1 or 4 mM auxin. To prepare plates, auxin (Alfa Aesar A10556) was diluted into the autoclaved NGM agar 
medium after cooling to 60 °C prior to plate pouring. Plates were kept for a maximum of 2 weeks in the dark at 4 °C.

C. elegans growth curves
To measure growth curves, L1 animals synchronized as described above were placed on NGM plates seeded with E. coli 
OP50 and either lacking auxin or containing 4 mM auxin. Images were taken in 24 h intervals up to 96 h, using a Zeiss 
Axio Zoom.V16 equipped with a PlanNeoFluar Z 1x/0.25 objective and Axiocam 506 color camera, driven by Zen Pro 
software. Animal length was quantified in ImageJ(FIJI) software by drawing a spline along the center line of the animal 
(Rueden et al., 2017; Schindelin et al., 2012). 

Feeding RNAi
pak-1 RNAi clones were obtained from the genome-wide Ahringer and Vidal RNAi feeding librarys (Kamath and 
Ahringer, 2003; Rual et al., 2004). Ahringer clone supplied through Source BioScience. An HT115 clone expressing the 
L4440 vector lacking an insert was used as a control. For feeding RNAi experiments, bacteria were cultured overnight 
in 10 mL of Lysogeny Broth (LB) supplemented with 100 μg/ml ampicilin (Amp) and 2.5 μg/ml tetracyclin (Tet) at 37°C 
in an incubator rotating at 200 rpm. Cultures were incubated for 120 min in the presence of 1 mM Isopropyl β-D-1-
thiogalactopyranoside (IPTG) to induce production of dsRNA. Cultures were pelleted by centrifugation at 4000 g for 
15 min and concentrated 5x. NGM agar plates supplemented with 50 μg/ml Amp, 12.5 µg/mL Tet and 1 mM IPTG were 
seeded with 250 μl of bacterial suspension. 8-10 L4 hermaphrodites per strain were transferred to NGM-RNAi plates, 
and two plates were analyzed per condition. The F1 generation was synchronized and its growth curved determined as 
described above. 

Molting assay
Synchronized L1 animals were placed on NGM plates seeded with E. coli OP50 and either lacking auxin or containing 1 
mM auxin. Fluorescence images were taken in 1 h intervals from 11 h to 32 h of development, using a Zeiss Axio Zoom.
V16 equipped with a PlanNeoFluar Z 1x/0.25 objective and Axiocam 506 color camera, driven by Zen Pro software. 
Expression levels of the Pmlt-10::gfp::pest reporter were quantified in ImageJ(FIJI) software (see image analysis).

Seam cell lineage analysis
Synchronized animals were placed on NGM plates seeded with E. coli OP50 and either lacking auxin or containing 1 mM 
auxin. Animals were placed on plates immediately after hatching (L1 degradation), at 7 h of development (L2 degradation) 
or at 19 h of development (L3 degradation). Every hour, from placing the worms on plates until seam cell fusion on control 
plates lacking auxin, a sample of animals were imaged by spinning disc confocal microscopy. The number of seam cell and 
hyp7 nuclei were counted manually.
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Microscopy
Live imaging of C. elegans larvae was done by mounting larvae on 5% agarose pads in a 10 mM Tetramisole solution in 
M9 buffer to induce paralysis. DIC imaging was performed with an upright Zeiss AxioImager Z2 microscope using a 63× 
1.4 NA objective and a Zeiss AxioCam 503 monochrome camera, driven by Zeiss Zen software. Spinning disk confocal 
imaging was performed using a Nikon Ti-U microscope driven by MetaMorph Microscopy Automation & Image Analysis 
Software (Molecular Devices) and equipped with a Yokogawa CSU-X1-M1 confocal head and an Andor iXon DU-885 
camera, using 60× or 100× 1.4 NA objectives. All stacks along the z-axis were obtained at 0.25 μm intervals, and all images 
were analyzed and processed using ImageJ(FIJI) and Adobe Photoshop. For quantifications, the same laser power and 
exposure times were used within experiments.

Quantitative image analysis
All image analysis was done in using ImageJ (FIJI). For intensity profile measurements of spinning disk microscopy data, 
background values were subtracted from the intensity measurements. Mean background intensity was quantified on a 
circular region in an area not containing any animals, except in quantifications in Fig. 4A, 4C and 6A, where background 
intensity was quantified on a circular region in an area with no fluorescence inside the worm. 
	 For the intensity profiles in the epidermis, except those of RFP::GIP-1, a 10 px-wide line was drawn in the apical focal 
plane, from the hyp7 cytoplasm to the seam cell cytoplasm. For the intensity profiles of RFP::GIP-1, 10 20-px wide lines 
were drawn per cell in the apical focal plane, from the hyp7 cytoplasm to the seam cell cytoplasm, and then averaged to 
obtain a single intensity profile per cell. For the intensity profiles in the intestine, 8 50 px-wide lines were drawn from the 
lumen to the cytoplasm of the intestinal cells and averaged to obtain a single value per worm. The intensity profiles were 
manually aligned at the apical peak value. 
	 To quantify the fluorescence intensity for the molting assay, whole worm fluorescence was quantified. An ROI of 
each whole worm was created by drawing a freehand line around the worm using the transmitted light channel. The 
corresponding fluorescence of the ROI was measured in the GFP channel. 
	 Microtubule bundles were counted manually. A 5-px-wide freehand line was drawn along the worm at the dorsal/
ventral region, and the intensity profile was obtained. The number of fluorescent peaks was counted, and the microtubule 
bundle density was calculated by dividing the number of peaks by the measured distance. 
	 EBP-2::GFP comet counting was done manually. Comet density was calculated by dividing the number of EBP-2::GFP 
comets by the surface of the area analyzed. Comets in both the lateral and dorsal/ventral hypodermis were measured. 
	 PTRN-1::GFP puncta counting was done manually. Puncta density was calculated by dividing the number of PTRN-
1::GFP puncta by the surface of the area analyzed. Puncta in both the seam cells and the hypodermis were measured.	
	 Microtubule growth rate was calculated in an automated manner using the ImageJ plug-in ‘TrackMate’ (Tinevez et 
al., 2017). The following parameters were chosen: estimated blob diameter = 0.700 um; threshold = 200,000; simple LAP 
tracker; linking max distance = 1.5 um; gap-closing max distance = 1.5 um; gap-closing max frame gap = 3; duration of 
track = 10. The mean speed of the comets was averaged to obtain the average microtubule growth rate. Comets in both the 
seam cells and the hypodermis were measured. 
	 To determine the directionality of the actin bundles and microtubule growth, images or movies were rotated to orient 
the seam cells horizontally. Lines were drawn along the microtubule or actin bundles, and the angle of these lines was 
calculated relative to the horizontal axis. Movies of EBP-2 were used to calculate the directionality of microtubule growth, 
where the direction of growth of individual comets was annotated manually. Maximum projections of EBP-2 movies were 
used to calculate the directionality of microtubule growth. Rose plots were generated using MatLAB.

Seam lineage analysis
To generate the seam cell lineage the number of seam cells and hyp7 nuclei were analyzed at 1 h intervals, using the marker 
ouIs10[scmp::NLS::tdTomato; dpy-7p::2xNLS::YFP;wrt-2p::GFP::PH] that marks the seam nuclei in red and the hypodermal 
nuclei in green. Animals were classified according to showing a wild-type seam cell division pattern, having developmental 
defects such as delayed or arrested seam cell divisions, or having inappropriate seam cell differentiation. Control animals 
were classified at each larval stage. PAR-6 depleted animals were classified after they had undergone the delayed L2-stage 
divisions. From the total number of worms analyzed, the percentages of worms in each category were calculated. 

PAR-6::mCherry transgenic array
The Pdpy-7::par-6::mCherry vector used for PAR-6 hypodermal rescue was cloned into the pBSK(+) vector 
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using Gibson assembly. The promoter of dpy7, which is expressed in hyp7 but not in the seam cells (Gilleard 
et al., 1997; Myers and Greenwald, 2005), was amplified from C. elegans genomic DNA using primers 
5’-TGTAATACGACTCACTATAGGGCGAATTGGctcattccacgatttctcgc and 5’- tctggaacaaaatgtaagaatattc. A fragment 
of 5.3 kb containing the entire genomic sequence of par-6 and a fragment of 402 bp of the par-6 3’ UTR were amplified 
from C. elegans N2 genomic DNA using primers 5’-tttaagaatattcttacattttgttccagaATGTCCTACAACGGCTCCTA 
and 5’-GGCCATGTTGTCCTCCTCTCCCTTGGACATGTCCTCTCCACTGTCCGAAT, 
and 5’-CACTCCACCGGAGGAATGGACGAGCTCTACTGAaaaactcttttcagcca and 
5’-TAAAGGGAACAAAAGCTGGAGCTCCACCGCgaaataaataatttattctc, respectively. mCherry was amplified from 
pJJR83 (Addgene #75028) using primers 5’-TCCAAGGGAGAGGAGGACAA and 5’-GTAGAGCTCGTCCATTCCTC. 
Correct amplification and assembly was confirmed by Sanger sequencing. The plasmid generated can be found in 
Supplementary File 1. To generate transgenic lines young adult hermaphrodites were injected in the germline with 30 ng/µl 
of Pdpy-7::par-6::mCherry. mCherry fluorescence was used to select stable transgenic lines.

Yeast two-hybrid analysis
Sequences encoding the PAR-6 PDZ domain and full-length NOCA-1d were PCR amplified from a mixed-
stage cDNA library using primers par-6_F: 5’-ggaggcgcgccATGATTGTGCCAGAAGCTCATCG, par-6_R: 
5’-ggagcggccgcTCAGGCGTTCGGTGTTCCTTGTT, noca-1d_F: 5’-ggaggcgcgccATGAATATTTGTTGTTGTGG and 
noca-1d_R: 5’-ggagcggccgcCTATTGAACTCTGCATACAT. PCR products were digested with AscI and NotI, and cloned 
into Gal4-DB vector pMB28 and Gal4-AD vector pMB29, respectively (Koorman et al., 2016). The resulting plasmids 
were transformed into Saccharomyces cerevisiae strains Y8930 (MATα) and Y8800 (MATa) (Yu et al., 2008) using the Te/
LiAc transformation method (Schiestl and Gietz, 1989). DB::PAR-6/AD::NOCA-1 diploid yeast was generated by mating, 
and plated on synthetic defined (SD) medium plates lacking leucine, tryptophan, and histidine containing 2 mM 3-Amino-
1,2,4-triazole (3-AT); and lacking leucine, tryptophan, and adenine to assess the presence of an interaction, and on an SD 
plate lacking leucine and histidine containing 1 mg/ml cycloheximide to test for self-activation by the DB::PAR-6 plasmid 
in the absence of the AD::NOCA-1 plasmid. Controls of known reporter activition strength and behavior on cycloheximide 
were also added to all plates.

Statistical analysis
All statistical analyses were performed using GraphPad Prism 8. For population comparisons, a D’Agostino & Pearson test 
of normality was first performed to determine if the data was sampled from a Gaussian distribution. For data drawn from 
a Gaussian distribution, comparisons between two populations were done using an unpaired t test, with Welch’s correction 
if the SDs of the populations differ significantly, and comparisons between >2 populations were done using a one-way 
ANOVA, or a Welch’s ANOVA if the SDs of the populations differ significantly. For data not drawn from a Gaussian 
distribution, a non-parametric test was used (Mann-Whitney for 2 populations and Kruskal-Wallis for >2 populations). 
ANOVA and non-parametric tests were followed up with multiple comparison tests of significance (Dunnett’s, Tukey’s, 
Dunnett’s T3 or Dunn’s). Tests of significance used and sample sizes are indicated in the figure legends. No statistical 
method was used to pre-determine sample sizes. No samples or animals were excluded from analysis. The experiments 
were not randomized, and the investigators were not blinded to allocation during experiments and outcome assessment.
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Tables

Table 1 - List of strains used

Strain Genotype

BOX289 par-6(mib30[par-6::aid::egfp-loxp]) I; ieSi57[eft-3p::TIR1::mRuby::unc-54 3’UTR + Cbr-unc-119(+)] II

BOX570 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; ieSi57[eft-3p::TIR1::mRuby::unc-54 3’UTR + Cbr-unc-119(+)] II

BOX292 ieSi57[eft-3p::TIR1::mRuby::unc-54 3’UTR + Cbr-unc-119(+)] II; par-3(mib68[eGFP-Lox2272::AID::par-3b+eGF-
P(noIntrons)-LoxP::AID::par-3g]) III

BOX409 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV

BOX607 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV

BOX444 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs48[Pelt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV

BOX285 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs48[Pelt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV

BOX506 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; dlg-1(mib23[dlg-1::mCherry-LoxP]) X; mgIs49[mlt-10::gfp-pest]

BOX412 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; heIs63[Pwrt-2::GFP::PH, Pwrt-2::GFP::H2B, Plin-48::mCherry]V

BOX490 ouIs10[Pscm::NLS::tdTomato(pAW584)+Pwrt2::GFP::PH(pAW561)+Pdpy-7::2xNLS::YFP(pAW516)] I; par-
6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV

BOX041 mibIs23 [lgl-1::GFP-2TEV-Avi 10ng + Pmyo-3::mCherry 10ng + lambda DNA 60ng] V

BOX553 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; mibIs23 [lgl-1::GFP-2TEV-Avi 10ng + Pmyo-3::mCherry 10ng + lambda DNA 60ng] V

BOX554 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; par-1(it324[par-1::gfp::par-1 exon 11a])

BOX493 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; dlg-1(mib23[dlg-1::mCherry-LoxP]) X

BOX402 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; dlg-1(mib23[dlg-1::mCherry-LoxP]) X

BOX494 mcIs40 [Plin-26::ABDvab-10::mCherry + Pmyo-2::GFP]; par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-
2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV; heIs63[Pwrt-2::GFP::PH, 
Pwrt-2::GFP::H2B, Plin-48::mCherry] V

BOX483 par-6(mib30[par-6::aid::egfp-loxp]) I; maph-1.1(mib12[egfp::maph-1.1]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox-
511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV; dlg-1(mib23[dlg-1::mCherry-LoxP]) X

BOX505 maph-1.1(mib12[egfp::maph-1.1]) I; pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox-
511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV; dlg-1(mib23[dlg-1::mCherry-LoxP]) X

BOX592 maph-1.1(mib12[egfp::maph-1.1]) I; noca-1(ok3692)V/nT1[qIs51](IV;V)

BOX487 par-6(mib25[par-6::mCherry-LoxP]) I; ebp-2(he293[ebp-2::egfp]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-
2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX580 ebp-2(he293[ebp-2::egfp]) II; noca-1(ok3692)V/nT1[qIs51](IV;V)
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BOX567 par-6(mib30[par-6::aid::egfp-loxp]) I; ltSi540[pOD1343/pSW160; Pnoca-1de::noca-1de::sfGFP; cb-unc-119(+)]II; 
unc-119(ed3)III; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX355 par-6(mib30[par-6::aid::egfp-loxp]) I; ltSi540[pOD1343/pSW160; Pnoca-1de::noca-1de::sfGFP; cb-unc-119(+)]II; 
unc-119(ed3)III; ieSi57[eft-3p::TIR1::mRuby::unc-54 3’UTR + Cbr-unc-119(+)] II

BOX568 par-6(mib30[par-6::aid::egfp-loxp]) I; gip-1(wow25[tagRFP-t::3xMyc::gip-1]) III; mibIs49[Pwrt-2::TIR-1::tagBFP2-
Lox511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX502 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; dlg-1(mib23[dlg-1::mCherry-LoxP]) X; ptrn-1(wow4[PTRN-1::GFP]) X

BOX579 gip-1(wow25[tagRFP-t::3xMyc::gip-1]) III; noca-1(ok3692)V/nT1[qIs51](IV;V)

BOX561 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; mibEx221(Pdpy-7::par-6::mch)

BOX563 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-
5014802 (cxTi10882 site)]) IV; heIs63[Pwrt-2::GFP::PH, Pwrt-2::GFP::H2B, Plin-48::mCherry] V; mibEx222(Pd-
py-7::par-6::mch; Pmyo-2::egfp)

BOX608 pw27[nekl-2::aid];pwSi10[phyp7::bfp::tir-1];pw17[chc-1::GFP]; mibEx223(Pwrt-2::mCh::H2B; Pwrt-2::mCh::PH)

BOX447 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs48[Pelt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; mibIs23 [lgl-1::GFP-2TEV-Avi 10ng + Pmyo-3::mCherry 10ng + lambda DNA 60ng] V

BOX431 par-6(mib30[par-6::aid::egfp-loxp]) I; mibIs48[Pelt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 
(cxTi10882 site)]) IV; dlg-1(mib23[dlg-1::mCherry-LoxP]) X

BOX406 par-6(mib30[par-6::aid::egfp-loxp]) I; pkc-3(mib80[mcherry-loxp::pkc-3]) II; mibIs48[Pelt-2::TIR-1::tagBFP2-Lox-
511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX411 par-6(mib30[par-6::aid::egfp-loxp]) I; pkc-3(mib80[mcherry-loxp::pkc-3]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-
Lox511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX578 par-6(mib30[par-6::aid::egfp-loxp]) I; par-3(it300[par-3::mcherry]) III; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox-
511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX484 par-6(mib25[par-6::mCherry-LoxP]) I; pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; mibIs49[Pwrt-2::TIR-1::tagBFP2-
Lox511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX485 pkc-3(mib78[egfp-loxp::aid::pkc-3]) II; par-3(KK1218[par-3::mcherry]) III; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox-
511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

BOX486 par-6(mib25[par-6::mCherry-LoxP]) I; par-3(mib68[eGFP-Lox2272::AID::par-3b+eGFP(noIntrons)-Lox-
P::AID::par-3g]) III; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) 
IV

BOX492 pkc-3(it309[GFP::pkc-3]) II; par-3(mib68[eGFP-Lox2272::AID::par-3b+eGFP(noIntrons)-LoxP::AID::par-3g]) III; 
mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740-5014802 (cxTi10882 site)]) IV

AW1015 ouIs10[Pscm::NLS::tdTomato(pAW584)+Pwrt2::GFP::PH(pAW561)+Pdpy-7::2xNLS::YFP(pAW516)] I

GR1395 mgIs49 [mlt-10::GFP-pest; ttx-1::GFP]

SV1937 ebp-2(he293[ebp-2::egfp]) II

OD1652 ltSi540[pOD1343/pSW160; Pnoca-1de::noca-1de::sfGFP; cb-unc-119(+)]II; unc-119(ed3)III

JLF173 gip-1(wow25[tagRFP-t::3xMyc::gip-1]) III

JLF15 ptrn-1(wow4[PTRN-1::GFP]) X

Table 2 - List of sgRNA target sites

Target Sequence

par-6 gacgcaaatgacagtgatagTGG

pkc-3 tgggtctccgacatcattagAGG

par-3 sgRNA 1 tttcagatcgatcatcatgtCGG

par-3 sgRNA 2 cacatgcataacggtcgtggTGG

dlg-1 gccacgtcattagatgaaatTGG

mos IV 5013690..5015700 agctcaatcgtgtacttgcgTGG

ebp-2 sgRNA 1 gcaggcaaatctggacgataCGG

ebp-2 sgRNA 2 tacggggataggataagcaaTGG
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